Skip to main content

Advertisement

Log in

Sustainable biomass production of introduced spruce species plantations under climate change

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

The Picea abies dendromass production can be replaced by introduced spruce species where the Picea omorika showed the highest biomass production and resistance to climate change in central European conditions.

Abstract

Climate change has a major impact on the availability of sustainable wood production. From the perspective of dendromass processing, the most important European species is Norway spruce (Picea abies [L.] Karst.), whose stands have been subject to large-scale dieback in recent years. This situation requires partial replacement. In our comprehensive study, we evaluate the potential for replacement of P. abies by Picea mariana [Mill.] Britt., Sterns and Poggenburg (black spruce), Picea omorika [Pančić] Purk. (Serbian spruce), and Picea pungens Engelm. (blue spruce), growing under the same conditions in an Antonín forest plantation (area 165 ha, 51 years old) in Czechia, planted after the reclamation of a spoil heap. The following characteristics were evaluated on the 18 permanent research plots: biomass production potential, carbon sequestration, growth resistance to climate change based on dendrochronological analyses, and selected physical and mechanical properties providing a basic idea of the quality of the feedstock for the timber industry. The highest biomass production was achieved by P. omorika (150 t ha−1) and the lowest by P. mariana (77 t ha−1). P. mariana was also found to be the least resistant to climatic extremes. In contrast, P. omorika showed stable, uniform growth, and high resistance, especially to prolonged dry periods. In terms of wood parameters, the highest quality values were found in the case of native P. abies values in terms of strength (45.4 MPa) and density (503 kg m−3), followed by P. omorika (40.2 MPa and 504 kg m−3). P. omorika showed the greatest homogeneity of growth, production potential, resistance to climate change, high technical quality of the raw wood material. P. omorika clearly represents a suitable alternative to the native P. abies, whereas P. mariana and P. pungens are not suitable substitutes for growing under Central European conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Climatic data (monthly temperature and precipitation) are available at the Czech Hydrometeorological Institute (www.chmi.cz). Dendrochronological and wood quality data are available upon request from the authors of the article.

References

  • Alden HA (1997) Softwoods of North America; U. S. D. A., Forest Service, Forest Products Laboratory: Madison, USA, pp. 151.

  • Arnic D, Humar M, Kržišinik D, Krajnc L, Prislan P (2021) Wood density: determination methods and importance in the development of the forest-based bioeconomy. Acta Silvae Et Ligni 124:1–11

    Google Scholar 

  • Beran F, Šindelář J (1996) Perspektivy vybraných cizkrajných dřevin v lesním hospodářství České republiky. Lesnictví-Forestry 42:337–335

    Google Scholar 

  • Bieniasz A, Lachowicz H, Buraczyk W, Moskalik T (2017) Technical quality of wood of 35 years old Norway spruce (Picea abies LH Karst) growing on experimental plot in the Rogów forest experimental station. Sylwan 161:851–860

    Google Scholar 

  • Biondi F, Waikul K (2004) Dendroclim 2002: AC++ program for statistical calibration of climate signals in tree ring chronologie. Comput Geosci 30:303–311

    Article  Google Scholar 

  • Bodig J, Jayne BA (1982) Mechanics of Wood and Wood Composites, 1st edn. Van Nostrand Reinhold, New York, p 712

    Google Scholar 

  • Brabec P, Vacek Z, Vacek S, Štefančík I, Cukor J, Weatherall A, Gallo J, Slávik M, Sitková Z, Putalová T (2023) Growth-climate responses of Picea sitchensis (Bong.) Carr. versus Picea abies (L.) Karst. in the British Isles and Central Europe. Cent Eur for J 69:167–178

    Google Scholar 

  • Brundu G, Pauchard A, Pyšek P, Pergl J, Bindewald AM, Brunori A, Canavan S, Campagnaro T, Celesti-Grapow L, de Sá DM, Dufour-Dror JM, Essl F, Flory SL, Genovesi P, Guarino F, Guangzhe L, Hulme PE, Jäger H, Kettle CJ, Krumm F, Langdon B, Lapin K, Lozano V, Le Roux JJ, Novoa A, Nuñez MA, Porté AJ, Silva JS, Schafner U, Sitzia T, Tanner R, Tshidada N, Vítková M, Westergren M, Wilson JRU, Richardson DM (2020) Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61:65–116

    Article  Google Scholar 

  • Bublinec E (1994) Koncentrácia, akumulácia a kolobeh prvkov v bukovom a smrekovom ekosystéme. Acta Dendrobiologica, Bratislava, Veda.

