Skip to main content

Advertisement

Log in

Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The relict pine forests have a considerable regenerative capacity after the reduction of heavy air pollution load; nevertheless, tree data clearly reflect the climate and air pollution changes in the given stand conditions.

Abstract

The dynamics of “poor relict pine forests” under the long-term influence of climate changes and air pollution stress (SO2, NO X , and O3) was studied in 1958–2015 in northeast Czech Republic, including health status since 1975. The research was focused on permanent research plots in the protected area of sandstone blocks without active forest management for more than 80 years. The analyses of air pollution effects showed a relatively close relation with radial growth and foliation of Scots pine (Pinus sylvestris L.). Diameter increment was significantly negatively correlated with SO2 concentrations in growing season (P < 0.05), especially in June–August (P < 0.01) and on more exposed sites (P < 0.001). Foliation was significantly negatively correlated with SO2 concentrations and ozone exposure (P < 0.01), but a significant effect of NO X was not detected in study plots. The most serious damage can be attributed to the synergism of chemical and climatic stress, especially in combination with severe drought. Correlation between increment and temperature was stronger compared to precipitation. The climate in December and June had the highest effect on radial growth (P < 0.05). In 1975–2015, the foliage increased on average by 20.7% (to 72.5%). The growth structural indicators were, in 2015, mostly higher than in 2000; the standing volume increased by up to 29% (to 331 m3 ha−1). The spatial pattern of tree layer was mostly random, only on extremely rocky sites, it was significantly aggregated (α = 0.05), such as by recruits. Tree layer biodiversity was generally high, but in the last 15 years, its variability was relatively low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman and Hall, London

    Book  Google Scholar 

  • Augustaitis A (2011) Impact of meteorological parameters on responses of pine crown condition to acid deposition at Aukštaitija national park. Baltic For 17:205–214

    Google Scholar 

  • Augustaitis A, Bytnerowicz A (2008) Contribution of ambient ozone to Scots pine defoliation and reduced growth in the Central European forests: a Lithuanian case study. Environ Pollut 155(3):436–445

    Article  CAS  PubMed  Google Scholar 

  • Augustaitis A, Augustaitiene I, Deltuvas R (2007) Scots pine (Pinus sylvestris L.) crown defoliation in relation to the acid deposition and meteorology in Lithuania. Water Air Soil Pollut 182:335–348

    Article  CAS  Google Scholar 

  • Balatka B, Sládek J (1984) Typizace reliéfu kvádrových pískovců české křídové pánve [Typing of relief sandstones Czech cretaceous basin]. Rozpravy československé akademie věd, roč. 94, sešit 6. Academia, Praha

    Google Scholar 

  • Balcar V (1996) Acute air pollution of ten coniferous species in the Trutnov region. Lesnictví 42(10):460–472

    Google Scholar 

  • Balcar V, Vacek S (1994) Air pollution monitoring in Sudety Mts. In: Paschalis P, Zajaczkowski S (eds) Protection of forest ecosystems, selected problems of forestry in the Sudeten Mts. Biuro GEF, Warszawa, pp 195–216

    Google Scholar 

  • Balcar V, Vacek S, Henžlík V (1994) Injury and decline of forest stands in the Sudeten Mts. In: Paschalis P, Zajaczkowski S (eds) Protection of forest ecosystems, selected problems of forestry in Sudety Mts. Biuro GEF, Warszawa, pp 29–57

    Google Scholar 

  • Biggs AR, Davis DD (1981) Sulfur dioxide injury, sulfur content, and stomatal conductance of birch foliage. Can J For Res 11:69–72

    Article  CAS  Google Scholar 

  • Bílek L, Vacek S, Vacek Z, Remeš J, Král J, Bulušek D (2016) How close to nature is close-to-nature pine silviculture? J For Sci 62(1):24–34

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) Dendroclim 2002: AC++ program for statistical calibration of climate signals in tree ring chronologie. Comput Geosci 30(3):303–311

    Article  Google Scholar 

  • Bogino S, Fernández Nieto MJ, Bravo F (2009) Climate effect on radial growth of Pinus sylvestris at its southern and western distribution limits. Silva Fenn 43(4):609–623

    Article  Google Scholar 

  • Bohn U, Neuhäusl R, von Gollub G, Hettwer C et al. (2000–2003) Karte der natürlichen Vegetation Europas [Map of the natural vegetation of Europe]. Maßstab 1:2500000, Teil 3: Karten. Landwirtschaftsverlag, Münster

  • Borůvka L, Podrázský V, Mládková L, Kuneš I, Drábek O (2005) Some approaches to the research of forest soils affected by acidification in the Czech Republic. Soil Sci Plant Nutr 51(5):745–749

