Skip to main content
Log in

Rho family GTPase signaling through type II p21-activated kinases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

A Correction to this article was published on 25 October 2023

This article has been updated

Abstract

Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

Change history

Abbreviations

RhoA:

Ras homolog family member A

RAC1:

Ras-related C3 botulinum toxin substrate 1

CDC42:

Cell division control protein 42 homolog

BAD:

Bcl-2-associated agonist of cell death

mDia:

Protein diaphanous homolog

ROCK:

Rho-associated protein kinase

WASP:

Wiskott–Aldrich syndrome protein

N-WASP:

Neural Wiskott–Aldrich syndrome protein

WAVE:

WASP family verprolin-homologous protein

PAK:

P21-activated kinase

Cofilin/ADF:

Cofilin/Actin depolymerizing factor

MRCK:

Myotonic dystrophy kinase-related CDC42-binding kinase

CDC42BPA:

CDC42-binding protein kinase alpha

Par6:

Partitioning defective 6

SSH:

Protein phosphatase Slingshot

References

  1. Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41(1):31–40

    Article  CAS  PubMed  Google Scholar 

  2. Madaule P, Axel R, Myers AM (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84(3):779–783. https://doi.org/10.1073/pnas.84.3.779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8(4):1087–1092. https://doi.org/10.1002/j.1460-2075.1989.tb03477.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3):401–410

    Article  CAS  PubMed  Google Scholar 

  5. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399. https://doi.org/10.1016/0092-8674(92)90163-7

    Article  CAS  PubMed  Google Scholar 

  6. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62. https://doi.org/10.1016/0092-8674(95)90370-4

    Article  CAS  PubMed  Google Scholar 

  7. Ridley AJ (2012) Historical overview of Rho GTPases. Methods Mol Biol 827:3–12. https://doi.org/10.1007/978-1-61779-442-1_1

    Article  CAS  PubMed  Google Scholar 

  8. Hall A, Nobes CD (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 355(1399):965–970. https://doi.org/10.1098/rstb.2000.0632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hall A (2012) Rho family GTPases. Biochem Soc Trans 40(6):1378–1382. https://doi.org/10.1042/BST20120103

    Article  CAS  PubMed  Google Scholar 

  10. Brakebusch C (2021) Rho GTPase signaling in health and disease: a complex signaling network. Cells. https://doi.org/10.3390/cells10020401

    Article  PubMed  PubMed Central  Google Scholar 

  11. Crosas-Molist E, Samain R, Kohlhammer L, Orgaz JL, George SL, Maiques O, Barcelo J, Sanz-Moreno V (2022) Rho GTPase signaling in cancer progression and dissemination. Physiol Rev 102(1):455–510. https://doi.org/10.1152/physrev.00045.2020

    Article  CAS  PubMed  Google Scholar 

  12. Clayton NS, Ridley AJ (2020) Targeting Rho GTPase signaling networks in cancer. Front Cell Dev Biol 8:222. https://doi.org/10.3389/fcell.2020.00222

    Article  PubMed  PubMed Central  Google Scholar 

  13. Warner H, Wilson BJ, Caswell PT (2019) Control of adhesion and protrusion in cell migration by Rho GTPases. Curr Opin Cell Biol 56:64–70. https://doi.org/10.1016/j.ceb.2018.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mosaddeghzadeh N, Ahmadian MR (2021) The RHO family GTPases: mechanisms of regulation and signaling. Cells. https://doi.org/10.3390/cells10071831

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt 5):843–846. https://doi.org/10.1242/jcs.01660

    Article  CAS  PubMed  Google Scholar 

  16. Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701. https://doi.org/10.1038/nrm2476

    Article  CAS  PubMed  Google Scholar 

  17. Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294(5545):1299–1304

    Article  CAS  PubMed  Google Scholar 

  18. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877

    Article  CAS  PubMed  Google Scholar 

  19. Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17(8):496–510. https://doi.org/10.1038/nrm.2016.67

    Article  CAS  PubMed  Google Scholar 

  20. Mitin N, Roberts PJ, Chenette EJ, Der CJ (2012) Posttranslational lipid modification of Rho family small GTPases. Methods Mol Biol 827:87–95. https://doi.org/10.1007/978-1-61779-442-1_6

    Article  CAS  PubMed  Google Scholar 

  21. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16(10):522–529. https://doi.org/10.1016/j.tcb.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  22. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6(2):167–180

    Article  CAS  PubMed  Google Scholar 

  23. Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99(2):67–86. https://doi.org/10.1042/BC20060086

    Article  CAS  PubMed  Google Scholar 

  24. Dovas A, Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390(Pt 1):1–9. https://doi.org/10.1042/BJ20050104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amin E, Jaiswal M, Derewenda U, Reis K, Nouri K, Koessmeier KT, Aspenstrom P, Somlyo AV, Dvorsky R, Ahmadian MR (2016) Deciphering the molecular and functional basis of RHOGAP family proteins: a systematic approach toward selective inactivation of Rho family proteins. J Biol Chem 291(39):20353–20371. https://doi.org/10.1074/jbc.M116.736967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ridley AJ, Hall A (1992) Distinct patterns of actin organization regulated by the small GTP-binding proteins Rac and Rho. Cold Spring Harb Symp Quant Biol 57:661–671. https://doi.org/10.1101/sqb.1992.057.01.072

    Article  CAS  PubMed  Google Scholar 

  27. Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays News Rev Mol Cell Dev Biol 29(4):356–370. https://doi.org/10.1002/bies.20558