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124

    Article  Google Scholar 

  • Bunn A, Mikko K, Biondi F, Campelo F, Merian P, Qeadan F, Zang C, Pucha-Cofrep D, Wernicke J (2018) Dendrochronology Program Library in R. R package version 1.6.8. Dendrochronologia

  • Burns RM, Honkala BH (1990) Silvics of North America: 1. Conifers; Agriculture Handbook 654, U. S. Department of Agriculture, Forest Service: Washington.

  • Čermák P, Kolar T, Žid T, Trnka M, Rybníček M (2019) Norway spruce responses to drought forcing in area affected by forest decline. Forest Systems 28:e016

    Article  Google Scholar 

  • Černý K, Pešková V, Soukup F, Havrdová L, Strnadová V, Zahradník D, Hrabětová M (2017) Gemmamyces bud blight ofPicea pungens: a sudden diseaseoutbreak in Central Europe. Plant Pathol 65:1267–1278

    Article  Google Scholar 

  • Chakraborty D, Wang T, Andre K, Konnert M, Lexer MJ, Matulla C, Schueler S (2016) Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty analysis of a genetically based model. Er J for Res 135:919–936

    Google Scholar 

  • Cienciala E, Tumajer J, Zatloukal V, Beranová J, Holá Š, Hůnová I, Russ R (2017) Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. Eur J for Res 136:307–317

    Article  Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Cook ER, Shiyatov SG, Mazepa VS, Ecology A, Branch U (1990) Methods of Dendrochronology Applications. Lamont-Ooherty Geological Observatory, Columbia University, New York, Tree-Ring Laboratory

    Book  Google Scholar 

  • Crookston NL, Stage AR (1999) Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator. USDA Forest Service, Rocky Mountain Research Station, Ogden

    Book  Google Scholar 

  • ČSN 49 0103 (1979) Drevo. Zisťovanie vlhkosti pri fyzikálnych a mechanických skúškach (Wood. Determination of moisture content at physical and mechanical testing). Vydavatelství Úřadu pro normalizaci a měření: Prague, Czech Republic (In Czech)

  • ČSN 49 0110 (1980). Drevo. Medza pevnosti v tlaku v smere vlákien (Wood. Compression Strength Limits Parallel to the Grain). Office for Standardization and Measurement: Prague, Czech Republic (In Czech)

  • ČSN 49 0128 (1989). Metóda zistovania zosýchavosti. (Determination of shrinkage). Praha, Úrad pro normalizaci a merení (In Czech)

  • ČSN 49 0108 (1993). Drevo. Zisťovanie hustoty (Wood. Determination of the density). Český normalizační institut: Prague, Czech Republic (In Czech)

  • Cukor J, Vacek Z, Linda R, Sharma RP, Vacek S (2019a) Afforested farmland vs. forestland: effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PLoS ONE 14:0221082

    Article  Google Scholar 

  • Cukor J, Vacek Z, Linda R, Vacek S, Marada P, Šimůnek V, Havránek F (2019b) Effects of bark stripping on timber production and structure of Norway spruce forests in relation to climatic factors. Forests 10:320

    Article  Google Scholar 

  • Cukor J, Zeidler A, Vacek Z, Vacek S, Šimůnek V, Gallo J (2020) Comparison of growth and wood quality of Norway spruce and European larch: effect of previous land use. Eur J for Res 139:459–472

    Article  Google Scholar 

  • Cukor J, Vacek Z, Vacek S, Linda R, Podrázský V (2022) Biomass productivity, forest stability, carbon balance, and soil transformation of agricultural land afforestation: A case study of suitability of native tree species in the submontane zone in Czechia. CATENA 210:105893

    Article  CAS  Google Scholar 

  • Dănescu A, Kohnle U, Bauhus J, Sohn J, Albrecht AT (2018) Stability of tree increment in relation to episodic drought in uneven-structured, mixed stands in southwestern Germany. For Ecol Manag 415–416:148–159

