Academia.eduAcademia.edu
Wulfenia 29 (2022): 131–223 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Natural acid Norway spruce woodlands in Slovakia and their syntaxonomical classification along with selected problems of syntaxonomical delimitation of the order Piceetalia abietis in Europe Peter Kučera Summary: A second version of the syntaxonomical classification of acid Norway spruce communities is presented for the region of Slovak Western Carpathians based on the recent knowledge on delimitation of natural Norway spruce woodlands in Slovakia. As a result, two in Slovakia traditionally recognized associations are distinguished: Lophozio-Piceetum Volk in Br.-Bl. et al. 1939 (syn. Calamagrostio villosae-Piceetum auct. non Schlüter 1966) as the most wide-spread, however, only negatively differentiated community, and Athyrio distentifolii-Piceetum Hartmann ex Hartmann et Jahn 1967 in more humid habitats which allow Athyrium distentifolium domination and richer species abundance. The statistical synthesis also supported differentiation of new separate associations ecologically and/or chorologically bound to habitats limited to high mountain ranges only – as, for example, associations Solidagini virgaureae-Piceetum and Parido quadrifoliae-Piceetum. Listero cordatae-Piceetum abietis is described for unique scree phytocoenoses, while Lycopodio annotini-Sorbetum comprises special types of secondary successive (partly scree) phytocoenoses. A marginal position in the group of natural acid Norway spruce communities has the association Sphagno capillifolii-Piceetum abietis Zukrigl 1973 nom. corr. which is distinguished by the occurrence of bog species. Notes on the possible occurrence of the association Dryopterido dilatatae-Piceetum are added as well. Nomenclatural and syntaxonomical comments on the associations Bazzanio-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 nom. corr., Luzulo sylvaticae-Piceetum Wraber 1963, Homogino alpinae-Piceetum Zukrigl 1973 etc. are given in detail. Syntaxonomical delimitation of taiga woodland of northern East European to Siberian region with Picea obovata and Abies sibirica is proposed. Keywords: acid plant community, forest plant community, nomenclature, Picea abies, Piceetalia abietis, Piceo obovatae-Abietetea sibiricae, phytocoenology, supramontane woodland, syntaxonomy, Vaccinio-Piceetea, Western Carpathians Communities of the class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 split into two cardinal subordinated units which differ in their floristical composition and ecological properties: (1) usually species-poor communities growing on (very) strongly acidic soils, i.e. distributed over non-carbonate rocks and (2) species-rich communities growing on moderately to slightly acidic and neutral soils, i.e. inhabiting areas of various carbonate rocks. Since the syntaxonomical overview of Hadač (1962) these two units are classified in the rank of an order and even if some later authors did not accept that syntaxonomical rank, their statistical syntheses nevertheless revealed the respective two cardinal units (cf. Exner et al. 2002; Juvan et al. 2013). This differentiation is valid on supraregional to continental scale. These two orders are traditionally labelled as Piceetalia excelsae Pawłowski ex Pawłowski et al. 1928 and Athyrio-Piceetalia Hadač 1962; however, the latter name should be replaced for nomenclatural reasons (Kučera 2023) by another name: Kučera (2022) proposed the name Cortuso matthioli-Piceetalia P. Kučera 2022. Natural Norway spruce communities of both these groups are represented in the Western Carpathians. For the territory of Slovakia, two syntaxa checklists of the class Vaccinio-Piceetea have been published up to the present: (1) Šomšák’s list of syntaxa (in Mucina et al. 1985) based 131 P. K u č e r a mostly on studies of Hadač et al. (1969), Šoltés (1976) and Fajmonová (1978) and (2) recent derived checklist of Jarolímek et al. (2008a). Altogether three associations of natural acid Norway spruce communities were traditionally differentiated: Vaccinio myrtilli-Piceetum Šoltés 1976 (syn. Calamagrostio villosae-Piceetum auct. non Schlüter 1966) within the alliance Piceion excelsae Pawłowski ex Pawłowski et al. 1928, Athyrio alpestris-Piceetum Hartmann ex Hartmann et Jahn 1967 assigned to a separate alliance Athyrio alpestris-Piceion Sýkora 1971 as well as ‘Chrysanthemo rotundifolii-Piceetum sensu Krajina 1933 non auct.’ within the alliance Chrysanthemo-Piceion sensu Krajina 1933 non (Krajina 1933) Březina et Hadač in Hadač 1962 (cf. Kučera 2012a, 2023). Kučera (2012a) published a commented overview of distribution of the Norway spruce woodland in the territory of the Western Carpathians, associated with a revision of traditional views on their natural distribution. An important part was the first comprehensive syntaxonomical revision of the natural supramontane Norway spruce syntaxa of Slovakia. Aim of this paper is presenting updated syntaxonomical classification and nomenclatural revision of natural acid Norway spruce communities found in the territory of the Western Carpathians in Slovakia. The preceding syntaxonomical revisions of the class Vaccinio-Piceetea were dedicated to syntaxonomy of Arolla pine communities (Kučera 2017, 2019a), natural calcareous Norway spruce communities (Kučera 2022) and coniferous wet woodland communities (Kučera 2019b, with exception of bog woodland communities). Materials and methods This contribution presents partial results of the syntaxonomical revision of the communities of the class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 present in Slovakia, originally intended to be part of the specialized volume of the ‘Rastlinné spoločenstvá Slovenska’ (1995 –2022) on the forest and scrub vegetation (Valachovič et al. 2022). Therefore the presented relevé dataset selection follows the methodical directions established for that monograph: (1) The dataset for Slovak forest and scrub phytocoenoses was officially closed to the date 27.5.2016 and no newly published relevés were accepted. According to this regulation, numerous relevé data of Arolla pine woodland published by Zięba et al. (2018) were not included in the statistical comparisons of the Vaccinio-Piceetea alliances in this work. The final dataset was exported from Slovak vegetation database (Šibík 2012; https://www.givd.info/ID/EU-SK-001) by J. Šibík (Institute of Botany SAS, Bratislava), as it was made available to the respective authors of chapters on Slovakian forest and scrub vegetation. (2) For forest communities only relevés with plot sizes 200–650 m2 were accepted. We adhered to this regulation even if some typical relevés with sizes between 100–200 m2 would have been omitted in this study. (3) Selected taxa were merged to species aggregates such as Dryopteris carthusiana agg.,1 Senecio nemorensis agg. or to the nearest mutual taxonomical rank (e.g. Solidago virgaurea ssp. minuta + Solidago virgaurea) or united within a taxonomically more appropriate name (e.g. Ranunculus 1 Only species D. carthusiana and D. dilatata were traditionally distinguished within the studied forest stands. However, also D. expansa is the native component of the natural Picea abies woodlands in the Western Carpathians (cf. Kučera 2012a) along with various hybrids (Tatra Mountains, Kučera, not.) 132 Norway spruce woodlands in Slovakia and their syntaxonomical classification aconitifolius included into R. platanifolius or Soldanella hungarica + S. montana + S. hungarica ssp. major into S. marmarossiensis agg.). The resulting dataset was stored in Turboveg for Windows database software (Hennekens 1998 –2020) (cf. Hennekens & Schaminée 2001) and selection of Vaccinio-Piceetea phytocoenoses with respect to above-mentioned limitations was performed by the author. Some of the relevés were revised according to originally published data. In respect of the thorough revision of literature sources, records of explicit successional stages (e.g. some relevés of Krajina 1933) as well as relevés with missing ground layer species were excluded. Relevés of phytocoenoses with natural occurrence of Pinus cembra were also excluded, because they are classified within the alliances Calamagrostio variae-Pinion cembrae and Homogyno alpinae- Pinion cembrae (cf. Kučera 2017). With regard to different floristical patterns of calcareous and acid Norway spruce woodlands (cf. Kučera 2012a), the set of acid phytocoenoses was separated. In attempt to maximize quality of data selected for statistical classification of Slovak Picea abies phytocoenoses of the Western Carpathians, the available relevé data were thoroughly re-analysed with regard to revisions of the natural distribution of Picea abies communities in Slovakia (see below). The most important part is to eliminate potential data contamination with floristical and ecological influence of anthropogenically degraded forest communities, especially exclusion of data recorded in unequivocally identified substitutionary Norway spruce stands (see below in chapter ‘Results’, for the detailed explanation see Kučera 2012a). As a result, a strict restriction of altitudinal limit was adopted: relevé data from localities below an elevation of 1400 m a.s.l. were excluded. This subjective decision is based on field observations of Fagus and mixed Fagus woodland stands found above 1300 m a.s.l. on expositions of all four cardinal directions, with emphasis on the preserved Fagus stands reaching with their artificially lowered upper forest line (!) above 1340–1350 m a.s.l. on non-carbonate bedrock. In the carbonate regions such artificial upper forest line of mixed Fagus woodland of the class Carpino-Fagetea above 1360–1390 m a.s.l. was confirmed in the field. Below the chosen altitudinal limit (1400 m a.s.l.) only carefully selected relevés of Picea abies phytocoenoses were accepted for the dataset. They represent plant communities mostly found on ecologically more extreme habitats which hinder development of the Carpino-Fagetea plant communities, within the Western Carpathians, for example, on screes and other stony accumulations, i.e. such habitats which support an extragradal occurrence of natural acid Norway spruce phytocoenoses (cf. the association Listero cordatae-Piceetum with relict Linnaea borealis occurrences). No other phytocoenological relevés were eliminated at this stage of data preparation, even if they represented untypical of problematically identifiable phytocoenoses. The complete list of used relevés is summarily presented by Kučera (in red.), see also below the particular associations.2 The subfinal dataset with 133 relevés was exported to the software package JUICE (Tichý 1998–2020; cf. Tichý 2002) for further modification, especially merging of taxa (see above) and, subsequently, exported for statistical analysis performed by the software package SYN -TAX 2000 In comparison to the dataset used for acid Norway spruce communities by Kučera (2019b, tab. 1: ‘135 relevés’), two relevés were removed (and included into the dataset of Cortuso-Piceetalia phytocoenoses, Kučera 2022): Kobzáková (1987), tab. 8, rel. 7; Miadok (1995): 60, rel. 2. 2 133 P. K u č e r a (Podani 2001a). The ordinal hierarchical clustering was executed to evaluate also quantitative information provided by ordinal Braun-Blanquet’s scale (cf. Kučera 2011a) and the Podani’s discordance coefficient was used as it takes into account also presence vs. absence relation (Podani 2001b). During the performed data analyses, it was revealed that developmental stages, for example with increased Sorbus aucuparia presence, could significantly influence the statistical classification and as a result, S. aucuparia-pseudocommunities were produced without having other sufficient diagnostic floristical attributes. Anthropogenic influence on Larix decidua presence could also influence the data classification. Further SYN-TAX 2000 classifications were therefore performed on dataset with field (E1) and ground layer (E0) species only. Another detected source of dataset pseudo-variability was most probably an intentional omission of any data on bryophyte species presence as well as ground layer cover in Norway spruce relevés of Miadok (1995). Their inclusion in the statistical classification – together with peculiar data on Soldanella taxa cover-abundances – resulted in the creation of pseudo-syntaxa made of Miadok’s (1995) relevés. The respective relevés should not be treated as real non-moss phytocoenoses, instead, they should be assessed as data with missing information on the ground layer. As a result, all 21 remaining relevés of Miadok (1995) were removed from the dataset. Finally, three relevés of Kanka (2008: tab. 9, rel. 8; tab. 9, rel. 12; tab. 16, rel. 10) were removed because they, in fact, represent Norway spruce communities ecologically and floristically influenced by carbonate rocks, therefore they should be classified as Cortuso-Piceetalia phytocoenoses. For all the above-mentioned reasons, the final dataset consists of 109 relevés only. The final relevé classification is based on statistical classification of data on the field layer (E1) species – presented within the resulting dendrogram in the Fig. 1. However, subjective manual re-adjustment of some relevés was applied in order to achieve floristically and ecologically more compact units – especially considering the pre-final statistical classification which included also the ground layer (E0) species (cf. below Lycopodio annotini-Sorbetum): most frequently from the heterogeneous group of non-typical relevés which were not excluded from the statistical classification (cf. Fig. 1). The differential attributes of the respective syntaxa (fidelity and frequency values) and resulting tables were elaborated within JUICE; the concept of fidelity was used (Chytrý et al. 2002a). Fidelity calculations (φ-values) are based on the presence/absence data with a standardization of relevé groups to an equal size. Performing the Fisher’s exact test, zero fidelity was given to species with significance P > 0.05 in a particular cluster (Tichý & Chytrý 2006). The formal sequence of species groups in Table 1 is adjusted according to the template of differential tables of the Vegetation of the Czech Republic, Vol. 4 (Chytrý et al. 2013a), i.e. trees, shrubs, differential and other species of the field and ground layer separately; constancy and fidelity values equal and higher than 50 are highlighted in boldface type. Statistically determined diagnostic species are ranked according to fidelity values. The conventional levels of statistical significance (0.05, 0.01 and 0.001, Fisher’s exact test) for the particular species are indicated with asterisks (*, **, ***). Due to low total number of available natural Norway spruce relevés as well as very low total number of species within some associations, species with the lowest diagnostic value (φ-value ≥ 0.25 at Fisher’s exact test 0.05-limit) were also retained as ‘diagnostic species’ for individual syntaxa, bearing in mind their availability for future comparisons and potential use during field research. 