    Article  Google Scholar 

  • Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2011) Statistical mapping of tree species over Europe. Eur J For Res 131(1):145–157

    Article  Google Scholar 

  • Brzeziecki B, Kienast F (1994) Classifying the life-history strategies of trees on the basis of the Grimian model. For Ecol Manag 69(1–3):1675–1687

    Google Scholar 

  • Burton KW, Morgan E (1983) The influence of heavy metals upon the growth of sitka spruce in South Wales forest. I Upper critical and foliar concentrations. Plant Soil 73:327–336

    Article  CAS  Google Scholar 

  • Bytnerowicz A, Grulke NE (1993) Physiological effects of air pollutants on western trees. In: Olsen RK, Binkley D, Bohm M (eds) The response of Western forests to air pollution. Ecological Studies, vol 97. Springer, New York, pp 183–233

    Chapter  Google Scholar 

  • Carlisle A, Brown AHF (1968) Pinus sylvestris. J Ecol 56:269–307

    Article  Google Scholar 

  • Chytrý M, Kučera T, Koči M (2001) Katalog biotopů Česke republiky [Catalogue of biotopes of the Czech Republic]. Agentura ochrany přírody a krajiny ČR, Praha

    Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationship in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Danek M (2007) The influence of industry on Scots pine stands in the south-eastern part of the Silesia-Krakow Upland (Poland) on the basis of dendrochronological analysis. Water Air Soil Pollut 185:265–277

    Article  CAS  Google Scholar 

  • Dobbertin M, Mayer P, Wohlgemuth T, Feldmeyer-Christe E, Graf U, Zimmermann NE, Rigling A (2005) The decline of Pinus sylvestris L. forests in the Swiss Rhone Valley—a result of drought stress? Phyton 45:153–156

    Google Scholar 

  • Ellenberger H (1988) Vegetation ecology of central Europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Elling W, Dittmar C, Pfaffelmoser K, Rotzer T (2009) Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. For Ecol Manag 25(4):1175–1187

    Article  Google Scholar 

  • Fabrika M, Ďurský J (2005) Stromové růstové simulátory [Tree growth simulators]. EFRA, Zvolen

    Google Scholar 

  • Fridman J, Walheim M (2000) Amount, structure, and dynamics of dead wood on managed forestland in Sweden. For Ecol Manag 131:23–36

    Article  Google Scholar 

  • Füldner K (1995) Strukturbeschreibung in Mischbeständen [Structure description of mixed stands]. Forstarchiv 66:235–606

    Google Scholar 

  • Galiano L, Martinez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of scots pine in the pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991

    Article  CAS  Google Scholar 

  • Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11

    Article  Google Scholar 

  • Greszta J, Gruszka A, Kowalkowska M (2002) Wpływ imisji na ekosystem [Immission impact on the ecosystem]. “Śląsk” Wydawnictwo Naukowe, Katowice

    Google Scholar 

  • Grissino-Mayer HD, Holmes RL, Fritts HC (1992) International tree-ring data bank program library: user’s manual. Laboratory of Tree-Ring Research, University of Arizona, Tuscon

    Google Scholar 

  • Hejný S, Slávik B (1988) Květena ČSR I [Flora of the Czechoslovakia I]. Academia, Praha

    Google Scholar 

  • Hódar JA, Obeso R, Zamora R (2009) Cambio climático y modificación de interacciones planta–animal [Climate change and modification of plant-animal interactions]. In: Medel R, Aizen ME, Zamora R (eds) Ecología y evolución de interacciones planta-animal. Editorial Universitaria, Santiago de Chile

    Google Scholar 

  • Holtmeier FK, Broll G (2011) Response of Scots pine (Pinus sylvestris) to warming climate at its altitudinal limit in northernmost subarctic Finland. Arctic 64:269–280

    Article  Google Scholar 

  • Insinna P, Jalkanen R, Götz B (2007) Climate impact on 100-year foliage chronologies of Scots pine and Ponderosa pine in the northeast lowlands of Brandenburg, Germany. Silva Fenn 41(4):605–620

    Article  Google Scholar 

  • Jaehne S, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Bestandesdiversitat [Method for assessing of forest diversity]. Forstwiss Centralbl 116:333–345

    Article  Google Scholar 

  • Juknys R, Augustaitis A, Vencloviene J, Kliučius A, Vitas A, Bartkevičius Jurkonis N (2014) Dynamic response of tree growth to changing environmental pollution. Eur J For Res 133:713–724