    Article  Google Scholar 

  • Del Río M, Pretzsch H, Ruiz-Peinado R, Jactel H, Coll L, Löf M, Bravo-Oviedo A (2022) Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect. J Appl Ecol 59:2730–2741

    Article  Google Scholar 

  • Dell’Oro M, Mataruga M, Sass-Klaassen U, Fonti P (2020) Climate change threatens on endangered relict Serbian spruce. Dendrochronologia 59:125651

    Article  Google Scholar 

  • Desplanque C, Rolland C, Schweingruber FH (1999) Influence of species and abiotic factors on extreme tree ring modulation: Picea abies and Abies alba in Tarentaise and Maurienne (French Alps). Trees - Struct Funct 13:218–227

    Article  Google Scholar 

  • Dimitrovský K, Kupka I, Popperl I (2007) Les jako důležitý fenomén obnovy průmyslové krajiny., in: Obnova Lesního Prostředí Při Zalesňování Nelesních a Degradovaných Půd. ČZU v Praze, Kostelec nad Černými lesy, pp. 20–27

  • Dimitrovský K (2001) Tvorba nové krajiny na Sokolovsku. 1. vyd. Sokolovská uhelná. 191

  • Drexhage M, Colin F (2001) Estimating root system biomass from breast-height diameters. Forestry 74:491–497

    Article  Google Scholar 

  • Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J for Sci 51:431–445

    Article  Google Scholar 

  • Farjon A (2017) A handbook of the world’s conifers, vol 1. Brill, p 1154

  • Felton A, Boberg J, Björkman C, Widenfalk O (2013) Identifying and managing the ecological risks of using introduced tree species in Sweden’s production forestry. For Ecol Manage 307:165–177

    Article  Google Scholar 

  • Füldner K (1995) Strukturbeschreibung in Mischbeständen [Structure description of mixed stands]. Forstarchiv 66:235–606

    Google Scholar 

  • Garbelotto M, Gonthier P (2013) Biology, epidemiology, and control of Heterobasidion species worldwide. Ann Rev Phyto 51:39–59

    Article  CAS  Google Scholar 

  • Giagli K, Gričar J, Vavrčík H, Gryc V (2016) Nine-year monitoring of cambial seasonality and cell production in Norway spruce. iForest 9:375

    Article  Google Scholar 

  • Grissino-Mayer HD, Holmes RL, Fritts HC (1992) International tree-ring data bank program library: user´s manual. University of Arizona, Tuscon, USA, Tuscon, Laboratory of Tree-Ring Research

    Google Scholar 

  • Grodzki W (2010) The decline of Norway spruce Picea abies (L.) Karst. stands in Beskid Śląski and Źywiecki: theoretical concept and reality. Beskydy 3:19–26

    Google Scholar 

  • Hájek V, Vacek S, Vacek Z, Cukor J, Šimůnek V, Šimková M, Bulušek D (2021) Effect of climate change on the growth of endangered scree forests in Krkonoše National Park (Czech Republic). Forests 12:1127

    Article  Google Scholar 

  • Halmemies ES, Brännström HE, Nurmi J, Läspä O, Alén R (2021) Effect of seasonal storage on single-stem bark extractives of Norway Spruce (Picea abies). Forests 12:736

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207

    Article  Google Scholar 

  • Hartl-Meier C, Zang C, Büntgen U, Esper J, Rothe A, Göttlein A, Dirnböck T, Treydte K (2014) Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiol 35:4–15

    Article  PubMed  Google Scholar 

  • Heine P, Hausen J, Ottermanns R, Schäffer A, Roß-Nickoll M (2019) Forest conversion from Norway spruce to European beech increases species richness and functional structure of aboveground macrofungal communities. For Ecol Manag 432:522–533

    Article  Google Scholar 

  • Hlásny T, Turčáni M (2013) Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann for Sci 70:481–491

    Article  Google Scholar 

  • Hlásny T, Barka I, Kulla L, Bucha T, Sedmák R, Trombik J (2017) Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: The role of climate change. Reg Environ Chang 17:65–77

    Article  Google Scholar 

  • Holuša J, Lubojacký J, Čurn V, Tonka T, Lukášová K, Horák J (2018) Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. For Ecol Manag 427:434–445

    Article  Google Scholar 

  • Honkaniemi J, Ahtikoski A, Piri T (2019) Financial incentives to perform stump treatment against Heterobasidion root rot in Norway spruce dominated forests, the case of Finland. For Polic Econom 105:1–9