134 Norway spruce woodlands in Slovakia and their syntaxonomical classification Figure 1. Dendrogram of the ordinal hierarchical clustering of the relevés of natural acid Picea abies communities from Slovakia. 1 – Lophozio-Piceetum abietis; 1d – Lophozio-Piceetum polytrichetosum communis; 2 – Athyrio distentifolii-Piceetum abietis; 2a – Athyrio distentifolii-Piceetum abietis, more typically developed relevés; 3 – Solidagini virgaureae-Piceetum abietis; 4 – Parido quadrifoliae-Piceetum abietis; 4a – Parido quadrifoliae-Piceetum abietis, typical stands; 5 – Lycopodio annotini-Sorbetum aucupariae; 6 – Listero cordatae-Piceetum abietis; 7 – Sphagno capillifolii-Piceetum abietis. Division of the diagnostic species into differential and Braun-Blanquetian character species is not applied, because (1) this statistical evaluation is based only on limited dataset, (2) character species (for example for Slovak vegetation) are often traditionally selected subjectively, even in the national monographs, and thus do not rely on statistical determination (for example Adenostyles alliariae). Species taxa names from the Western Carpathian relevés follow checklists of Marhold et al. (1998), Kubinská & Janovicová (1998) and Pišút et al. (1998), with exception of the Soldanella marmarossiensis agg. (S. hungarica auct. slov., Valachovič et al. 2019); other not included taxa names (marked by †) are applied according to GBIF checklist (GBIF Secretariat 2021). Nomenclatural evaluation of the discussed syntaxa names is regulated according to the 4th edition of the Code (Theurillat et al. 2021), highlighted are the cited Code Articles (‘Art.’) and Recommendations (‘Rec.’). The names of the classes Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 and Carpino-Fagetea Jakucs ex Passarge 1968 are hereafter given without author citations. The used common soil names supplemented by the edition 2006 of the World Reference Base for Soil Resources names are applied according to the reference table in the ‘Societas pedologica Slovaca’ (2014). The sites of the analysed relevés within the individual associations in Slovakia are given in the Figures 2 and 3. The coordinates of the dataset relevés taken from the CDF were either originally assigned by the present author or partially revised, especially those created for older surveys without pre-existing coordinate data. The maps were created using the Free and Open Source QGIS (QGIS.org 2021), the base layer (terrain) is provided by Geodesy, Cartography and Cadastre Authority of the Slovak Republic (see https://zbgis.skgeodesy.sk). Extended characterization of the discussed associations – their distribution within the Western Carpathians, ecology, dynamics of the stand, notes on nature conservation – is summarized by 135 P. K u č e r a Kučera (in red.). In this paper following aspects are mainly discussed: floristical differentiation, syntaxonomical variability as well as important nomenclatural and syntaxonomical problems. Results and discussion 1. Reflections on the general delimitation of the considered plant communities Regionally developed intrazonal coniferous orobiomes (i.e. within the nemoral zone) of the main Central European mountain ranges are analogous counterparts of the taiga (zono)biom of the northern Eurasian latitudes. The most frequent and usually the exclusive component of these orobiomes is a Picea abies mountain woodland, only the most highest mountain ranges (Alps, Tatra Mountains etc.) possess a (mixed) Pinus cembra woodland. Due to the impacts of pre-/historical land management, general patterns of the distribution of Norway spruce stands in the Western Carpathians have considerably changed. Fully in agreement with Zlatník (1959: 20), I am of the opinion that the key to understand the original [primary] overall composition of forests in Slovakia is a reconstruction of the natural distribution of Fagus sylvatica and its proportional participation in the composition of these forests (for details see Kučera 2022). Numerous Picea abies plant communities were historically syntaxonomically included into the class Vaccinio-Piceetea. However, from the scientific (phytocoenological, ecological etc.) point of view as well as in consideration of the nature conservation goals, (A) natural Picea abies communities (incl. their anthropogenically degraded forms) should be differentiated from (B) substitute Norway spruce stands which originated by means of (historical) plantations (direct anthropogenic origin) or by spontaneous secondary succession on deforested areas (subanthropogenic origin). However, in both cases these are habitats which would be naturally occupied by natural mixed Fagus forests. In other words, this approach means differentiation of (A) Picea abies orobiomes (i.e. occurrences of the supramontane altitudinal vegetation zone Picea woodland in the respective mountain ranges) as well as extragradal occurrences of natural Picea abies woodland from (B) replacement/substitute Picea forests of the montane (sensu stricto) altitudinal vegetation zone (cf. Kučera 2022). As montane Norway spruce plantations represent more or less anthropogenically influenced stages of original plant communities of the class Carpino-Fagetea, they should be classified within that class (cf. Hadač & Sofron 1980; and corrections by Kučera 2012a, chap. 5.27; see also Zlatník 1975: 83–84, 86). This phytocoenological approach represents a syntaxonomical segregation of (A) the Vaccinio-Piceetea communities from (B) all substitute Picea stands replacing natural woodlands of the class Carpino-Fagetea. In the field, the latter group is most easily recognized by spontaneous secondary succession of Fagus sylvatica which would result decades later in a changed tree species composition in favour of Fagus (together with Abies alba, Acer spp. etc.) or – in the higher montane elevations – development of mixed deciduous-coniferous woodlands with Fagus keeping an important ecological influence on development of the field layer species composition. However, silvicultural management practices often negatively impact or suppress that processes of the reverse succession. On the contrary, Vaccinio-Piceetea woodlands are lacking the signs of Picea vs. Fagus successional replacement and also other floristical attributes are present, especially the common occurrence 136 Norway spruce woodlands in Slovakia and their syntaxonomical classification of oreal species (Adenostyles alliariae, Athyrium distentifolium, Calamagrostis villosa, Homogyne alpina, Gentiana asclepiadea etc.) (see Kučera 2022). Several variants of the elevational span of the supramontane vegetation zone were published for the Western Carpathians (see Kučera 2012a: chapter 3). Apart of their mutual inconsistency, the recent field research supported by old orthophoto records (‘Historická ortofotomapa Slovenska’ s. d. [online]) served for substantial revision of (1) data on the natural altitudinal distribution of (mixed) upper montane Fagus woodland in the Western Carpathians as well as (2) theories on the distribution of so-called Fagus-free coniferous woodlands in the middle and lower montane altitudes of Slovak basins and mountain ranges (for details see e.g. Kučera 2012a,b, 2022; Kučera et al. 2013). In Slovakia, the general lower altitudinal limit of the supramontane