    Article  CAS  Google Scholar 

  28. Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9(1):86–92. https://doi.org/10.1016/s0955-0674(97)80156-1

    Article  CAS  PubMed  Google Scholar 

  29. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285(5429):895–898

    Article  CAS  PubMed  Google Scholar 

  30. Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393(6687):805–809. https://doi.org/10.1038/31729

    Article  CAS  PubMed  Google Scholar 

  31. Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechere L (2017) LIM kinases: cofilin and beyond. Oncotarget 8(25):41749–41763. https://doi.org/10.18632/oncotarget.16978

    Article  PubMed  PubMed Central  Google Scholar 

  32. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1(5):253–259. https://doi.org/10.1038/12963

    Article  CAS  PubMed  Google Scholar 

  33. Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781

    Article  CAS  PubMed  Google Scholar 

  34. Arias-Romero LE, Chernoff J (2008) A tale of two Paks. Biol Cell 100(2):97–108

    Article  CAS  PubMed  Google Scholar 

  35. Wittinghofer A, Vetter IR (2011) Structure-function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971. https://doi.org/10.1146/annurev-biochem-062708-134043

    Article  CAS  PubMed  Google Scholar 

  36. Aspenstrom P (1999) Effectors for the Rho GTPases. Curr Opin Cell Biol 11(1):95–102. https://doi.org/10.1016/s0955-0674(99)80011-8

    Article  CAS  PubMed  Google Scholar 

  37. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bagci H, Sriskandarajah N, Robert A, Boulais J, Elkholi IE, Tran V, Lin ZY, Thibault MP, Dube N, Faubert D, Hipfner DR, Gingras AC, Cote JF (2020) Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms. Nat Cell Biol 22(1):120–134. https://doi.org/10.1038/s41556-019-0438-7

    Article  CAS  PubMed  Google Scholar 

  39. Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28(1–2):65–76. https://doi.org/10.1007/s10555-008-9170-7

    Article  CAS  PubMed  Google Scholar 

  40. Rudolph MG, Bayer P, Abo A, Kuhlmann J, Vetter IR, Wittinghofer A (1998) The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J Biol Chem 273(29):18067–18076

    Article  CAS  PubMed  Google Scholar 

  41. Lane J, Martin T, Weeks HP, Jiang WG (2014) Structure and role of WASP and WAVE in Rho GTPase signalling in cancer. Cancer Genomics Proteomics 11(3):155–165

    PubMed  Google Scholar 

  42. Pirone DM, Carter DE, Burbelo PD (2001) Evolutionary expansion of CRIB-containing Cdc42 effector proteins. Trends Genet 17(7):370–373. https://doi.org/10.1016/s0168-9525(01)02311-3

    Article  CAS  PubMed  Google Scholar 

  43. Burbelo PD, Drechsel D, Hall A (1995) A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem 270(49):29071–29074. https://doi.org/10.1074/jbc.270.49.29071

    Article  CAS  PubMed  Google Scholar 

  44. Owen D, Mott HR (2018) CRIB effector disorder: exquisite function from chaos. Biochem Soc Trans 46(5):1289–1302. https://doi.org/10.1042/BST20170570

    Article  CAS  PubMed  Google Scholar 

  45. Owen D, Mott HR, Laue ED, Lowe PN (2000) Residues in Cdc42 that specify binding to individual CRIB effector proteins. Biochemistry 39(6):1243–1250. https://doi.org/10.1021/bi991567z

    Article  CAS  PubMed  Google Scholar 

  46. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326(5957):1208–1212. https://doi.org/10.1126/science.1175862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15:185–230. https://doi.org/10.1146/annurev.cellbio.15.1.185

    Article  CAS  PubMed  Google Scholar 

  48. Kanellos G, Frame MC (2016) Cellular functions of the ADF/cofilin family at a glance. J Cell Sci 129(17):3211–3218. https://doi.org/10.1242/jcs.187849

    Article  CAS  PubMed  Google Scholar 

  49. De La Cruz EM (2009) How cofilin severs an actin filament. Biophys Rev 1(2):51–59. https://doi.org/10.1007/s12551-009-0008-5

    Article  CAS  PubMed  Google Scholar 

  50. Morgan TE, Lockerbie RO, Minamide LS, Browning MD, Bamburg JR (1993) Isolation and characterization of a regulated form of actin depolymerizing factor. J Cell Biol 122(3):623–633

    Article  CAS  PubMed  Google Scholar 

  51. Agnew BJ, Minamide LS, Bamburg JR (1995) Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J Biol Chem 270(29):17582–17587

    Article  CAS  PubMed  Google Scholar 

  52. Ressad F, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D, Carlier MF (1998) Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and F-actins. Comparison of plant and human ADFs and effect of phosphorylation. J Biol Chem 273(33):20894–20902

    Article  CAS  PubMed  Google Scholar 

  53. Elam WA, Cao W, Kang H, Huehn A, Hocky GM, Prochniewicz E, Schramm AC, Negron K, Garcia J, Bonello TT, Gunning PW, Thomas DD, Voth GA, Sindelar CV, De La Cruz EM (2017) Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. J Biol Chem 292(48):19565–19579. https://doi.org/10.1074/jbc.M117.808378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687):809–812. https://doi.org/10.1038/31735