    Article  Google Scholar 

  • Ivetić V, Aleksić JM (2016) Response of rare and endangered species Picea omorika to climate change: The need for speed. Reforesta 1:81–89

    Article  Google Scholar 

  • Jaehne S, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenschaftliches Cent 116:333–345

    Article  Google Scholar 

  • Jansons Ā, Matisons R, Krišāns O, Džeriņa B, Zeps M (2016) Effect of initial fertilization on 34-year increment and wood properties of Norway spruce in Latvia. Silva Fennica 50(1):1346

    Article  Google Scholar 

  • Jyske T, Mäkinen H, Saranpää P (2008) Wood density within Norway spruce stems. Silva Fennica 42:439–455

    Article  Google Scholar 

  • Karlsson PE, Akselsson C, Hellsten S, Karlsson GP (2018) A bark beetle attack caused elevated nitrate concentrations and acidification of soil water in a Norway spruce stand. For Ecol Manag 22:338–344

    Article  Google Scholar 

  • Katrevičs J, Džeriņa B, Neimane U, Desaine I, Bigača Z, Jansons Ā (2018) Production and profitability of low density Norway spruce (Picea abies (L.) Karst.) plantation at 50 years of age: Case study from eastern Latvia. Agron Res 16:113–121

    Google Scholar 

  • Knoke T, Gosling E, Thom D, Chreptun C, Rammig A, Seidl R (2021) Economic losses from natural disturbances in Norway spruce forests–A quantification using Monte-Carlo simulations. Ecol Econom 185:107046

    Article  Google Scholar 

  • Kollmann FF, Côté WA Jr (1968) Principles of wood science and technology, vol I. Solid Wood. Springer-Verlag, Berlin/Heidelberg, Germany, p 592

    Book  Google Scholar 

  • Kommert R (1993) Die Holzeigenschaften der Serbischen Fichte aus Anbauten im Freistaat Sachsen. Holz Als Roh-Und Werkstoff 51:329–334

    Article  Google Scholar 

  • Kopáček J, Cudlín P, Fluksová H, Kaňa J, Picek T, Šantrůčková H, Svoboda M, Vaněk D (2015) Dynamics and composition of litterfall in an unmanaged Norway spruce (Picea abies) forest after bark-beetle outbreak. Boreal Environ Res 20:305–323

    Google Scholar 

  • Köppen W (1936) Das Geographische System der Klimate, Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin

  • Kraft G (1884) Beiträgezur zur lehre von den durchforstungen. schlagstellungen und lichtungshieben. Klindworth, Hannover

  • Král D (2002) Assessing the growth of Picea omorika [Panč.] Purkyně in the Masaryk Forest Training Forest Enterprise at Křtiny. J for Sci 48:388–398

    Article  Google Scholar 

  • Král J, Vacek S, Vacek Z, Putalová T, Bulušek D, Štefančík I (2015) Structure, development and health status of spruce forests a_ected by air pollution in the western Krkonoše Mts. in 1979–2014. For J 61:175–187

    Google Scholar 

  • Kupková L, Potůčková M, Lhotáková Z, Albrechtová J (2018) Forest cover and disturbance changes, and their driving forces: A case study in the Ore Mountains, Czechia, heavily affected by anthropogenic acidic pollution in the second half of the 20th century. Envir Res Lett 13:095008

    Article  Google Scholar 

  • Lehtonen A, Leppä K, Rinne-Garmston KT, Sahlstedt E, Schiestl-Aalto P, Heikkinen J, Young GHF, Korkiakoski M, Peltoniemi M, Sarkkola S, Lohila A, Mäkipää R (2023) Fast recovery of suppressed Norway spruce trees after selection harvesting on a drained peatland forest site. For Ecol Manag 530:120759

    Article  Google Scholar 

  • Leuschner C, Ellenberg H (2017) Ecology of Central European Forests. Vegetation Ecology of Central Europe, Volume I. Springer International Publishing. 1st edition. 972

  • Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Global Chang Biol 19:3184–3199

    Article  Google Scholar 

  • Li D, Liu J, Verhoef A, Xi B, Hernandez-Santana V (2021) Understanding the relationship between biomass production and water use of Populus tomentosa trees throughout an entire short-rotation. Agricul Water Manag 246:106710