zone most probably has not naturally descended below 1350 m a.s.l. at all. In respect of various expositions and mountain ranges, the estimated range is probably within the interval between (1370)1380 –1430(1450) m a.s.l. The extragradal natural occurrences of Norway spruce communities in lower altitudes are obviously not counted to that range, because the respective communities originated in terrain- induced ecologically extreme habitats inhibiting the development of so-called climax woodland forming the predominating woodland vegetation (cf. also Zlatník 1975: 103–104 and Oberdorfer 1978: 327–328). Such ecologically peculiar Norway spruce communities are altitudinally lying in various elevations of the montane belt occupied by communities of the class Carpino- Fagetea (Kučera 2022). Considering the natural acid Norway spruce woodland types, the most frequent example of such extragradal communities are phytocoenoses of the association Listero cordatae- Piceetum (Samek et al. 1957) Kučera 2023 developed on scree habitats. A detailed review of Norway spruce woodlands documented in the individual mountain ranges of the Western Carpathians as well as comments to communities incorrectly classified within the class Vaccinio-Piceetea was already published (see Kučera 2012a). A shortened catalogue of records of the plant communities which should not be considered as natural acid Norway spruce communities is given in Table 1. They should be classified as anthropogenic degraded variants of plant communities of the class Carpino-Fagetea, either within the order Luzulo-Fagetalia sylvaticae Scamoni et Passarge 1959 uniting acid Fagus and Fagus-Abies woodlands or, eventually, within the group of mesotrophic silicicolous (to semicalcicolous) Fagus and Fagus-Abies woodlands united into the order Fagetalia sylvaticae Tüxen 1931 (cf. Boeuf et al. 2014; Kučera 2022). The catalogue given in Table 1 demonstrates that anthropogenic acid Norway spruce phytocoenoses were recorded in rather large number within the Western Carpathians. Probably most of them were used in the specialized statistical surveys on either diagnostic and other significant species (Chytrý et al. 2002b; Jarolímek et al. 2008b; cf. also Jahn 1977) or phytocoenological affinity of a chosen taxon (Valachovič et al. 2019) – see the very high total number of relevés used in that studies in comparison to the here presented syntaxonomical revision. Therefore, the respective results of those studies are incorrect or misleading when considering the class Vaccinio- Piceetea, because they represent a mixture of relevé data of two classes: Carpino- Fagetea and Vaccinio- Piceetea (Kučera 2022). Another example of questionable study result is indication that Fagus sylvatica should reach frequency of 42% within the woodland stands classified as the EUNIS habitat ‘Temperate mountain 137 138 Table 1. Catalogue of the anthropogenic acid (mixed) Norway spruce phytocoenoses incorrectly classified within the class Vaccinio-Piceetea. Only published studies are listed, for details see Kučera (2007, 2012a). Slovak geomorphological units are given according to Kočický & Ivanič (2011), names of Moravian, Silesian and Polish mountain ranges follow the general use. Part 1. Slovakia. Proportion of degraded Remarks Carpino-Fagetea relevés All relevés All relevés In rel. 32 erroneously Calamagrostis varia All relevés (recte C. villosa). A natural Norway spruce phytocoenosis on ? bouldery habitat? Geomorphological unit Originally used unit name Klika (1926) Klika (1927) Veľká Fatra Veľká Fatra Krivánska Fatra, Kremnické vrchy Piceetum excelsae Piceetum (Fagetum) carpaticum myrtilletosum Typ borůvkový, Vaccinium myrtillus-Calamagrostis varia Braun-Blanquet (1930) Vysoké Tatry Piceetum myrtilletosum Soó (1930) Tatranské podhorie, Vysoké Tatry Piceetum excelsae normale et myrtilletosum Pro parte Tab. II, col. 5, synoptic table. Sillinger (1933) Kráľovohoľské Tatry Piceetum excelsae normale silicicolum All relevés Only synoptic table. Author’s original alternative name: Piceeto-Fagetum carpaticum silicicolum, type Oxalis-Soldanella. Piceetum excelsae altherbosum silicicolum Pro parte maj. Only synoptic table. Piceetum excelsae myrtilletosum silicicolum All relevés Only synoptic table. All relevés Community of the class Mulgedio-Aconitetea Hadač et Klika in Klika 1944 (cf. Kučera 2023). Klika (1929) Sillinger (1933) Sillinger (1933) Krajina (1933) Krajina (1933) Krajina (1933) Krajina (1933) Mikyška (1934a) Mikyška (1934b) Mikyška (1934b) Mikyška (1934b) Kráľovohoľské Tatry, Ďumbierske Tatry Ďumbierske Tatry, Kráľovohoľské Tatry Vysoké Tatry, Tatranské Piceeto-Chrysanthemetum rotundifolii podhorie Tatranské podhorie, Vysoké Tatry Vysoké Tatry, Tatranské podhorie, Tatranské podhorie, Vysoké Tatry Vtáčnik Poľana Poľana Poľana Piceetum abietis oxalidetosum acetosellae silicicolum Pro parte Myrtilleto-calamagrostidetum villosae carpaticum piceetosum abietis Pro parte min. Vaccinietum myrtilli tatricum piceetosum abietis Pro parte maj. Piceetum myrtilletosum Piceetum altiherbosum Piceetum myrtilletosum, typ Calamagrotis arundinacea Piceetum myrtilletosum, typ Vaccinium myrtillus Pro parte The one present relevé ? The one present relevé ? The one present relevé Cf. Kučera (2012a). See also Mikyška (1936b). See also Mikyška (1936b). See also Mikyška (1936b). P. K u č e r a Authors Geomorphological unit Originally used unit name Klika (1936) Klika (1936) Mikyška (1936a) Mikyška (1939) Svoboda (1939) Svoboda (1939) Svoboda (1939) Mráz (1956) Grebenščikov et al. (1956) Samek et al. (1957) Veľká Fatra Veľká Fatra Vtáčnik Poľana Západné Tatry Západné Tatry Západné Tatry Lúčanské Veterné hole Piceetum excelsae filicetosum Piceetum excelsae myrtilletosum Piceetum excelsae myrtilletosum Piceetum myrtilletosum praefatricum Piceetum oxalidetosum Piceetum myrtilletosum Piceetum altherbosum Sorbo-Piceetum myrtilletosum Proportion of degraded Carpino-Fagetea relevés All relevés All relevés Pro parte Both two present relevés All relevés Pro parte Pro parte Both two present relevés Oravská Magura Sorbeto-Piceetum [group of forest types] All relevés Vysoké Tatry Piceetum myrtilletosum/Homogyno-Piceetum Pro parte Samek et al. (1957) Vysoké Tatry Piceetum normale silicicolum All relevés Phytocoenoses in fact influenced by carbonate rocks. (Without relevés.) ZahradníkováRošetzká (1957) Miadok (1969) Miadok (1969) Ďumbierske Tatry Piceetum excelsae normale silicicolum Sillinger 1933 – Veporské vrchy Veporské vrchy Piceetum excelsae normale silicicolum Sillinger 1933 Piceetum abietis oxalidetosum acetosellae silicicolum All relevés All relevés Hadač et al. (1969) Belianske Tatry Dryoptero-Piceetum excelsae Březina et Hadač in Hadač All relevés et al. 1969 Hadač et al. (1969) Belianske Tatry Hadač et al. (1969) Zlatník (1970) Horák (1971) Horák (1971) Belianske Tatry Vysoké Tatry Západné Tatry Západné Tatry Remarks Cf. also Klika (1949). Cf. also Klika (1949). Cf. Kučera (2012a). The original relevés represent two different communities (calcicolous: 119, 185, 254 vs silicicolous: 225, 253). 