    Article  CAS  PubMed  Google Scholar 

  55. Hamill S, Lou HJ, Turk BE, Boggon TJ (2016) Structural basis for non-canonical substrate recognition of cofilin/ADF proteins by LIM kinases. Mol Cell 62(3):397–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25(2):457–469. https://doi.org/10.1016/j.cellsig.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  57. Scott RW, Olson MF (2007) LIM kinases: function, regulation and association with human disease. J Mol Med 85(6):555–568. https://doi.org/10.1007/s00109-007-0165-6

    Article  CAS  PubMed  Google Scholar 

  58. Sumi T, Matsumoto K, Nakamura T (2001) Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 276(1):670–676. https://doi.org/10.1074/jbc.M007074200

    Article  CAS  PubMed  Google Scholar 

  59. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K (2000) Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem 275(5):3577–3582

    Article  CAS  PubMed  Google Scholar 

  60. Truebestein L, Elsner DJ, Fuchs E, Leonard TA (2015) A molecular ruler regulates cytoskeletal remodelling by the Rho kinases. Nat Commun 6:10029. https://doi.org/10.1038/ncomms10029

    Article  CAS  PubMed  Google Scholar 

  61. Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR (2004) Structural insights into the interaction of ROCKI with the switch regions of RhoA. J Biol Chem 279(8):7098–7104. https://doi.org/10.1074/jbc.M311911200

    Article  CAS  PubMed  Google Scholar 

  62. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4(6):446–456. https://doi.org/10.1038/nrm1128

    Article  CAS  PubMed  Google Scholar 

  63. Julian L, Olson MF (2014) Rho-associated coiled-coil containing kinases (ROCK): structure, regulation, and functions. Small GTPases 5:e29846. https://doi.org/10.4161/sgtp.29846

    Article  PubMed  PubMed Central  Google Scholar 

  64. Unbekandt M, Olson MF (2014) The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. J Mol Med 92(3):217–225. https://doi.org/10.1007/s00109-014-1133-6

    Article  CAS  PubMed  Google Scholar 

  65. Ha BH, Morse EM, Turk BE, Boggon TJ (2015) Signaling, regulation, and specificity of the type II p21-activated kinases. J Biol Chem 290(21):12975–12983. https://doi.org/10.1074/jbc.R115.650416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. King H, Nicholas NS, Wells CM (2014) Role of p-21-activated kinases in cancer progression. Int Rev Cell Mol Biol 309:347–387. https://doi.org/10.1016/B978-0-12-800255-1.00007-7

    Article  CAS  PubMed  Google Scholar 

  67. Kumar R, Sanawar R, Li X, Li F (2017) Structure, biochemistry, and biology of PAK kinases. Gene 605:20–31. https://doi.org/10.1016/j.gene.2016.12.014

    Article  CAS  PubMed  Google Scholar 

  68. Hofmann C, Shepelev M, Chernoff J (2004) The genetics of Pak. J Cell Sci 117(Pt 19):4343–4354. https://doi.org/10.1242/jcs.01392

    Article  CAS  PubMed  Google Scholar 

  69. Rane CK, Minden A (2019) P21 activated kinase signaling in cancer. Semin Cancer Biol 54:40–49. https://doi.org/10.1016/j.semcancer.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  70. Eswaran J, Soundararajan M, Kumar R, Knapp S (2008) UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci 33(8):394–403. https://doi.org/10.1016/j.tibs.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  71. Whale A, Hashim FN, Fram S, Jones GE, Wells CM (2011) Signalling to cancer cell invasion through PAK family kinases. Front Biosci (Landmark Ed) 16:849–864. https://doi.org/10.2741/3724

    Article  CAS  PubMed  Google Scholar 

  72. Rennefahrt UE, Deacon SW, Parker SA, Devarajan K, Beeser A, Chernoff J, Knapp S, Turk BE, Peterson JR (2007) Specificity profiling of Pak kinases allows identification of novel phosphorylation sites. J Biol Chem 282(21):15667–15678. https://doi.org/10.1074/jbc.M700253200

    Article  CAS  PubMed  Google Scholar 

  73. Ha BH, Boggon TJ (2018) CDC42 binds PAK4 via an extended GTPase-effector interface. Proc Natl Acad Sci USA 115(3):531–536. https://doi.org/10.1073/pnas.1717437115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, Belisle B, Minden A (1998) PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. Embo J 17(22):6527–6540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller CJ, Lou HJ, Simpson C, van de Kooij B, Ha BH, Fisher OS, Pirman NL, Boggon TJ, Rinehart J, Yaffe MB, Linding R, Turk BE (2019) Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biol 17(3):e2006540. https://doi.org/10.1371/journal.pbio.2006540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chetty AK, Sexton JA, Ha BH, Turk BE, Boggon TJ (2020) Recognition of physiological phosphorylation sites by p21-activated kinase 4. J Struct Biol 211(3):107553. https://doi.org/10.1016/j.jsb.2020.107553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac240

    Article  PubMed  PubMed Central  Google Scholar 

  78. Parrini MC, Lei M, Harrison SC, Mayer BJ (2002) Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9(1):73–83

    Article  CAS  PubMed  Google Scholar 

  79. Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, Harrison SC (2000) Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102(3):387–397

    Article  CAS  PubMed  Google Scholar 

  80. Zhao ZS, Manser E (2012) PAK family kinases: physiological roles and regulation. Cell Logist 2(2):59–68. https://doi.org/10.4161/cl.21912