    Article  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van Der Maaten E, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Envir Manag 146:69–83

    Article  Google Scholar 

  • Mäkinen H, Verkasalo E, Tuimala A (2014) Effects of pruning in Norway spruce on tree growth and grading of sawn boards in Finland. Forest Inter J for Res 87:417–424

    Google Scholar 

  • Michalec K, Wąsik R (2022) Variation of Selected Macrostructure Features and Density Wood of the European Spruce (Picea abies (L.) Karst.) in the Cross-Section of Trees over 90-Years-Old in Poland. Forests 13:1116

    Article  Google Scholar 

  • Mikulenka P, Prokůpková A, Vacek Z, Vacek S, Bulušek D, Simon J, Šimůnek V, Hájek V (2020) Effect of climate and air pollution on radial growth of mixed forests: Abies alba (Mill.) vs. Picea abies (L.) Karst. Cent Eur For J 66:23–36

    Google Scholar 

  • Musil I (2007) Hamerník J (2007) Jehličnaté dřeviny: Lesnická dendrologie 1, 1st edn. Academia, Praha, p 352

    Google Scholar 

  • Niemz P, Teischinger A, Sandberg D (2023) Springer Handbook of Wood Science and Technology. Springer, Heidelberg, Germany, p 2069

    Book  Google Scholar 

  • Ogris N, Jurc D (2013) Tree diseases determined by the reporting, prognostic and diagnostic service for forests in Slovenia 1982–2012. Acta Silvae Et Ligni 102:31–42

    Article  Google Scholar 

  • Perstorper M, Pellicane PJ, Kliger IR, Johansson G (1995) Quality of timber products from Norway spruce: Part 1. Optimization, key variables and experimental study. Wood Sci Tech 29:157–170

    Article  CAS  Google Scholar 

  • Petráš R, Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín. For J Lesn Časopis 37:49–56

    Google Scholar 

  • Petrović D, Popović Z, Todorović N (2017) Compression strength perpendicular to grain of Serbian spruce (Picea omorika (Pančić) Purkyně) wood from plantations and natural stands. Glasnik Šumarskog Fakulteta 116:171–188

    Article  Google Scholar 

  • Petrović D, Dukić V, Popović Z, Todorović N (2021) MOR and MOE of Serbian Spruce (Picea omorika Pančić/Purkyně) Wood from Natural Stands. Drvna Industrija 72:193–200

    Article  Google Scholar 

  • Podrázský V, Čermák R, Zahradník D, Kouba J (2013) Production of Douglas-fir in the Czech Republic based on national forest inventory data. J for Sci 59:398–404

    Article  Google Scholar 

  • Podrázský V, Remeš J, Sloup R, Pulkrab K, Novotná S (2016) Douglas-fir–partial substitution for declining conifer timber supply–review of Czech data. Wood Research 61:525–530

    Google Scholar 

  • Podrázský V, Vacek Z, Vacek S, Vítámvás J, Gallo J, Prokůpková A, D’Andrea G (2020) Production potential and structural variability of pine stands in the Czech Republic: Scots pine (Pinus sylvestris L.) vs. introduced pines–case study and problem review. J for Sci 66:197–207

    Article  Google Scholar 

  • Podrázský V, Prknová H (eds) (2019) Silvicultural, production and enviromental potential of the main introduced tree species in the Czech Republic. Česká zemědělská univerzita v Praze, Kostelec nad Černými Lesy, Lesnická práce: 185

  • Popović A, Pantić D, Medarević M, Šljukić B, Obradović S (2021) Impact of Mixing on the Structural Diversity of Serbian Spruce and Macedonian Pine Endemic to Relict Forest Communities in the Balkan Peninsula. Forests 12:1095

    Article  Google Scholar 

  • Pötzelsberger E, Spiecker H, Neophytou C, Mohren F, Gazda A, Hasenauer H (2020) Growing non-native trees in European forests brings benefits and opportunities but also has its risks and limits. Current for Reports 6:339–353

    Google Scholar 

  • Pretzsch H (2006) Wissen nutzbar machen für das Management von Waldökosystemen. Allg. Forstzeitschrift/Der Wald 1158–1159.