139 Sphagno-Piceetum excelsae tatricum Březina et Hadač in Hadač et al. 1969 Avenello-Piceetum excelsae Hadač et al. 1969 ass. prov. group of forest types Sorbi aucupariae piceeta groups of forest types: Piceeta pinea, Piceeta abietina group of forest types: Piceeta sorbina All relevés Cf. Hadač (1987). All relevés Pro parte All relevés Pro parte Cf. Kučera (2010a). Šmarda et al. (1971) Belianske Tatry Sorbeto-Piceetum silicicolum Szafer et al. 1927 All relevés Šomšák (1973) Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1971 [originally nom. ined.] All relevés Volovské vrchy Nomen fictum, the adequate form is SorboPiceetum silicicolum Šmarda et al. 1971. Vaccinio myrtilli-Piceetum [Šoltés ex] Šomšák 1973 non Šoltés 1976. Norway spruce woodlands in Slovakia and their syntaxonomical classification Authors 140 Cont. Table 1. Part 1: Slovakia. Authors Magic & Májovský (1974) Magic & Májovský (1974) Magic & Májovský (1974) Kubíček & Jurko (1975) Kubíček & Jurko (1975) Kubíček & Jurko (1975) Šoltés (1976) Fajmonová (1978) Stolické vrchy Chrysanthemo-Piceion Krajina 1933 All relevés Only synoptic table. Stolické vrchy Vaccinio-Abietenion Oberdorfer 1962 All relevés Only synoptic table. Stolické vrchy Eu-Piceenion Oberdorfer 1957 ? All relevés Only synoptic table. Fago-Piceetum luzuletosum Kubíček et Jurko 1975 All relevés Skorušinské vrchy, Západné Tatry Skorušinské vrchy, Západné Tatry Západné Tatry (not specified) Šomšák et al. (1979) Vysoké Tatry Fajmonová (1980) Nič (1981) Vaccinio myrtilli-Piceetum typicum Šoltés 1971 [originally nom. ined.] Adenostylo-Piceetum typicum Šoltés 1971 [originally nom. ined.] Vysoké Tatry, Tatranské Adenostylo-Piceetum typicum podhorie Vysoké Tatry, Tatranské Vaccinio myrtilli-Piceetum typicum podhorie Šomšák et al. (1979) Popradská kotlina Fajmonová (1978) Proportion of degraded Remarks Carpino-Fagetea relevés Kráľovohoľské Tatry (higher number of units) Oravské Beskydy All relevés Pro parte maj. ? Pro parte Adenostylo-Piceetum (Sillinger 1933) Šoltés 1976 ? community Luzula pilosa-Picea abies community Calamagrostis villosa-Picea abies (Vacc myrtilli-Piceetum Šoltés 1976) Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1971 [originally nom. ined.] Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1971 [originally nom. ined.] group of forest types Sorbeto-Piceetum Both two present relevés Vaccinio myrtilli-Piceetum typicum [Šoltés ex] Kubíček et Jurko 1975 non Šoltés 1976. Adenostylo-Piceetum typicum [Šoltés ex] Kubíček et Jurko 1975 non Šoltés 1976. Only newly published relevé is considered (Šoltés 1976, tab. 1, col. 10). Only newly published relevés are considered (Šoltés 1976, tab. 4). (Without further information on included relevés.) Both two present relevés All relevés Only synoptic table. Pro parte Only synoptic table. Pro parte maj. Šomšák et al. (1981) Vysoké Tatry Adenostylo-Piceetum (Sillinger 1933) Šomšák 1976 Rel. 1 (Potential natural vegetation with Acer pseudoplatanus, Abies alba, Fagus sylvatica, Picea abies in the canopy.) Majzlanová (1982) Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1976 All relevés Cf. Majzlanová (1993). Skorušinské vrchy P. K u č e r a Šoltés (1976) Geomorphological unit Originally used unit name Geomorphological unit Originally used unit name Šomšák (1983) Oravská Magura Unar et al. (1984) Proportion of degraded Remarks Carpino-Fagetea relevés Západné Tatry Athyrio alpestris-Piceetum F.K. Hartman 1959 [originally nom. nud.] Piceetum excelsae myrtilletosum Szafer et al. 1923 All relevés Lepš et al. (1985) Ďumbierske Tatry Vaccinio-Piceion Br.-Bl. in Br.-Bl. et al. 1939 Pro parte maj. Miadok (1988) Miadok (1988) Miadok (1988) Veporské vrchy Veporské vrchy Veporské vrchy Miadok (1988) Miadok (1988) Kubíček et al. (1989) Voško et al. (1990) Kubíček et al. (1992) Kubíček et al. (1992) Kubíček & Šomšák (1993) Šomšák et al. (1993) Černušáková (1994) Černušáková (1994) Miadok (1995) Miadok (1995) 141 Školek (1995a) Abieto-Piceetum (Szafer et al. 1923) Samek et al. 1957 Vaccinio myrtilli-Piceetum typicum Šoltés 1976 Oxalido-Piceetum Břzina et Hadač in Hadač et al. 1969 Dryoptero-Piceetum excelsae Březina et Hadač in Hadač Veporské vrchy et al. 1969 Athyrio alpestris-Piceetum Hartmann, Hartmann et Veporské vrchy Jahn 1967 Moravsko-sliezske Vaccinio myrtilli-Piceetum Szafer et al. 1923) Šoltés Beskydy 1976 Vysoké Tatry (? mostly), groups of forest types: Piceeta sorbina, Piceeta pineoTatranské podhorie laricina, Abieti-Piceeta laricis Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés Vysoké Tatry 1976 Tatranské podhorie Chrysanthemo rotundifolii-Piceetum Krajina 1933 Tatranské podhorie, Higher number of units Vysoké Tatry Tatranské podhorie Chrysanthemo rotundifolii-Piceetum Krajina 1933 Calamagrostio villosae-Piceetum (Tx. 1937) Hartmann Západné Tatry 1953 Athyrio alpestre-Piceetum (Hartmann 1953) Hartmann Západné Tatry et Jahn 1967) Ďumbierske Tatry Vaccinio myrtilli-Piceetum typicum Šoltés 1976 Oxalido-Piceetum excelse (Krajina 1933) Březina et Ďumbierske Tatry Hadač in Hadač et al. 1969 Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés Ďumbierske Tatry 1976 All relevés ‘… a mosaic of Calamagrostio villosaePiceetum (Tx. 1937) Hartmann 1953 and Vaccino myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1976.’ All relevés Pro parte maj. All relevés All relevés All relevés All relevés All relevés ? Rel. 3. Rel. 6. ? All relevés. – (Without published relevés.) Pro parte Pro parte Pro parte min. Pro parte ? All relevés Only synoptic table. Norway spruce woodlands in Slovakia and their syntaxonomical classification Authors 142 Cont. Table 1. Part 1: Slovakia. Authors Geomorphological unit Originally used unit name Školek (1995b) Ďumbierske Tatry Školek (1995b) Ďumbierske Tatry Kukla et al. (1995) Poľana Kukla et al. (1995) Poľana Oxalido-Piceetum excelsae Březina et Hadač in Hadač et al. 1969 Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1976 Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1976 Calamagrostio villosae-Piceetum (R. Tx. 1937) Hartmann 1953 Proportion of degraded Remarks Carpino-Fagetea relevés The one present relevé The one present relevé All relevés All relevés All mentioned units. All relevés Školek (2003) Kanka (2008) Ďumbierske Tatry Belianske Tatry Pro parte Pro parte maj. Kanka (2008) Belianske Tatry Kanka (2008) Belianske Tatry Higher number of units Vaccinio myrtilli-Piceetum typicum Šoltés 1976 Sphagno acutifolii-Piceetum (Březina et Hadač in Hadač et al. 1969) Hadač 1987 Athyrio alpestris-Piceetum Hartmann 1959 Kanka (2008) Belianske Tatry Krajčí (2008) Kráľovohoľské Tatry Krajčí (2008) Krajčí (2008) Krajčí & Barančok (2009) Jančovičová et al. (2011) Valachovič et al. (2019) Kráľovohoľské Tatry Kráľovohoľské Tatry Kráľovohoľské Tatry Veporské vrchy Dryopterido-Piceetum excelsae Březina et Hadač in Hadač et al. 1969 Each syntaxon represented with only one relevé. (Without published relevés.) All relevés Rel. 1, 2 ? Rel. 5 (Rel. 3 & 4 are calcicolous phytocoenoses.) The rest of relevés belong to calcicolous secondary communities, the influence of carbonate rocks on the phytocoenosis of the rel. 5 seems to be considerably small. Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1976 Athyrio alpestris-Piceetum Hartmann 1959 Adenostylo-Piceetum Hartmann 1953 Sphagno acutifolii-Piceetum (Březina et Hadač in Hadač et al. 1969) Hadač 1987 Pro parte maj. Cf. also Krajčí & Barančok (2009). Pro parte All relevés Cf. also Krajčí & Barančok (2009). Cf. also Krajčí & Barančok (2009). Vaccinio myrtilli-Piceetum Šoltés 1976 Pro parte maj. Piceion excelsae Pro parte One relevé only Authors evaluated only relevés with presence of genus Soldanella. P. K u č e r a Kontriš et al. (1997) Poľana Part 2. Selected examples from the Western Carpathian mountain ranges in Moravia (M), Silesia (S) and Poland (P). Geomorphological unit Originally used unit name Szafer et al. (1923) Tatry Zachodnie (P) Piceetum myrtillosum Pro parte Pawłowski (1925) Beskid Sądecki (P) Piceetum excelsae filicetosum The one present relevé Pawłowski (1925) Beskid Sądecki (P) 143 Piceetum vacciniosum The one present relevé Szafer et al. (1927a) Tatry Zachodnie (P) Piceetum myrtilletosum All relevés Pawłowski et al. (1928) Tatry Wysokie (P) Piceetum excelsae normale Both two present relevés Walas (1933) Beskid Żywiecki (P) Piceetum excelsae Pro parte maj. (? all relevés) Kawecki (1939) Beskid Żywiecki (P) Piceetum excelsae All relevés Medwecka-Kornaś Gorce (P) (1955) Piceetum tatricum abietetosum All relevés Medwecka-Kornaś Gorce (P) (1955) Piceetum tatricum subnormale All relevés Myczkowski & Grabski (1962) Beskid Sądecki (P) Vaccinio-Piceion All relevés Pancer-Kotejowa (1965) Pogórze Gubałowskie (P) Piceetum tatricum abietetosum Medwecka-Kornaś 1955 All relevés Pancer-Kotejowa (1965) Pogórze Gubałowskie (P) Piceetum tatricum subnormale Medwecka-Kornaś 1955 All relevés Stuchlik(1968) Gorce (P) Abieti-Piceetum montanum Szafer et al. = Piceetum (tatricum) abietetosum Medwecka-Kornaś 1955) All relevés Stuchlik(1968) Gorce (P) Piceetum excelsae carpaticum Szafer et al. 1923 = Piceetum (tatricum) subnormale Medwecka-Kornaś 1955 All relevés Matuzkiewicz (1977) Beskid Żywiecki (P) Plagiothecio-Piceetum tatricum (Szafer et al. 1923 p. p.) J. Matuszkiewicz 1977 Pro parte maj. (? all relevés) Piceetum myrtilletosum sensu Szafer et al. 1923 [non Beger 1922]. (As given within Tab. 7.) Norway spruce woodlands in Slovakia and their syntaxonomical classification Proportion of degraded Remarks Carpino-Fagetea relevés Authors 144 Cont. Table 1. Part 2: Moravia (M), Silesia (S) and Poland (P). Authors Geomorphological unit Originally used unit name Proportion of degraded Remarks Carpino-Fagetea relevés Matuzkiewicz (1977) (higher number of units) (P) Abieti-Piceetum montanum W. Matuszkiewicz 1967 – Entire unit. Matuzkiewicz (1977) (higher number of units) (P) Galio rotundifolii-Piceetum carpaticum J. Matuszkiewicz – 1977 Entire unit. Sedláčková (1978) Moravsko-slezské Beskydy (M) Vaccinio-Piceetalia Sedláčková (1978) Moravsko-slezské Beskydy (M) Athyrio-Piceetalia (Athyrio alpestris-Piceetum Hartmann All relevés 1959) Celiński & Wojterski (1978) Beskid Żywiecki (P) Piceetum excelsae carpaticum (Szafer et al. 1923) Br.-Bl. Pro parte maj. (? all et al. 1939 [three subunits] relevés) Celiński & Wojterski (1978) Beskid Żywiecki (P) Abieti-Piceetum montanum Szafer et al. 1923 All relevés In two relevés Fagus co-dominates. Cf. also ‚Galio-Abietetum Wraber (1955) 1959‘. Fajmonová (1980) Moravsko-slezské Beskydy (M, S) Vaccinio myrtilli-Piceetum (Szafer et al. 1923) Šoltés 1971 [originally nom. ined.] All relevés Only synoptic table from multiple mountain ranges. Jirásek (1996) Moravsko-slezské Beskydy (M) Calamagrostio villosae-Piceetum typicum var. calamagrostiosum arundinaceae Jirásek 1996 The one present relevé from the MS Beskyds Entire unit. Jirásek (1996) Moravsko-slezské Beskydy (M, S) Calamagrostio villosae-Piceetum fagetosum Jirásek 1996 – Entire unit. Without recorded relevé from the considered region. Jirásek (1996) Moravsko-slezské Beskydy (M, S) Athyrio alpestris-Piceetum typicum var. calamagrostiosum Rels. 4, 5 arundinaceae Jirásek 1996 Entire unit. Partly also var. typicum. Jirásek (1996) Moravsko-slezské Beskydy (M, S) Athyrio alpestris-Piceetum athyrietosum filicis-feminae Hartmann et Jahn 1967 Without recorded relevé from the considered region. According to the author probably distributed also in the MoravianSilesian Beskyds. Kasprowicz (1996) Beskid Żywiecki (P) Abieti-Piceetum montanum (Szafer et al. 1923) Celiński All relevés et Wojterski 1961 n. n. In some relevés Fagus predominates. Cf. also ‚Galio-Abietetum Wraber (1955) 1959‘. Kasprowicz (1996) Beskid Żywiecki (P) Plagiothecio-Piceetum (Szafer et al. 1923) Br.-Bl. et al. 1939 em. J. Matuszkiewicz 1978 Minor part of relevés belongs to the order Sphagno palustris-Piceetalia P. Kučera 2019 (cf. tab. 31). All relevés Pro parte P. K u č e r a – Norway spruce woodlands in Slovakia and their syntaxonomical classification Picea forest’ (see Chytrý et al. 2020). In the same way as exemplified above, this controversial outcome resulted from calculations performed on partial Picea-forest dataset consisting of mixture of (1) true (natural or close to natural) Picea abies woodland samples (Vaccinio-Piceetea) + other samples of Vaccinio-Piceetea communities and (2) substitutionary (mixed) P. abies forest samples replacing the original mixed Fagus sylvatica woodlands (Carpino- Fagetea) with spontaneous reverse secondary succession of F. sylvatica. Admixture of this second group, incorrectly classified within ‘Temperate mountain Picea forest’, causes the inappropriate high frequency value of Fagus calculated for the respective EUNIS habitat. The recently published map of vegetation alliances in Europe (Preislerová et al. 2022) is affected by the same error with very high probability. Moreover, another incorrect approach is the application of the term ‘mountain taiga’ for Central European Norway spruce forests of higher mountain-ranges (see Chytrý 2012), especially in the case if in this way are labelled substitute non-natural forest stands replacing the various former Carpino- Fagetea woodlands (Kučera 2012a; e.g. within the Moravian-Silesian Beskids). The mentioned term should be applied precisely only to mountain woodlands in the region of Euro- Siberian taiga, i.e. to a real mountain taiga – for example in the Northern Urals. 2. Associations of acid Norway spruce woodland in Slovakia Seven basic natural acid Norway spruce plant communities are differentiated in this syntaxonomical revision. The most species-poor phytocoenoses are included within the association Lophozio- Piceetum which is typical of so-called mittelgebirge mountain ranges (cf. Kučera 2022) and represents there the most widespread natural Picea abies community; however, it could be also found in the Tatras and the Low Tatras. The stands of the association Athyrio distentifolii- Piceetum are developed on special more humid habitats, where they alternate with the previous community. The recently distinguished association Sphagno capillifolii-Piceetum represents a marginal community within the group of natural acid Norway spruce woodland types – it comprises communities in spatial contact with supramontane bog communities and other related communities. During this syntaxonomical revision, four new distinctive habitat-specific and phytocoenologically independent plant communities were distinguished. The associations Solidagini virgaureae-Piceetum (ecological counterpart of Athyrio-Piceetum) and Parido quadrifoliae-Piceetum (on relative rare trophically intermediate habitats) are exclusively bound to hochgebirge mountain ranges (mostly the Tatra mountains). In special scree habitats phytocoenoses of the association Listero cordatae- Piceetum are found. Lycopodio annotini-Sorbetum aucupariae comprises a special Sorbus aucuparia dominated and a floristically rich community developed on windthrow sites. 2.1. Lophozio-Piceetum abietis Volk in Br-Bl. et al. 1939 nom. corr. Nomenclatural type: Hartmann & Jahn (1967), tab. 2, rel. 10, neotypus hoc loco. Original name: Lophozieto-Piceetum Volk 1939 mss. (Braun-Blanquet et al. 1939: 30), i.e. Lophozio- Piceetum excelsae Volk in Braun-Blanquet et al. 1939 nom. inept. (Rec. 10C, Art. 41b, Art. 44) Syntax. syn.: Piceetum abietis oxalidetosum acetosellae silicicolum Krajina 1933 nom. inval. (Art. 3e) p.p., Piceetum excelsae Tx. 1937 nom. illeg. (Art. 31) (p. p.) ≡ Piceetum hercynicum Tx. in Br.