    Article  PubMed  PubMed Central  Google Scholar 

  81. Strochlic TI, Viaud J, Rennefahrt UE, Anastassiadis T, Peterson JR (2010) Phosphoinositides are essential coactivators for p21-activated kinase 1. Mol Cell 40(3):493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sorrell FJ, Kilian LM, Elkins JM (2019) Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in cis. Biochem J 476(7):1037–1051. https://doi.org/10.1042/BCJ20180867

    Article  CAS  PubMed  Google Scholar 

  83. Ha BH, Davis MJ, Chen C, Lou HJ, Gao J, Zhang R, Krauthammer M, Halaban R, Schlessinger J, Turk BE, Boggon TJ (2012) Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate. Proc Natl Acad Sci USA 109(40):16107–16112. https://doi.org/10.1073/pnas.1214447109

    Article  PubMed  PubMed Central  Google Scholar 

  84. Baskaran Y, Ng YW, Selamat W, Ling FT, Manser E (2012) Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep 13(7):653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gao J, Ha BH, Lou HJ, Morse EM, Zhang R, Calderwood DA, Turk BE, Boggon TJ (2013) Substrate and inhibitor specificity of the type II p21-activated kinase, PAK6. PLoS ONE 8(10):e77818. https://doi.org/10.1371/journal.pone.0077818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dart AE, Wells CM (2013) P21-activated kinase 4–not just one of the PAK. Eur J Cell Biol 92(4–5):129–138. https://doi.org/10.1016/j.ejcb.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  87. Kesanakurti D, Chetty C, Rajasekhar Maddirela D, Gujrati M, Rao JS (2012) Functional cooperativity by direct interaction between PAK4 and MMP-2 in the regulation of anoikis resistance, migration and invasion in glioma. Cell Death Dis 3:e445. https://doi.org/10.1038/cddis.2012.182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baskaran Y, Ang KC, Anekal PV, Chan WL, Grimes JM, Manser E, Robinson RC (2015) An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat Commun 6:8681. https://doi.org/10.1038/ncomms9681

    Article  CAS  PubMed  Google Scholar 

  89. Liu YY, Tanikawa C, Ueda K, Matsuda K (2019) INKA2, a novel p53 target that interacts with the serine/threonine kinase PAK4. Int J Oncol 54(6):1907–1920. https://doi.org/10.3892/ijo.2019.4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rane CK, Minden A (2014) P21 activated kinases: structure, regulation, and functions. Small GTPases. https://doi.org/10.4161/sgtp.28003

    Article  PubMed  PubMed Central  Google Scholar 

  91. Radu M, Semenova G, Kosoff R, Chernoff J (2014) PAK signalling during the development and progression of cancer. Nat Rev Cancer 14(1):13–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zenke FT, Krendel M, DerMardirossian C, King CC, Bohl BP, Bokoch GM (2004) p21-activated kinase 1 phosphorylates and regulates 14–3–3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J Biol Chem 279(18):18392–18400. https://doi.org/10.1074/jbc.M400084200

    Article  CAS  PubMed  Google Scholar 

  93. Selamat W, Tay PL, Baskaran Y, Manser E (2015) The Cdc42 effector kinase PAK4 localizes to cell–cell junctions and contributes to establishing cell polarity. PLoS ONE 10(6):e0129634. https://doi.org/10.1371/journal.pone.0129634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ryu BJ, Lee H, Kim SH, Heo JN, Choi SW, Yeon JT, Lee J, Lee J, Cho JY, Kim SH, Lee SY (2014) PF-3758309, p21-activated kinase 4 inhibitor, suppresses migration and invasion of A549 human lung cancer cells via regulation of CREB, NF-kappaB, and beta-catenin signalings. Mol Cell Biochem 389(1–2):69–77. https://doi.org/10.1007/s11010-013-1928-8

    Article  CAS  PubMed  Google Scholar 

  95. Li Y, Shao Y, Tong Y, Shen T, Zhang J, Li Y, Gu H, Li F (2012) Nucleo-cytoplasmic shuttling of PAK4 modulates beta-catenin intracellular translocation and signaling. Biochim Biophys Acta 1823(2):465–475. https://doi.org/10.1016/j.bbamcr.2011.11.013

    Article  CAS  PubMed  Google Scholar 

  96. Fram S, King H, Sacks DB, Wells CM (2014) A PAK6-IQGAP1 complex promotes disassembly of cell-cell adhesions. Cell Mol Life Sci 71(14):2759–2773. https://doi.org/10.1007/s00018-013-1528-5

    Article  CAS  PubMed  Google Scholar 

  97. Sun J, Khalid S, Rozakis-Adcock M, Fantus IG, Jin T (2009) P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene 28(35):3132–3144. https://doi.org/10.1038/onc.2009.167

    Article  CAS  PubMed  Google Scholar 

  98. Hino S, Tanji C, Nakayama KI, Kikuchi A (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25(20):9063–9072. https://doi.org/10.1128/MCB.25.20.9063-9072.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Menzel N, Melzer J, Waschke J, Lenz C, Wecklein H, Lochnit G, Drenckhahn D, Raabe T (2008) The Drosophila p21-activated kinase Mbt modulates DE-cadherin-mediated cell adhesion by phosphorylation of Armadillo. Biochem J 416(2):231–241. https://doi.org/10.1042/BJ20080465

    Article  CAS  PubMed  Google Scholar 

  100. Vershinin Z, Feldman M, Chen A, Levy D (2016) PAK4 methylation by SETD6 promotes the activation of the Wnt/beta-catenin pathway. J Biol Chem 291(13):6786–6795. https://doi.org/10.1074/jbc.M115.697292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gnesutta N, Qu J, Minden A (2001) The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem 276(17):14414–14419