  • Putalová T, Vacek Z, Vacek S, Štefančík I, Bulušek D, Král J (2019) Tree-ring widths as an indicator of air pollution stress and climate conditions in di_erent Norway spruce forest stands in the Krkonoše Mts. Cent Eur for J 65:21–33

    Google Scholar 

  • Reineke LH (1933) Prefecting a stand-density index for evenaged forests. J Agric Res 46:627–638

    Google Scholar 

  • Remeš J, Bílek L, Novák J, Vacek Z, Vacek S, Putalová T, Koubek L (2015) Diameter increment of beech in relation to social position of trees, climate characteristics and thinning intensity. J for Sci 61:456–464

    Article  Google Scholar 

  • Remeš J, Pulkrab K, Bílek L, Podrázský V (2020) Economic and production effect of tree species change as a result of adaptation to climate change. Forests 11:431

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331

    Article  Google Scholar 

  • Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions 16:473–481

    Article  Google Scholar 

  • Rossi S, Cairo E, Krause C, Deslauriers A (2015) Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Ann for Sci 72:77–87

    Article  Google Scholar 

  • Rozenberg P, Cahalan CH (1997) Spruce and wood quality: genetic aspects (a review). Silvae Genetica 46:270–279

    Google Scholar 

  • Ruiz-Peinado R, Pretzsch H, Löf M, Heym M, Bielak K, Aldea J, del Río M (2021) Mixing effects on Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) productivity along a climatic gradient across Europe. For Ecol Manag 482:118834

    Article  Google Scholar 

  • Šagát V, Ružek I, Šilhán K, Beracko P (2021) The impact of local climate change on radial Picea abies growth: a case study in natural mountain spruce stand and low-lying spruce monoculture. Forests 12(8):1118

    Article  Google Scholar 

  • Sandberg D, Kutnar A, Karlsson O, Jones D (2023) Wood Modification Technologies. 1st ed. CRC Press. pp. 442

  • Schmidt UE, Nyssen B, Muys B, Van der Lei PB, Pyttel P (2016) The history of introduced tree species in Europe in a nutshell, in: Krumm, F. (Ed.), Introduced Tree Species to European Forests: Challenges and Opportunities. European Forest Institute, Freiburg, p. 423

  • Schweingruber FH (1996) Tree Rings and Environment-Dendrochronology. Haupt, Bern, p 609

  • Šeho M, Kohnle U, Albrecht A, Lenk E (2010) Growth analyses of four provenances of European Black Pine (Pinus nigra) growing on dry sites in southwest Germany (Baden-Wuerttemberg). Allgemeine Forst-Und Jagdzeitung 181:104–116

    Google Scholar 

  • Seidl R, Rammer W (2017) Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecol 32:1485–1498

    Article  Google Scholar 

  • Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4:806–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Reyer CP (2017) Forest disturbances under climate change. Nat Clim Chang 7:395–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma RP, Vacek Z, Vacek S (2016) Individual tree crown width models for Norway spruce and European beech in Czech Republic. For Ecol Manage 366:208–220

    Article  Google Scholar 

  • Shmulsky R, Jones PD (2011) Forest products and wood science: an introduction. 6. ed. Wiley-Blackwell. pp. 477

  • Shumilov OI, Kasatkina EA, Mielikainen K, Timonen M, Kanatjev AG (2011) Palaeovolcanos, Solar activity and pine tree-rings from the Kola Peninsula (northwestern Russia) over the last 560 years Palaeovolcanos. Int J Environ Res 5:855–864

    CAS  Google Scholar 

  • Siegel S, Castellan Jr. NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd ed., Nonparametric statistics for the behavioral sciences, 2nd ed. Mcgraw-Hill Book Company, New York, NY, England

  • Šilinskas B, Varnagirytė-Kabašinskienė I, Aleinikovas M, Beniušienė L, Aleinikovienė J, Škėma M (2020) Scots Pine and Norway Spruce Wood Properties at Sites with Different Stand Densities. Forests 11:587

    Article  Google Scholar 

  • Šimůnek V, Vacek Z, Vacek S (2020) Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation. Forests 11:973

    Article  Google Scholar 

  • Soukupová J, Rock BN, Albrechtová J (2001) Comparative study of two spruce species in a polluted mountainous region. New Phytol 150:133–145