-Bl. et al. 1939 nom. illeg. (Art. 34a) (p. p.) ≡ Plagiothecio-Piceetum hercynicum (Tx. in Br.-Bl. et al. 1939) J. Matuszkiewicz 1977 nom. illeg. (Art. 34a) (p.p.), 145 P. K u č e r a Table 2. Statistical comparison of associations of the alliance Piceion abietis Pawłowski ex Pawłowski et al. 1928 in Slovakia with values of constancy (%) and fidelity (φ (× 100) ≥ 25) in the exponent Field and ground layer species represented in only one column are omitted. Group 1 – Lophozio-Piceetum abietis Volk in Br.-Bl. et al. 1939 nom. corr. Group 2 – Athyrio distentifolii-Piceetum abietis Hartmann ex Hartmann et Jahn 1967 nom. corr. Group 3 – Solidagini virgaureae-Piceetum abietis P. Kučera in P. Kučera et al. 2023 Group 4 – Parido quadrifoliae-Piceetum abietis P. Kučera in P. Kučera et al. 2023 Group 5 – Lycopodio annotini-Sorbetum aucupariae P. Kučera 2023 Group 6 – Listero cordatae-Piceetum abietis (Samek et al. 1957) P. Kučera 2023 Group 7 – Sphagno capillifolii-Piceetum abietis Zukrigl 1973 nom. corr. The quantity of asterisks in the second column expresses the highest state of conventional levels of the statistical significance (0.05, 0.01 and 0.001, Fisher’s exact test) for the particular species. In the case of differential species for multiple units such indication could have alternative states. Group No. No. of relevés Tree and shrub species Canopy (E3) Picea abies Sorbus aucuparia Larix decidua Betula carpatica Salix caprea Salix silesiaca Understorey E2 Picea abies *** * *** Sorbus aucuparia Pinus mugo Ribes petraeum Salix silesiaca Sambucus racemosa Salix caprea Lonicera nigra Abies alba Fagus sylvatica E1 Sorbus aucuparia Picea abies Lonicera nigra *** Abies alba Pinus cembra Fagus sylvatica Ribes petraeum Larix decidua Salix sp. Pinus mugo Sambucus racemosa Salix silesiaca * 146 ** 1 40 2 16 3 21 4 11 5 8 6 7 7 6 100 – 20 – 5– .– .– .– 100 – 31 – 6– .– .– .– 100 – 5– .– .– .– .– 100 – 9– 75 – 100 58.9 12 – 38 58.3 12 – .– 100 – 29 – .– .– .– 14 – 100 – 33 – .– .– .– .– 35 – 8– 10 – 2– 2– .– .– 10 – 5– .– .– .– .– .– .– .– .– 64 24.8 .– .– .– 25 – 25 – 6– .– .– 6– .– .– .– .– 62 – 12 – .– .– .– .– .– 12 – 12 – .– 14 – 14 – 14 – .– .– .– .– .– .– .– 33 – 17 – 33 – .– .– .– .– .– .– 17 – 80 – 60 – 88 – 56 – 91 – 88 – 88 – 100 – 86 – 67 – 83 – 2– 2– 2– 5– .– 2– .– .– .– .– 19 – .– 6– 6– 12 – .– 6– .– .– .– 100 15.4 29 – 10 – 75 61.3 .– .– 14 – .– .– .– .– .– .– .– .– .– .– .– 5– .– .– .– 5– .– 27 31.4 .– .– .– 36 21.5 18 – .– .– .– 9– .– .– .– 18.4 91 18 – .– 18 – .– .– 9– .– .– .– .– 23.6 25 .– .– .– .– .– .– .– 12 – 33 35.7 .– .– .– .– 17 – 33 54.8 .– .– Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. Differential field layer species (E1) Trientalis europaea Acetosa arifolia Soldanella marmarossiensis agg. Milium effusum Solidago virgaurea Adenostyles alliariae Hieracium murorum Rubus idaeus Melampyrum sylvaticum Paris quadrifolia Epilobium montanum Blechnum spicant Chaerophyllum hirsutum Galeobdolon montanum Luzula pilosa Gymnocarpium dryopteris Hylotelephium argutum Dryopteris filix-mas Doronicum austriacum Prenanthes purpurea Ranunculus platanifolius Listera cordata Huperzia selago Veratrum album ssp. lobelianum Carex canescens Nardus stricta Juncus filiformis Eriophorum vaginatum Carex echinata Carex nigra Differential species for two or more associations Stellaria nemorum Luzula luzuloides Calamagrostis arundinacea Athyrium filix-femina Lycopodium annotinum Athyrium distentifolium Senecio nemorensis agg. Other field layer species (E1) Vaccinium myrtillus Homogyne alpina Dryopteris carthusiana agg. Oxalis acetosella Avenella flexuosa Calamagrostis villosa * *** *** * *** *** *** *** *** *** ** ** ** ** * *** ** ** ** ** * *** ** ** *** *** *** *** *** *** *** *** ***/* ***/** ***/* **/* ***/** 1 2 3 4 5 6 7 10 29.5 .– 18 – .– 5– 15 – 2– 35 – 5– .– 2– .– .– .– .– 5– .– 2– 5– 15 – .– .– 5– 12 – 2– 2– .– .– .– .– .– .– 14 – .– .– .– .– .– .– 18 – .– 27 – .– 12 – 25 – 12 – 12 – 50 – .– 75 – 12 – 12 – .– .– .– .– .– .– .– .– .– 14 – 43 – .– 14 – .– .– .– .– .– .– .– 75 55.7 38 53.9 38 50.8 50 44.2 88 43.3 25 37.8 .– .– 38 – .– .– .– .– .– .– 43 23.0 .– .– .– 14 – .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 56.0 56 50 44.3 31 28.1 6– 62 – .– 69 – .– .– .– 6– .– .– 6– 19 – .– 6– 19 – 31 – .– 6– 12 – 50 24.2 .– 6– .– .– .– .– 5– 8– 12 – 5– 10 – 38 – 8– 62 45.8 56 – 19 – 19 – .– 100 – 92 – 90 – 95 – 90 – 85 – 29 24.5 76 66.1 100 48.8 24 43.0 81 31.3 .– .– .– .– .– .– .– .– 5– .– 19 – 52 13.5 10 – .– .– .– .– .– .– .– .– .– .– 55 59.5 45 55.1 27 46.6 27 43.0 18 40.0 18 40.0 18 32.7 .– .– .– .– 55 – .– .– .– .– .– .– .– .– .– .– .– 25 – 75 50 – 48 11.8 .– 5– 64 47.0 100 47.1 100 58.0 91 49.2 .– 9– 62 25.5 75 35.4 50 25.5 25 – 100 41.0 91 33.6 94 – 88 – 94 – 100 – 56 – 81 – 100 – 90 – 81 – 90 – 100 19.0 62 – 100 – 91 – 82 – 91 – 45 – 91 – 22.2 43.1 95 38 – 71 78.4 43 49.8 71 44.6 .– .– .– .– .– .– .– .– .– .– 83 88.5 83 84.8 67 79.5 50 67.9 50 67.9 50 67.9 .– 17 – .– .– 33 – 100 41.0 71 46.1 100 42.7 .– 83 29.0 .– 88 – 100 – 100 – 75 – 100 – 62 – 100 – 100 – 100 – 100 – 100 – 86 – 100 – 100 – 100 – 17 – 83 – 83 – 147 P. K u č e r a Group No. Luzula sylvatica ssp. sylvatica Gentiana asclepiadea Vaccinium vitis-idaea Cicerbita alpina Polygonatum verticillatum Maianthemum bifolium Streptopus amplexifolius Epilobium angustifolium Ligusticum mutellina Phegopteris connectilis Luzula alpinopilosa Hieracium lachenalii Valeriana tripteris Luzula luzulina Deschampsia cespitosa Mycelis muralis Bistorta major Hypericum maculatum Delphinium elatum Rumex obtusifolius Oreogeum montanum Poa chaixii Hieracium laevigatum Veronica officinalis Campanula serrata Soldanella carpatica Petasites albus Agrostis capillaris Rubus saxatilis Urtica dioica Moneses uniflora Linnaea borealis Gentiana punctata Alchemilla sp. div. Ranunculus acris Carex pauciflora Equisetum sylvaticum Rumex alpinus Taraxacum sect. Ruderalia Differential ground layer species (E0) Plagiothecium curvifolium Chiloscyphus pallescens Plagiochila porelloides Plagiomnium undulatum Sphagnum girgensohnii Sphenolobus minutus Lophozia cf. incisa 148 *** * *** *** ** *** *** 1 72 – 38 – 45 – 2– 2– 5– 2– .– .– .– 2– 2– .– 2– .– 2– 2– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 2 81 – 44 – 6– 25 – 19 – 12 – 12 – 12 – 12 – 6– 6– 6– 6– 6– 6– .– .– 6– 6– 6– 6– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 3 90 – 71 24.1 19 – 29 – 10 – .– .– 5– 5– .– .– 5– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 42 – 2– 2– .– 15 – .– 8– 44 – .– 12 – .– 6– .– 6– 81 42.4 14 31.7 .– .– .– .– .– 4 82 – 9– 73 24.4 18 – .– .– .– .– .– 9– .– .– .– .– .– .– .– .– .– .– .– 9– 9– 9– 9– 9– 9– 9– 9– .– .– .– .– .– .– .– .– .– .– 9– .– 55 60.9 36 57.3 55 32.4 .– .– 5 75 – 62 – 38 – 38 – 25 – .– 12 – 12 – .– 12 – .– .– 12 – .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 12 – 12 – .– .– .– .– .– .– .– .– 6 71 – 71 – 71 – .– .– .– .– .– 14 – 14 – 14 – .– 14 – .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 14 – 14 – .– .– .– .– .– .– 7 33 – .– 50 – .– .– .– .– .– .– .– .– .– .– .– 17 – .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 17 – 17 – 17 – 17 – 17 – 17 – .– .– .– +. – 12 – .– .– .– .– 14 – .– .– 50 – .– .– .– 50 – .– .