    Article  CAS  PubMed  Google Scholar 

  102. Cotteret S, Jaffer ZM, Beeser A, Chernoff J (2003) p21-activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol 23(16):5526–5539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM (2000) p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20(2):453–461. https://doi.org/10.1128/mcb.20.2.453-461.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chan PM, Manser E (2012) PAKs in human disease. Prog Mol Biol Transl Sci 106:171–187. https://doi.org/10.1016/B978-0-12-396456-4.00011-0

    Article  CAS  PubMed  Google Scholar 

  105. Ye DZ, Jin S, Zhuo Y, Field J (2011) p21-activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS ONE 6(11):e27637. https://doi.org/10.1371/journal.pone.0027637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jin S, Zhuo Y, Guo W, Field J (2005) p21-activated kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 280(26):24698–24705. https://doi.org/10.1074/jbc.M413374200

    Article  CAS  PubMed  Google Scholar 

  107. Wu X, Carr HS, Dan I, Ruvolo PP, Frost JA (2008) p21 activated kinase 5 activates Raf-1 and targets it to mitochondria. J Cell Biochem 105(1):167–175. https://doi.org/10.1002/jcb.21809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wells CM, Whale AD, Parsons M, Masters JR, Jones GE (2010) PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. J Cell Sci 123(Pt 10):1663–1673. https://doi.org/10.1242/jcs.055707

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nayal A, Webb DJ, Brown CM, Schaefer EM, Vicente-Manzanares M, Horwitz AR (2006) Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol 173(4):587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dong JM, Lau LS, Ng YW, Lim L, Manser E (2009) Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem J 418(1):173–184. https://doi.org/10.1042/BJ20080170

    Article  CAS  PubMed  Google Scholar 

  111. Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18(1):26–31. https://doi.org/10.1016/j.ceb.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  112. Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24(3):473–486. https://doi.org/10.1038/sj.emboj.7600543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhao M, Spiess M, Johansson HJ, Olofsson H, Hu J, Lehtio J, Stromblad S (2017) Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization. Oncotarget 8(44):77061–77074. https://doi.org/10.18632/oncotarget.20352

    Article  PubMed  PubMed Central  Google Scholar 

  114. Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R (2004) p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 5(2):154–160. https://doi.org/10.1038/sj.embor.7400079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Miller CJ, Turk BE (2018) Homing in: mechanisms of substrate targeting by protein kinases. Trends Biochem Sci 43(5):380–394. https://doi.org/10.1016/j.tibs.2018.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Miller ML, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2. https://doi.org/10.1126/scisignal.1159433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kornev AP, Haste NM, Taylor SS, Eyck LF (2006) Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci USA 103(47):17783–17788. https://doi.org/10.1073/pnas.0607656103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J (2006) A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol 4(5):e144

    Article  PubMed  PubMed Central  Google Scholar 

  119. McNicholas S, Potterton E, Wilson KS, Noble ME (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(Pt 4):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367(6458):40–46. https://doi.org/10.1038/367040a0

    Article  CAS  PubMed  Google Scholar 

  121. Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML, Balk SP (2002) AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol 16(1):85–99

    Article  CAS  PubMed  Google Scholar 

  122. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635. https://doi.org/10.1038/nature01148

    Article  CAS  PubMed  Google Scholar 

  123. Qu J, Cammarano MS, Shi Q, Ha KC, de Lanerolle P, Minden A (2001) Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol 21(10):3523–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, Jallal B, Smeal T (2002) Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 277(1):550–558

    Article  CAS  PubMed  Google Scholar 

  125. Baldassa S, Calogero AM, Colombo G, Zippel R, Gnesutta N (2010) N-terminal interaction domain implicates PAK4 in translational regulation and reveals novel cellular localization signals. J Cell Physiol 224(3):722–733. https://doi.org/10.1002/jcp.22172

    Article  CAS  PubMed  Google Scholar 

  126. Silva LE, Souza RC, Kitano ES, Monteiro LF, Iwai LK, Forti FL (2019) Proteomic and interactome approaches reveal PAK4, PHB-2, and 14–3–3eta as targets of overactivated Cdc42 in cellular responses to genomic instability. J Proteome Res 18(10):3597–3614. https://doi.org/10.1021/acs.jproteome.9b00260

    Article  CAS  PubMed  Google Scholar 

  127. Foxall E, Staszowska A, Hirvonen LM, Georgouli M, Ciccioli M, Rimmer A, Williams L, Calle Y, Sanz-Moreno V, Cox S, Jones GE, Wells CM (2019) PAK4 kinase activity plays a crucial role in the podosome ring of myeloid cells. Cell Rep 29(11):3385-3393 e3386. https://doi.org/10.1016/j.celrep.2019.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gringel A, Walz D, Rosenberger G, Minden A, Kutsche K, Kopp P, Linder S (2006) PAK4 and alphaPIX determine podosome size and number in macrophages through localized actin regulation. J Cell Physiol 209(2):568–579. https://doi.org/10.1002/jcp.20777

    Article  CAS  PubMed  Google Scholar 

  129. Wallace SW, Durgan J, Jin D, Hall A (2010) Cdc42 regulates apical junction formation in human bronchial epithelial cells through PAK4 and Par6B. Mol Biol Cell 21(17):2996–3006. https://doi.org/10.1091/mbc.E10-05-0429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jin D, Durgan J, Hall A (2015) Functional cross-talk between Cdc42 and two downstream targets, Par6B and PAK4. Biochem J 467(2):293–302. https://doi.org/10.1042/BJ20141352

