Skip to main content
Log in

Plasticity of pine tree roots to podzolization of boreal sandy soils

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The morphological traits of fine roots change with forest succession and soil weathering. However, low tree species diversity in boreal forests may limit plastic responses of the roots to soil nutrient loss. We tested whether pine trees (Pinus sylvestris L.) exhibit root plasticity to change fine root allocation to deeper soil horizons in response to varying degree of podzolization.

Methods

We compared root biomass in two sand dune chronosequences (aluminium (Al)/iron (Fe) oxide-poor coarse-textured sand vs. oxide-rich fine-textured sand) in Estonia.

Results

We found that faster podzolization in coarse-textured soil promotes migration of Al/Fe oxides and phosphorus (P) into deeper horizons and reshapes the depth distribution of fine root biomass. A decrease in P availability in the coarse-textured soil profile increases fine root biomass and length in both the organic and mineral horizons. In the fine-textured old soil, fine root distribution increases in the mineral soil (especially, spodic horizon) rich in oxide-bonded P.

Conclusion

Pine roots exhibit two forms of plasticity in low-diversity boreal forests – changing root morphological traits and changing depth distribution of root biomass, depending on the abundance of Al and Fe oxides and the depth distribution and dominant form of P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aoki M, Fujii K, Kitayama K (2012) Environmental control of root exudation of low-molecular-weight organic acids in tropical rainforests. Ecosystems 15:1194–1203

    Article  CAS  Google Scholar 

  • Blakemore LC, Searle PL, Daly BK (1987) Methods for chemical analysis of soils. NZ Soil Bureau Scientific Report 80

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Butterfield BJ, Bradford JB, Munson SM, Gremer JR (2017) Aridity increases below-ground niche breadth in grass communities. Plant Ecol 218:385–394

    Article  Google Scholar 

  • Chapin III FS, Matson PA, Vitousek P (2011) Principles of terrestrial ecosystem ecology. Pp. 63-90. Springer Science & Business Media

  • Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  CAS  PubMed  Google Scholar 

  • Fritze H, Pietikäinen J, Pennanen T (2000) Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur J Soil Sci 51:565–573

    Article  CAS  Google Scholar 

  • Fujii K, Aoki M, Kitayama K (2012) Biodegradation of low molecular weight organic acids in rhizosphere soils from a tropical montane rain forest. Soil Biol Biochem 47:142–148

    Article  CAS  Google Scholar 

  • Fujii K, Hayakawa C, Inagaki Y, Ono K (2019) Sorption reduces the biodegradation rates of multivalent organic acids in volcanic soils rich in short-range order minerals. Geoderma 333:188–199

    Article  CAS  Google Scholar 

  • Funakawa S, Mambu K, Hirai H, Kyuma K (1993) Pedogenetic acidification process of forest soils in northern Kyoto. Soil Sci Plant Nutri 39:677–690

    Article  CAS  Google Scholar 

  • Giesler R, Lundström US (1993) Soil solution chemistry—the effects of bulking soil samples and spatial variation. Soil Sci Soc Am J 57:1283–1288

    Article  CAS  Google Scholar 

  • Hidaka A, Kitayama K (2009) Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. J Ecol 97:984–991

    Article  CAS  Google Scholar 

  • Hodge A (2004) The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species-and community-level patterns in fine root traits along a 120000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963

    Article  Google Scholar 

  • IUSS Working group WRB (2015) World Reference Base for soil resources. In-ternational soil classification system for naming soils and creating legends for soil maps. World soil resources reports no. 106. FAO, Rome

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Van Hees PAW (2003) Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Olsson M (1997) Rock-eating fungi. Nature 389(6652):682–683

    Article  CAS  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Lundström US, van Breemen N, Bain D (2000) The podzolization process. Rev Geoderma 94:91–107

    Article  Google Scholar 

  • Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, Hedin LO (2018) Evolutionary history resolves global organization of root functional traits. Nature 555(7694):94–97

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104

    Article  Google Scholar 

  • Makita N, Hirano Y, Sugimoto T, Tanikawa T, Ishii H (2015) Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest. Oecologia 179:959–967

    Article  PubMed  Google Scholar 

  • McCormack ML, Adams TS, Smithwick EA, Eissenstat DM (2012) Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol 195:823–831

    Article  Google Scholar 

  • McKeague JA, Day JH (1966) Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can J Soil Sci 46:13–22

    Article  CAS  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442

    Article  Google Scholar 

  • Ostonen I, Helmisaari H, Borken W, Tedersoo L, Kukumägi M, Bahram M, Lindroos A, Nöjd P, Uri V, Merilä P, Asi E, Lõhmus K (2011) Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob Chang Biol 17:3620–3632

    Article  Google Scholar 

  • Öhlinger R (1995) Maximum water-holding capacity. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Berlin, pp 385–386

    Google Scholar 

  • Pote DH, Daniel TC, Nichols D, Sharpley AN, Moore PA, Miller DM, Edwards DR (1999) Relationship between phosphorus levels in three Ultisols and phosphorus concentrations in runoff. J Environ Qual 28:170–175

    Article  CAS  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson KH, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    Article  CAS  PubMed  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR (2012) Plant-driven weathering of apatite–the role of an ectomycorrhizal fungus. Geobiology 10:445–456

    Article  CAS  PubMed  Google Scholar 

  • Tobner CM, Paquette A, Messier C (2013) Interspecific coordination and intraspecific plasticity of fine root traits in north American temperate tree species. Front Plant Sci 4:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article  Google Scholar 

  • Turner BL, Condron LM (2013) Pedogenesis, nutrient dynamics, and ecosystem development: the legacy of TW Walker and JK Syers. Plant Soil 367:1–10

    Article  CAS  Google Scholar 

  • Uselman SM, Qualls RG, Lilienfein J (2007) Fine root production across a primary successional ecosystem chronosequence at Mt. Shasta, California. Ecosystems 10:703–717

    Article  CAS  Google Scholar 

  • Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017) A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol 215:1562–1573

    Article  PubMed  Google Scholar 

  • Vilumaa K, Ratas U, Tõnisson H, Kont A, Pajula R (2017) Multidisciplinary approach to studying the formation and development of beach-ridge systems on non-tidal uplifting coasts in Estonia. Boreal Environ Res 22:67–81

    Google Scholar 

  • Van Hees PA, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biology and Biochemistry, 34(9):1261–1272

  • Vitousek, P.M. (2004) Nutrient cycling and limitation: Hawai'i as a model system. Princeton University Press

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305(5683):509–513

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zabowski D (1998) Nutrient composition of Douglas-fir rhizosphere and bulk soil solutions. Plant Soil 200:13–20

    Article  CAS  Google Scholar 

  • Zadworny M, McCormack ML, Żytkowiak R, Karolewski P, Mucha J, Oleksyn J (2017) Patterns of structural and defense investments in fine roots of scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe. Glob Chang Biol 23:1218–1231

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We devote this manuscript to the late Dr. Akira Osawa. This work was financially supported by the Green Network of Excellence (GRENE) Arctic Climate Change Project and by the Estonian Research Council Grant (IUT18–9, Environmental Changes and Their Effects on the Coastal Landscape of Estonia: Past, Present and Future–ENCHANTED). There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumichi Fujii.

Additional information

Responsible Editor: François Teste.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 52 kb)

ESM 2

(PPTX 39 kb)

ESM 3

(PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, K., Makita, N., Kamara, M. et al. Plasticity of pine tree roots to podzolization of boreal sandy soils. Plant Soil 464, 209–222 (2021). https://doi.org/10.1007/s11104-021-04928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04928-7

Keywords

Navigation