    Article  Google Scholar 

  • Svoboda P (1953) Život lesa. Vyd. Brázda, Praha, 894

  • Tomczak K, Mania P, Tomczak A (2022) Wood density and annual ring width of pedunculate oak from stands grown on former agricultural land. Wood Research 67:718–730

    Article  Google Scholar 

  • Tomczak K, Mania P, Tomczak A (2023) Quality of beech, birch and oak wood from stands growing on post-agricultural lands. Wood Research 68:279–292

    Article  Google Scholar 

  • Tomiczek C, Cech TL, Fürst A et al (2011) Waldschutzsituation 2010 in Österreich. Forstschutz Aktuell 52:3–10

    Google Scholar 

  • Tong QJ, Fleming RL, Tanguay F, Zhang SY (2009) Wood and lumber properties from unthinned and precommercially thinned black spruce plantations. Wood Fiber Sci 41:168–179

    CAS  Google Scholar 

  • Torquato LP, Auty D, Hernández RE, Duchesne I, Pothier D, Achim A (2014) Black spruce trees from fire-origin stands have higher wood mechanical properties than those from older, irregular stands. Can J for Sci 44:118–127

    Google Scholar 

  • Torquato LP, Hernández RE, Duchesne I, Auty D, Achim A (2021) Black spruce trees from uneven-aged, old-growth stands produce more dimensionally stable wood than trees from fire-origin even-aged stands. Wood Sci Technol 55:1457–1483

    Article  CAS  Google Scholar 

  • Toth D, Maitah M, Maitah K, Jarolínová V (2020) The impacts of calamity logging on the development of spruce wood prices in Czech forestry. Forests 11:283

    Article  Google Scholar 

  • Trnka M, Fischer M, Bartošová L, Orság M, Kyncl T, Ceulemans R, King J, Büntgen U (2016) Potential and limitations of local tree ring records in estimating a priori the growth performance of short-rotation coppice plantations. Biomass Bioenergy 92:12–10

    Article  Google Scholar 

  • Tsoumis GT (1991) Science and Technology of Wood – Structure, Properties, Utilization, 1st edn. Van Nostrand Reinhold, New York, NY, USA, p 494

    Google Scholar 

  • ÚHÚL (2007) National Forest Inventory in the Czech Republic 2001–2004: Introduction, methods, results. Forest Management Institute, Brandýs nad Labem, 224

  • Vacek Z, Vacek S (2023) Challenges and risks of Serbian spruce (Picea omorika [Pančić] Purk.) in the time of climate change–a literature review. Cent Eur for J 69:152–166

    Google Scholar 

  • Vacek Z, Cukor J, Vacek S, Podrázský V, Linda R, Kovařík J (2018) Forest biodiversity and production potential of post-mining landscape: opting for afforestation or leaving it to spontaneous development? Cent Eur for J 64:116–126

    Google Scholar 

  • Vacek Z, Vacek S, Slanař J, Bílek L, Bulušek D, Štefančík I, Vančura K (2019) Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Cent Eur for J 65:129–144

    Google Scholar 

  • Vacek Z, Cukor J, Linda R, Vacek S, Šimůnek V, Brichta J, Prokůpková A (2020) Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For Ecol Manag 474:118360

    Article  Google Scholar 

  • Vacek Z, Prokůpková A, Vacek S, Bulušek D, Šimůnek V, Hájek V, Králíček I (2021a) Mixed vs. monospecific mountain forests in response to climate change: structural and growth perspectives of Norway spruce and European beech. For Ecol Manag 488:119019

    Article  Google Scholar 

  • Vacek Z, Cukor J, Vacek S, Linda R, Prokůpková A, Podrázský V, Brichta J (2021b) Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change? Eur J for Res 140:1243–1266

    Article  CAS  Google Scholar 

  • Vacek Z, Linda R, Cukor J, Vacek S, Šimůnek V, Gallo J, Vančura K (2021c) Scots pine (Pinus sylvestris L.), the suitable pioneer species for afforestation of reclamation sites? For Ecol Manag 485:118951

    Article  Google Scholar 

  • Vacek S, Vacek Z, Cukor J, Podrázský V, Gallo J (2022) Pinus contorta Douglas ex Loudon and climate change: A literature review of opportunities, challenges, and risks in European forests. J for Sci 68:329–343