    Article  CAS  PubMed  Google Scholar 

  131. Yang HW, Collins SR, Meyer T (2016) Locally excitable Cdc42 signals steer cells during chemotaxis. Nat Cell Biol 18(2):191–201. https://doi.org/10.1038/ncb3292

    Article  CAS  PubMed  Google Scholar 

  132. Meili R, Firtel RA (2003) Two poles and a compass. Cell 114(2):153–156. https://doi.org/10.1016/s0092-8674(03)00553-1

    Article  CAS  PubMed  Google Scholar 

  133. Dan C, Nath N, Liberto M, Minden A (2002) PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E–115 cells. Mol Cell Biol 22(2):567–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Morse EM, Sun X, Olberding JR, Ha BH, Boggon TJ, Calderwood DA (2016) PAK6 targets to cell-cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. J Cell Sci 129(2):380–393. https://doi.org/10.1242/jcs.177493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z (2001) Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 276(18):15345–15353

    Article  CAS  PubMed  Google Scholar 

  136. Tabanifar B, Zhao Z, Manser E (2016) PAK5 is auto-activated by a central domain that promotes kinase oligomerization. Biochem J 473(12):1777–1789. https://doi.org/10.1042/BCJ20160132

    Article  CAS  PubMed  Google Scholar 

  137. Cau J, Faure S, Comps M, Delsert C, Morin N (2001) A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 155(6):1029–1042. https://doi.org/10.1083/jcb.200104123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Huang S, Zhu Y, Wang C, Li X, Cui X, Tu S, You L, Fu J, Chen Z, Hu W, Gong W (2020) PAK5 facilitates the proliferation, invasion and migration in colorectal cancer cells. Cancer Med 9(13):4777–4790. https://doi.org/10.1002/cam4.3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wu X, Frost JA (2006) Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochem Biophys Res Commun 351(2):328–335. https://doi.org/10.1016/j.bbrc.2006.09.172

    Article  CAS  PubMed  Google Scholar 

  140. van de Wijngaart DJ, van Royen ME, Hersmus R, Pike AC, Houtsmuller AB, Jenster G, Trapman J, Dubbink HJ (2006) Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J Biol Chem 281(28):19407–19416. https://doi.org/10.1074/jbc.M602567200

    Article  CAS  PubMed  Google Scholar 

  141. Wells CM, Abo A, Ridley AJ (2002) PAK4 is activated via PI3K in HGF-stimulated epithelial cells. J Cell Sci 115(Pt 20):3947–3956

    Article  CAS  PubMed  Google Scholar 

  142. Hou A, Toh LX, Gan KH, Lee KJ, Manser E, Tong L (2013) Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells. PLoS ONE 8(10):e77107. https://doi.org/10.1371/journal.pone.0077107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stiegler AL, Boggon TJ (2020) The pseudoGTPase group of pseudoenzymes. FEBS J 287(19):4232–4245. https://doi.org/10.1111/febs.15554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aronheim A, Broder YC, Cohen A, Fritsch A, Belisle B, Abo A (1998) Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol 8(20):1125–1128. https://doi.org/10.1016/s0960-9822(98)70468-3

    Article  CAS  PubMed  Google Scholar 

  145. Hodge RG, Ridley AJ (2020) Regulation and functions of RhoU and RhoV. Small GTPases 11(1):8–15. https://doi.org/10.1080/21541248.2017.1362495

    Article  CAS  PubMed  Google Scholar 

  146. Korobko IV, Shepelev MV (2018) Mutations in the effector domain of RhoV GTPase impair its binding to Pak1 protein kinase. Mol Biol (Mosk) 52(4):692–698. https://doi.org/10.1134/S0026898418040092

    Article  CAS  PubMed  Google Scholar 

  147. Weisz Hubsman M, Volinsky N, Manser E, Yablonski D, Aronheim A (2007) Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase. Chp Biochem J 404(3):487–497. https://doi.org/10.1042/BJ20061696

    Article  CAS  PubMed  Google Scholar 

  148. Dart AE, Box GM, Court W, Gale ME, Brown JP, Pinder SE, Eccles SA, Wells CM (2015) PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J Cell Biol 211(4):863–879. https://doi.org/10.1083/jcb.201501072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shepelev MV, Korobko IV (2012) Pak6 protein kinase is a novel effector of an atypical Rho family GTPase Chp/RhoV. Biochem Biokhimiia 77(1):26–32. https://doi.org/10.1134/S0006297912010038

    Article  CAS  Google Scholar 

  150. Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K, Endo T (1999) Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 18(15):2431–2440. https://doi.org/10.1038/sj.onc.1202604

    Article  CAS  PubMed  Google Scholar 

  151. Durkin CH, Leite F, Cordeiro JV, Handa Y, Arakawa Y, Valderrama F, Way M (2017) RhoD inhibits RhoC-ROCK-dependent cell contraction via PAK6. Dev Cell 41(3):315-329 e317. https://doi.org/10.1016/j.devcel.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. UniProt C (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489. https://doi.org/10.1093/nar/gkaa1100