    Article  CAS  Google Scholar 

  • Karjalainen L, Kuuluvainen T (2002) Amount and diversity of coarse woody debris within a boreal forest landscape dominated by Pinus sylvestris in Vienansalo wilderness, eastern Fennoscandia. Silva Fenn 36(1):147–167

    Article  Google Scholar 

  • Keller T (1981) Die Beeinflussung physiologischer Prozesse der Fichte durch eine Winterbegasung mit Schwefeldioxid [The influence of physiological processes of spruce through a winter fumigation with sulfur dioxide]. Mitt Forstl Bundesversuchanstalt 137(1):115–120

    CAS  Google Scholar 

  • Knibbe B (2007) PAST 4: personal analysis system for treering research, Version 4.2. SCIEM, Vienna

    Google Scholar 

  • Kontic R, Winkler-Seifert A (1987) Comparative studies on the annual ring pattern and crown conditions of conifers. In: Kairiukstis A, Nilsson S, Straszak A (eds) Forest decline and reproduction. Laxenburg, Austria, pp 143–152

    Google Scholar 

  • Koprowski M, Przybylak R, Zielski A, Pospieszyńska A (2012) Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland. Int J Biometeorol 56:1–10

    Article  PubMed  Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic Press, Harcourt Brace Jovanovich, USA

    Google Scholar 

  • Krąpiec M, Szychowska-Krąpiec E (2001) Tree-ring estimation of the effect of industrial pollution on pine (Pinus sylvestris) and fir (Abies alba) in the Ojców National Park (Southern Poland). Nat Conserv 58:33–42

    Google Scholar 

  • Kurczyńska EU, Betowski M, Włoch W (1996) Morphological and anatomical changes of Scots pine dwarf shoots induced by air pollutants. Environ Exp Bot 36:185–197

    Article  Google Scholar 

  • Linzon N (1978) Effects of airborne sulfur pollutants of plant. In: Nriagu JO (ed) Sulfur in the environment. Part II. Ecological impact. Wiley, New York

  • Lorenz M (1995) International co-operative programme on assessment and monitoring of air pollution effects on forests—ICP forests. Water Air Soil Pollut 85(3):1221–1226

    Article  CAS  Google Scholar 

  • Małachowska J, Wawrzoniak J (1995) Stan uszkodzenia lasów w Polsce w r. 1994 [Level of damage to forests in Poland. In 1994]. Biblioteka Monitoringu Środowiska, Warszawa

    Google Scholar 

  • Maňkovská B (1988) The accumulation of atmospheric pollutants by Picea abies Karst, Bratislava. Ekolófia 38(1):51–57

    Google Scholar 

  • Martínez-Vilalta J, López BC, Loepfe L, Lloret F (2012) Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168:877–888

    Article  PubMed  Google Scholar 

  • Masón WL, Alía R (2000) Current and future status Scots pine (Pinus sylvestris L.) forests in Europe. Invest. Agr. Sist. Recur. For.: Fuera de Serie n 1–2000

  • Materna J (1971) Effect of low sulphur dioxide concentrations on spruce. For Comm Re Dev Paper 82:19

    Google Scholar 

  • Mathisen IE, Hofgaard A (2011) Recent height and diameter growth variation in Scots pine (Pinus sylvestris L.) along the arctic margin: the importance of growing season versus non-growing season climate factors. Plant Ecol Divers 4:1–11

    Article  Google Scholar 

  • Matías L, Jump AS (2012) Interactions between growth, demography and biotic interactions in determining species range limits in a warming world: the case of Pinus sylvestris. For Ecol Manag 282:10–22

    Article  Google Scholar 

  • Matuszkiewicz JM, Kowalska A, Kozłowska A, Roo-Zielińska E, Solon J (2013) Differences in plant-species composition, richness and community structure in ancient and post-agricultural pine forests in central Poland. For Ecol Manag 310:567–576

    Article  Google Scholar 

  • Mendoza I, Gómez-Aparicio L, Zamora R, Matías L (2009) Recruitment limitation of forest communities in a degraded Mediterranean landscape. J Veg Sci 20:367–376

    Article  Google Scholar 

  • Mikeska M, Vacek S, Prausová R, Simon J, Minx T, Podrázský V et al (2008) Typologické vymezení, struktura a management přirozených borů a borových doubrav v ČR. [Forestry—typological determination, structure and management of natural pine and pine–oak forests in the Czech Republic]. Kostelec nad Černými lesy, Lesnická práce

    Google Scholar 

  • Molotkov PI, Patlaj IN (1991) Systematic position within the genus Pinus and intraspecific taxonomy. In: Giertych M, Mátyás C (eds) Genetics of scots pine. Akadéiai Kiadó, Budapest