    Article  Google Scholar 

  • Vacek Z, Vacek S, Cukor J (2023) European forests under global climate change: Review of tree growth processes, crises and management strategies. J Envir Manag 332:117353

    Article  Google Scholar 

  • Vakula J, Zúbrik M, Galko J, Gubka A, Kunca A, Nikolov C, Bošela M (2015) Influence of selected factors on bark beetle outbreak dynamics in the Western Carpathians. Cent Eur for J 61:149–156

    Google Scholar 

  • van der Maaten-Theunissen M, van der Maaten E, Kahle HP (2013) Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann for Sci 70:185–193

    Article  Google Scholar 

  • Vicente-Serrano SM, Quiring SM, Pena-Gallardo M, Yuan S, Dominguez-Castro F (2020) A review of environmental droughts: Increased risk under global warming? Earth Sci Rev 201:102953

    Article  Google Scholar 

  • Vincent M, Krause C, Koubaa A (2011) Variation in black spruce (Picea mariana (Mill.) BSP) wood quality after thinning. Ann for Sci 68:1115–1125

    Article  Google Scholar 

  • Vitali V, Büntgen U, Bauhus J (2017) Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Chang Biol 23:5108–5119

    Article  PubMed  Google Scholar 

  • Vospernik S, Heym M, Pretzsch H, Pach M, Steckel M, Aldea J, Brazaitis G, Bravo-Oviedo A, Del Rio M, Löf M, Pardos M, Bielak K, Bravo F, Coll L, Černý J, Droessler L, Ehbrecht M, Jansons A, Korboulewsky N, Jourdan M, Nord-Larsen T, Nothdurft A, Ruiz-Peinado R, Ponette Q, Sitko R, Svoboda M, Wolff B (2023) Tree species growth response to climate in mixtures of Quercus robur/Quercus petraea and Pinus sylvestris across Europe: a dynamic, sensitive equilibrium. For Ecol Manag 530:120753

    Article  Google Scholar 

  • Wagenführ R (2007) Holzatlas. Fachbuchverlag, Leipzig, Germany, p 819

    Google Scholar 

  • Wernicke J, Körner M, Möller R, Seltmann CT, Jetschke G, Martens S (2020) The potential of generalized additive modelling for the prediction of radial growth of Norway spruce from Central Germany. Dendrochronologia 63:125743

    Article  Google Scholar 

  • Zeidler A, Vacek Z, Cukor J, Borůvka V, Vacek S, Prokůpková A, Vacek O (2022) Is European larch (Larix decidua Mill) a suitable substitute for Norway spruce (Picea abies (L.) Karst.) for agricultural land afforestation? For Ecol Manag 517:120257

    Article  Google Scholar 

  • Zhang SY, Ren H, Jiang Z (2021) Wood density and wood shrinkage in relation to initial spacing and tree growth in black spruce (Picea mariana). J Wood Sci 67:1–10

    Article  CAS  Google Scholar 

  • Zhang SY, Simpson D, Morgenstern EK (1996) Variation in the relationship of wood density with growth in 40 black spruce (Picea mariana) families grown in New Brunswick. Wood Fiber Sci 28:91–99

    CAS  Google Scholar 

  • Zobel BJ, Buijtenen JP (1989) Wood Variation: Its Causes and Control, 1st edn. Springer-Verlag, Berlin/Heidelberg, Germany, p 363

    Book  Google Scholar 

Download references

Acknowledgements

Acknowledgement belongs to Jitka Šišáková (an expert in the field) and Richard Lee Manore (a native speaker) for checking English.

Funding

This study was supported by the Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, by the Ministry of Agriculture of the Czech Republic (No. QK1910232) and by Institutional support from the Ministry of Agriculture (MZERO0118).

Author information

Authors and Affiliations

Authors

Contributions

The submitted manuscript “Sustainable Biomass Production of Introduced Spruce Species Plantations under Climate Change” has not been previously published in any language anywhere and is not under simultaneous consideration or in press by another journal. Publication of the article has been approved by all the other co-authors and institutions.

Corresponding author

Correspondence to Jan Cukor.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Communicated by Scarano.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vacek, Z., Zeidler, A., Cukor, J. et al. Sustainable biomass production of introduced spruce species plantations under climate change. Trees 37, 1781–1799 (2023). https://doi.org/10.1007/s00468-023-02460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-023-02460-y

Keywords

Navigation