    Article  CAS  Google Scholar 

  153. Letunic I, Bork P (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49(W1):W293–W296. https://doi.org/10.1093/nar/gkab301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mack NA, Georgiou M (2014) The interdependence of the Rho GTPases and apicobasal cell polarity. Small GTPases 5(2):10. https://doi.org/10.4161/21541248.2014.973768

    Article  PubMed  Google Scholar 

  155. Barac A, Basile J, Vazquez-Prado J, Gao Y, Zheng Y, Gutkind JS (2004) Direct interaction of p21-activated kinase 4 with PDZ-RhoGEF, a G protein-linked Rho guanine exchange factor. J Biol Chem 279(7):6182–6189. https://doi.org/10.1074/jbc.M309579200

    Article  CAS  PubMed  Google Scholar 

  156. Nicholas NS, Pipili A, Lesjak MS, Wells CM (2019) Differential role for PAK1 and PAK4 during the invadopodia lifecycle. Small GTPases 10(4):289–295. https://doi.org/10.1080/21541248.2017.1295830

    Article  CAS  PubMed  Google Scholar 

  157. Nicholas NS, Pipili A, Lesjak MS, Ameer-Beg SM, Geh JL, Healy C, MacKenzie Ross AD, Parsons M, Nestle FO, Lacy KE, Wells CM (2016) PAK4 suppresses PDZ-RhoGEF activity to drive invadopodia maturation in melanoma cells. Oncotarget 7(43):70881–70897. https://doi.org/10.18632/oncotarget.12282

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lee S, Cieply B, Yang Y, Peart N, Glaser C, Chan P, Carstens RP (2018) Esrp1-regulated splicing of Arhgef11 isoforms is required for epithelial tight junction integrity. Cell Rep 25(9):2417-2430 e2415. https://doi.org/10.1016/j.celrep.2018.10.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T (2005) PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 118(Pt 9):1861–1872

    Article  CAS  PubMed  Google Scholar 

  160. Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM (2007) GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell 12(5):699–712. https://doi.org/10.1016/j.devcel.2007.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Costa TDF, Stromblad S (2021) Why is PAK4 overexpressed in cancer? Int J Biochem Cell Biol 138:106041. https://doi.org/10.1016/j.biocel.2021.106041

    Article  CAS  PubMed  Google Scholar 

  162. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liu H, Liu K, Dong Z (2021) The role of p21-activated kinases in cancer and beyond: where are we heading? Front Cell Dev Biol 9:641381. https://doi.org/10.3389/fcell.2021.641381

    Article  PubMed  PubMed Central  Google Scholar 

  164. Wang H, Song P, Gao Y, Shen L, Xu H, Wang J, Cheng M (2021) Drug discovery targeting p21-activated kinase 4 (PAK4): a patent review. Expert Opin Ther Pat. https://doi.org/10.1080/13543776.2021.1944100

    Article  PubMed  Google Scholar 

  165. Shu XR, Wu J, Sun H, Chi LQ, Wang JH (2015) PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol 10:177. https://doi.org/10.1186/s13000-015-0404-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wong LE, Chen N, Karantza V, Minden A (2013) The Pak4 protein kinase is required for oncogenic transformation of MDA-MB-231 breast cancer cells. Oncogenesis 2:e50. https://doi.org/10.1038/oncsis.2013.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakse K, Shuck RL, Rainusso N, Landesman Y, Unger T, Coarfa C, Yustein JT (2021) Targeting PAK4 inhibits Ras-mediated signaling and multiple oncogenic pathways in high-risk rhabdomyosarcoma. Cancer Res 81(1):199–212. https://doi.org/10.1158/0008-5472.CAN-20-0854

    Article  CAS  PubMed  Google Scholar 

  168. Wu A, Jiang X (2022) p21-activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 36(2):315–326. https://doi.org/10.1038/s41375-021-01451-7

    Article  CAS  PubMed  Google Scholar 

  169. Lu H, Liu S, Zhang G, Bin W, Zhu Y, Frederick DT, Hu Y, Zhong W, Randell S, Sadek N, Zhang W, Chen G, Cheng C, Zeng J, Wu LW, Zhang J, Liu X, Xu W, Krepler C, Sproesser K, Xiao M, Miao B, Liu J, Song CD, Liu JY, Karakousis GC, Schuchter LM, Lu Y, Mills G, Cong Y, Chernoff J, Guo J, Boland GM, Sullivan RJ, Wei Z, Field J, Amaravadi RK, Flaherty KT, Herlyn M, Xu X, Guo W (2017) PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature. https://doi.org/10.1038/nature24040

    Article  PubMed  PubMed Central  Google Scholar 

  170. Won SY, Park MH, You ST, Choi SW, Kim HK, McLean C, Bae SC, Kim SR, Jin BK, Lee KH, Shin EY, Kim EG (2016) Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson’s disease. Sci Transl Med 8(367):367ra170. https://doi.org/10.1126/scitranslmed.aaf1629

    Article  CAS  PubMed  Google Scholar 

  171. Putz SM, Kram J, Rauh E, Kaiser S, Toews R, Lueningschroer-Wang Y, Rieger D, Raabe T (2021) Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila. Dis Model Mech. https://doi.org/10.1242/dmm.047811