    Google Scholar 

  • Molski BA, Dmuchowski W (1986) Effects of accidification on forest and natural vegetation, wild animals and insects. In: Schneider T (ed) Accidification and its policy implication. Elsevier, Oxford, pp 29–51

    Google Scholar 

  • Moravec J et al (1994) Fytocenologie [Phytocenology]. Academia, Praha

    Google Scholar 

  • Mountford MD (1961) On E. C. Pielou’s index of nonrandomness. J Ecol 49:271–275

    Article  Google Scholar 

  • Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt, Swed Inst Exp For 29:169

    Google Scholar 

  • Oberhuber W, Stumböck W, Kofler W (1998) Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees 13:19–27

    Google Scholar 

  • Oleksyn J (1988) High growth of different European Scots pine provenances in a heavy polluted and control environment. Environ Pollut 55(4):289–299

    Article  CAS  PubMed  Google Scholar 

  • Petráš R, Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín. Cent Eur For J 37:49–56

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Podrázský V (1994) Liming of pine stands on sandy soils in the area of Týniště nad Orlicí (East Bohemia). In: Matějka K (ed) Investigation of the Forest ecosystems and of forest damage. Lowland and submountain forests and monitoring of the forest status. Kostelec nad Černými lesy, Apr 5–7, 1993. Forestry and Game Research Institute, Praha, pp 202–212

    Google Scholar 

  • Pretzsch H (2006) Wissen nutzbar machen für das Management von Waldökosystemen. Allgemeine Forstzeitschrift/Der Wald 61:1158–1159

    Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, Berlin

    Google Scholar 

  • Quitt E (1976) Klimatické oblasti Československa [Climatic regions of Czechoslovakia]. Stud Geogr, Brno

    Google Scholar 

  • Radzka E, Rymuza K (2015) Multi-trait analysis of agroclimate variations during the growing season in east-central Poland (1971–2005). Int Agrophys 29(2):213–219

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597

    Article  CAS  PubMed  Google Scholar 

  • Richardson DM (1998) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge

    Google Scholar 

  • Savolainen O, Kujala ST, Sokol C, Pyhäjärvi T, Avia K, Knürr T, Kärkkäinen K, Hicks S (2011) Adaptive potential of northernmost tree populations to climate change, with emphasis on Scots pine (Pinus sylvestris L.). J Hered 102:526–536

    Article  PubMed  Google Scholar 

  • Schutt P, Cowling EB (1985) Waldsterben a general decline of forest in Central Europe: symptoms, development and possible causes. Plant Dis 69(7):548–558

    Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:8–38

    Google Scholar 

  • Schweingruber FH, Kontic R, Niederer M, Nippel CA, Winkler-Seifert A (1985) Diagnosis and distribution of conifer decay in the Swiss Rhone Valley: a dendrochronological study. In: Turner H, Tranquillini W (eds) Establishment and tending of subalpine forest; research and management, vol 270. Eidg Anstalt Forst Versuch, Berichte, pp 189–192

    Google Scholar 

  • Sensuła B, Wilczyński S, Opała M (2015) Tree growth and climate relationship: dynamics of scots pine (Pinus sylvestris L.) growing in the near-source region of the combined heat and power plant during the development of the pro-ecological strategy in Poland. Water Air Soil Pollut 226:1–17

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Stravinskienè V, Bartkevičius E, Plaušinytè E (2014) Impact of industrial pollution on scots pine (Pinus sylvestris L.) radial growth in the areas of mineral fertilizer factory “Achema”. Russ J Ecol 45(6):525–531

    Article  Google Scholar 

  • Szychowska-Krąpiec E, Wiśniowski E (1996) Tree-ring analysis of Pinus sylvestris as a method to assess the industrial pollution impact on the example of BPolice^ chemical factory (NW Poland). Zastosowanie analizy przyrostów rocznych sosny zwyczajnej (Pinus sylvestris) do oceny wpływu zanieczyszczeń przemysłowych na przykładzie Zakładów Chemicznych „Police^ (woj. szczecińskie) (in Polish). Kwartalnik AGH Geologia 22(3):281–299

    Google Scholar 

  • Tolasz R, Míková T, Valeriánová A, Voženílek V (2007) Climate atlas of Czechia. Czech Hydrometeorological Institute Prague, Olomouc

  • ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca. http://www.canoco.com

  • Tesař V, Balcar V, Lochman V, Nehyba J (2011) Přestavba lesa zasaženého imisemi na Trutnovsku [Conversion of a forest affected by air pollution in the region of Trutnov]. Mendelova univerzita v Brně, Brno