    Article  PubMed  PubMed Central  Google Scholar 

  172. Won SY, Park JJ, You ST, Hyeun JA, Kim HK, Jin BK, McLean C, Shin EY, Kim EG (2022) p21-activated kinase 4 controls the aggregation of alpha-synuclein by reducing the monomeric and aggregated forms of alpha-synuclein: involvement of the E3 ubiquitin ligase NEDD4-1. Cell Death Dis 13(6):575. https://doi.org/10.1038/s41419-022-05030-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Danzer KM, Schnack C, Sutcliffe A, Hengerer B, Gillardon F (2007) Functional protein kinase arrays reveal inhibition of p-21-activated kinase 4 by alpha-synuclein oligomers. J Neurochem 103(6):2401–2407. https://doi.org/10.1111/j.1471-4159.2007.04933.x

    Article  CAS  PubMed  Google Scholar 

  174. Civiero L, Cirnaru MD, Beilina A, Rodella U, Russo I, Belluzzi E, Lobbestael E, Reyniers L, Hondhamuni G, Lewis PA, Van den Haute C, Baekelandt V, Bandopadhyay R, Bubacco L, Piccoli G, Cookson MR, Taymans JM, Greggio E (2015) Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem 135(6):1242–1256. https://doi.org/10.1111/jnc.13369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Civiero L, Greggio E (2018) PAKs in the brain: function and dysfunction. Biochim Biophys Acta Mol Basis Dis 1864(2):444–453. https://doi.org/10.1016/j.bbadis.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  176. Cong C, Liang W, Zhang C, Wang Y, Yang Y, Wang X, Wang S, Huo D, Wang H, Wang D, Feng H (2021) PAK4 suppresses motor neuron degeneration in hSOD1(G93A) -linked amyotrophic lateral sclerosis cell and rat models. Cell Prolif 54(4):e13003. https://doi.org/10.1111/cpr.13003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang K, Wang Y, Fan T, Zeng C, Sun ZS (2022) The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 13(1):6–25. https://doi.org/10.1007/s13238-020-00812-9

    Article  CAS  PubMed  Google Scholar 

  178. Kuijl C, Savage ND, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJ, Geluk A, Poot A, van der Marel G, Beijersbergen RL, Overkleeft H, Ottenhoff TH, Neefjes J (2007) Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450(7170):725–730. https://doi.org/10.1038/nature06345

    Article  CAS  PubMed  Google Scholar 

  179. Rane C, Senapedis W, Baloglu E, Landesman Y, Crochiere M, Das-Gupta S, Minden A (2017) A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast cancer tumor growth. Sci Rep 7:42555. https://doi.org/10.1038/srep42555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, Dagostino E, Knighton D, Loi CM, Zager M, Kraynov E, Popoff I, Christensen JG, Martinez R, Kephart SE, Marakovits J, Karlicek S, Bergqvist S, Smeal T (2010) Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci USA 107(20):9446–9451. https://doi.org/10.1073/pnas.0911863107

    Article  PubMed  PubMed Central  Google Scholar 

  181. Li Y, Lu Q, Xie C, Yu Y, Zhang A (2022) Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 13:956220. https://doi.org/10.3389/fphar.2022.956220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Abril-Rodriguez G, Torrejon DY, Liu W, Zaretsky JM, Nowicki TS, Tsoi J, Puig-Saus C, Baselga-Carretero I, Medina E, Quist MJ, Garcia AJ, Senapedis W, Baloglu E, Kalbasi A, Cheung-Lau G, Berent-Maoz B, Comin-Anduix B, Hu-Lieskovan S, Wang CY, Grasso CS, Ribas A (2020) PAK4 inhibition improves PD-1 blockade immunotherapy. Nat Cancer 1(1):46–58. https://doi.org/10.1038/s43018-019-0003-0

    Article  CAS  PubMed  Google Scholar 

  183. Yun CY, You ST, Kim JH, Chung JH, Han SB, Shin EY, Kim EG (2015) p21-activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF and beta-catenin/MITF pathways. J Invest Dermatol 135(5):1385–1394. https://doi.org/10.1038/jid.2014.548

    Article  CAS  PubMed  Google Scholar 

  184. Ma W (2021) Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat Cancer 2:83–97

    Article  CAS  PubMed  Google Scholar 

  185. Wang K, Huynh N, Wang X, Baldwin G, Nikfarjam M, He H (2018) Inhibition of p21 activated kinase enhances tumour immune response and sensitizes pancreatic cancer to gemcitabine. Int J Oncol 52(1):261–269. https://doi.org/10.3892/ijo.2017.4193

    Article  CAS  PubMed  Google Scholar 

  186. He H, Dumesny C, Ang CS, Dong L, Ma Y, Zeng J, Nikfarjam M (2022) A novel PAK4 inhibitor suppresses pancreatic cancer growth and enhances the inhibitory effect of gemcitabine. Transl Oncol 16:101329. https://doi.org/10.1016/j.tranon.2021.101329

    Article  CAS  PubMed  Google Scholar 

  187. Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J (2022) PAK4 in cancer development: emerging player and therapeutic opportunities. Cancer Lett 545:215813. https://doi.org/10.1016/j.canlet.2022.215813

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Ben Turk and David Calderwood for helpful discussions.

Funding

This work was supported by American Heart Association Grant 961309 and National Institutes of Health Grants R01GM138411 to TJB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus J. Boggon.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding: This work was supported by American Heart Association Grant 961309 and National Institutes of Health Grants R01GM138411 to TJB.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetty, A.K., Ha, B.H. & Boggon, T.J. Rho family GTPase signaling through type II p21-activated kinases. Cell. Mol. Life Sci. 79, 598 (2022). https://doi.org/10.1007/s00018-022-04618-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04618-2

Keywords

Navigation