    Google Scholar 

  • Uotila A, Maltamo M, Uuttera J, Isomäki A (2001) Stand structure in semi-natural and managed forests in eastern Finland and Russian Karelia. Ecol Bull 49:149–158

    Google Scholar 

  • Úradníček L, Maděra P, Ticha S, Koblížek J (2010) Woody plants of the Czech Republic. Kostelec nad Černými lesy, Lesnická práce

    Google Scholar 

  • Utriainen J, Holopainen T (2000) Impact of increased springtime O 3 exposure on Scots pine (Pinus sylvestris) seedlings in central Finland. Environ Pollut 109(3):479–487

    Article  CAS  PubMed  Google Scholar 

  • Vacek S, Hejcman M (2012) Natural layering, foliation, fertility and plant species composition of a Fagus sylvatica stand above the alpine timberline in the Giant (Krkonoše) Mts., Czech Republic. Eur. J For Res 131(3):799–810

    Google Scholar 

  • Vacek S, Podrázský V (1994) Decline of pine forests in the protected area Broumovsko and their nutrition status. In: Matějka K (ed) Investigation of the Forest Ecosystems and of Forest Damage. Lowland and Submountain Forests and Monitoring of the Forest Status. Kostelec nad Černými lesy, Apr 5–7, 1993. Forestry and Game Research Institute, Praha, pp 176–183

    Google Scholar 

  • Vacek S, Nosková I, Bílek L, Vacek Z, Schwarz O (2010) Regeneration of forest stands on permanent research plots in the Krkonoše Mts. J For Sci 56(11):541–554

    Google Scholar 

  • Vacek S, Hejcmanová P, Hejcman M (2012a) Vegetative reproduction of Picea abies by artificial layering at the ecotone of the alpine timberline in the Giant (Krkonoše) Mountains, Czech Republic. For Ecol Manag 263:199–207

    Article  Google Scholar 

  • Vacek S, Moucha P, Bílek L, Mikeska M, Remeš J, Simon J et al (2012b) Péče o lesní ekosystémy v chráněných územích ČR. [Management of forest ecosystems in protected areas within Czech Republic], 1st edn. Ministerstvo životního prostředí, Praha

    Google Scholar 

  • Vacek S, Bílek L, Schwarz O, Hejcmanová P, Mikeska M (2013) Effect of air pollution on the health status of Spruce Stands, a case study in the Krkonoše Mountains, Czech Republic. Mt Res Dev 33(1):40–50

    Article  Google Scholar 

  • Vacek S, Vacek Z, Bílek L, Hejcmanová P, Štícha V, Remeš J (2015a) The dynamics and structure of dead wood in natural spruce-beech forest stand-a 40 year case study in the Krkonoše National Park. Dendrobiology 73:21–32

    Article  Google Scholar 

  • Vacek S, Hůnová I, Vacek Z, Hejcmanová P, Podrázský V, Král J, Putalová T, Moser WK (2015b) Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. Eur J For Res 134:1127–1142

    Article  CAS  Google Scholar 

  • Vacek S, Vacek Z, Bílek L, Simon J, Remeš J, Hůnová I, Král J, Putalová T, Mikeska M (2016) Structure, regeneration and growth of Scots pine (Pinus sylvestris L.) stands with respect to changing climate and environmental pollution. Silva Fenn 50:4

    Article  Google Scholar 

  • Vinš B, Mrkva R (1973) The diameter increment losses of pine stands as a result of injurious emissions. Acta Univ Agric Fac Silvic 42(1):25–46

    Google Scholar 

  • Wilczyński S (2006) The variation of tree—ring widths of Scots pine (Pinus sylvestris L.) affected by air pollution. Eur J For Res 125:213–219

    Article  Google Scholar 

  • Willis KJ, Bennett KD, Birks HJB (1998) The late Quaternary dynamics of pines in Europe. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge

    Google Scholar 

  • World Health Organization (2000) Effects of sulfur dioxide on vegetation: critical levels Air Quality Guidelines. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21(3):414–416

    Article  Google Scholar 

  • Yilmaz S, Zengin M (2004) Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ Int 29(8):1041–1047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Agriculture of the Czech Republic, Project No. QJ1520037 and by the Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Internal Grant Agency, Project No. B02/16. We are also grateful to Czech Hydrometeorological Institute in Prague for climatic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Remeš.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by U. Luettge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacek, S., Vacek, Z., Remeš, J. et al. Sensitivity of unmanaged relict pine forest in the Czech Republic to climate change and air pollution. Trees 31, 1599–1617 (2017). https://doi.org/10.1007/s00468-017-1572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1572-0

Keywords

Navigation