– 50 67.9 62 67.6 Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. Plagiothecium denticulatum Tortella tortuosa Tetraphis pellucida Blepharostoma trichophyllum Mnium sp. Bazzania trilobata Calypogeia azurea Cladonia sp. Pleurozium schreberi Barbilophozia lycopodioides Sphagnum recurvum agg. Rhytidiadelphus squarrosus Schistidium apocarpum Plagiothecium undulatum Plagiothecium laetum Polytrichum commune Barbilophozia floerkei Sphagnum rubellum Pohlia nutans Lophocolea heterophylla Dicranum montanum Differential species for two associations Hylocomium splendens Rhytidiadelphus triquetrus Plagiochila asplenioides Sphagnum capillifolium Other ground layer species (E0) Dicranum scoparium Polytrichum formosum Lepidozia reptans Calypogeia integristipula Plagiomnium affine Dicranella heteromalla Brachythecium starkei Sphagnum quinquefarium Rhizomnium punctatum Brachythecium velutinum Cetraria islandica Plagiothecium succulentum Brachythecium reflexum Calypogeia muelleriana Rhytidiadelphus loreus Chiloscyphus polyanthos Plagiothecium sp. Entodon schleicheri Cladonia furcata *** ** *** ** * *** *** *** *** *** ** * * ** * *** ** ** ** ** ** 1 10 – 2– 5– 12 – 2– .– 8– .– 25 – 2– .– 8– .– 18 – 2– 12 – .– .– .– .– 5– 2 .– .– 6– 12 – .– .– .– 6– 38 – 12 – .– 19 – 6– 6– 12 – 12 – .– .– 6– .– 19 – 3 .– .– .– .– .– .– .– .– 5– 5– .– .– 5– .– .– .– .– .– .– .– .– 4 .– .– .– .– .– .– .– .– 9– .– .– .– .– 9– .– .– .– .– .– 9– 18 – 5 50 60.4 38 55.9 50 51.6 50 45.6 25 44.3 .– .– .– 50 – .– .– .– .– 25 – .– 25 – .– .– .– .– .– 6 .– .– 14 – 14 – .– 7 .– .– .– .– .– .– 33 – .– 33 – 17 – .– .– .– 17 – 17 – 43 62.6 71 61.6 43 57.3 100 53.2 57 52.5 29 50.5 43 45.1 29 40.5 57 40.1 29 29.1 .– .– .– .– .– .– *** ***/** * *** 18 – 8– .– 10 – 19 – 6– .– 6– .– .– .– .– 27 – 9– .– .– 88 41.4 62 35.7 25 26.6 .– 100 51.9 71 44.1 29 32.1 86 54.8 83 52.6 85 – 75 – 18 – 18 – 12 – 8– 8– 5– 2– 2– 2– 5– 5– 5– .– 5– 2– 5– 5– 50 – 69 – 19 – 6– 19 – 6– .– 6– 12 – .– 6– 6– .– .– 12 – .– .– .– .– 76 – 67 – 5– 5– 10 – .– .– .– .– .– .– .– .– .– .– .– .– .– .– 82 – 73 – .– .– 18 – .– .– .– .– 9– .– .– .– .– .– .– .– .– .– 100 – 88 – 12 – 25 – 12 – .– 12 – 12 – 12 – .– .– .– 12 – .– 12 – .– 12 – .– .– 100 – 100 – 29 – .– .– 14 – .– .– .– .– 14 – .– .– .– .– .– .– .– .– 100 – 83 – .– 33 – .– 17 – 17 – .– .– 17 – .– .– .– 17 – .– .– .– .– .– 83 66.8 33 54.8 33 54.8 33 48.9 33 46.7 50 44.6 17 – 17 – .– 149 P. K u č e r a Group No. Polytrichum longisetum Diplophyllum albicans Dicranum polysetum Ptilidium pulcherrimum Eurhynchium praelongum Peltigera canina Hypnum cupressiforme Sphagnum centrale Jungermannia hyalina Brachythecium salebrosum Ptilium crista-castrensis Sphagnum cuspidatum Cladonia gracilis Calypogeia sp. Lophocolea bidentata Calliergon stramineum Mnium stellare Atrichum undulatum Lophozia incisa Dicranella sp. Cephalozia sp. Ditrichum flexicaule Plagiomnium cuspidatum Cladonia squamosa Rhizocarpon geographicum Ptilidium ciliare Porella platyphylla Pogonatum urnigerum Racomitrium canescens Cladonia bellidiflora Eurhynchium hians Eurhynchium angustirete Pseudevernia furfuracea Alectoria sp. Drepanocladus uncinatus Eurhynchium sp. Nardia scalaris Hylocomium umbratum Scleropodium purum Sphagnum fuscum Dicranum fuscescens Pleuridium subulatum Polytrichum juniperinum Cephalozia lunulifolia Amblystegium serpens Sphagnum russowii Polytrichastrum alpinum Barbilophozia attenuata 150 1 5– 2– 2– .– .– .– .– 2– 2– 2– 2– 2– 2– 2– 2– 2– 2– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 2 .– .– 6– 6– 6– 6– .– .– .– .– .– – .– .– .– .– .– 6– 6– 6– 6– 6– 6– 6– 6– 6– 6– 6– 6 6 .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 3 .– .– .– .– .– .– 5– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– . . . . 4 .– .– .– .– .– .– 9– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 9– 9– 9– 9– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 5 .– 12 – .– 12 – 12 – .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 12 – 12 – .– .– .– .– .– .– .– .– .– .– .– .– 6 .– .– .– .– .– 14 – .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 14 – 14 – 14 – .– .– .– .– .– .– .– .– .– 7 .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– .– 17 – 17 – 17 – 17 – 17 – 17 – 17 – 17 – 17 – Norway spruce woodlands in Slovakia and their syntaxonomical classification Sphagno [quinquefarii]-Piceetum (Tx. 1937) Hartmann 1953 (Rec. 10C, cf. Kučera 2019b) [≡ Piceetum excelsae sphagnetosum [quinquefarii] Tx. 1937], ? Hieracio transsilvanici-Piceetum Pawłowski et Br.-Bl. in Br.-Bl. et al. 1939 p. p. min., Homogyno alpinae-Piceetum Samek 1961 nom. superfl. (Art. 29c) p. p., Calamagrostio villosae-Piceetum Hartmann et Jahn 1967 nom. illeg. (Art. 29c, 31) p. p. maj. (= excl. Calamagrostio villosae-Piceetum sphagnetosum Hartmann et Jahn 1967), ? Listero cordatae-Piceetum subalpinum Mayer et Hofmann 1969 nom. illeg. (Art. 34a) p. p. min. Homogyno alpinae-Piceetum Zukrigl 1973 (sensu typus), Plagiothecio-Piceetum tatricum J. Matuszkiewicz 1977 nom. illeg. (Art. 34a) p. p. ≡ Plagiothecio-Piceetum (J. Matuszkiewicz 1977) J. Matuszkiewicz 2001 p. p., Vaccinio myrtilli-Piceetum Sofron 1981 nom. inval. (Art. 5a) [nom. illeg. (Art. 31)], Vaccinio vitis- idaeae- Piceetum Kubíček et Šomšák 1993 nom. inval. (Art. 3b) Incl.: ? Hieracio transsilvanici-Piceetum normale Pawłowski et Walas 1949 nom. illeg. (Art. 13a), Vaccinio myrtilli-Piceetum typicum Šoltés 1976 p. p. Pseud.: Piceetum myrtillosum sensu Szafer et al. 1923 non Beger 1922 nom. inval. (Art. 3d) p. p., Soldanello montanae-Piceetum auct. non Volk in Braun-Blanquet et al. 1939 p. p. (see Oberdorfer 1957; Samek 1961; Oberdorfer et al. 1967; Wallnöfer 1993), Calamagrostio villosae-Piceetum auct. non Schlüter 1966 Corresponding nomina ficta (phantom names): Piceetum excelsae myrtilletosum Szafer et al. 1923 apud auct., Piceetum excelsae carpaticum (Szafer et al. 1923) Br.-Bl. et al. 1939 apud Celiński et Wojterski 1978, Calamagrostio villosae-Piceetum Hartmann 1953 apud auct. (Hartmann & Jahn 1967; Oberdorfer et al. 1967; Sofron 1981), Calamagrostio villosae-Piceetum (Tx. 1937) Hartmann ex Schlüter 1966 apud Seibert 1992 Non: Piceetum excelsae normale silicicolum Sillinger 1933 nom. illeg. (Art. 34a), Homogyno alpinae- Piceetum Samek et al. 1957 (Rec. 10C, Art. 30a), Luzulo sylvaticae-Piceetum Wraber ex Wraber 1963, Calamagrostio villosae-Piceetum Schlüter 1966; Listero cordatae-Piceetum subalpinum Mayer et Hofmann 1969 nom. illeg. (Art. 34a) p. p. maj. (cf. Listero cordatae-Piceetum (Mayer et Hofmann 1969) Pignatti 1998 nom. inval. (Art. 3a) ≡ Listero cordatae-Piceetum (Mayer et Hofmann 1969) Pignatti et Pignatti 2014 nom. inval. (Art. 3i, 39b) Set of the diagnostic species within the evaluated dataset: E1: Trientalis europaea, E0: –. Relevé data: Krajina (1933), tab. 69, rels. 9, 11; Samek et al. (1957), tab. 15, rel. 34; Lakatosová (1971), tab. 3, rels. 3, 12, 13; Šoltés (1976), tab. 4, rels. 3, 4, 11, 21; Kobzáková (1987) (msc.), tab. 6, rel. 15; Moravčíková (1987) (msc.), tab. 2, rel. 9 and tab. 6, rel. 19; Naďová (1987) (msc.), tab. 1, rels. 7, 11, 20, 29; Rajcová (1987) (msc.), tab. I.1, rels. 6, 16, 17, 19, 20, 22, 23, 28, 30 and tab. I.3, rels. 2, 4; Kubíček et al. (1992), tab. 1, rel. 2; Černušáková (1994), tab. 1, rel. 2, 3; Krajčí (2009) (msc.), tab. 3, rels. 22, 24 and tab. 5, rel. 43 [cf. Krajčí 2008]; Kučera (2012a): 294–295, rels. 25–29; F. Máliš ined. (1 rel.). See fig. 2. This association is the most widespread plant community of supramontane acid Norway spruce woodland in Central Europe developed on the non-carbonate rocks, typical especially for the mittelgebirge mountain ranges such as the Bavarian Forest, the Giant Mountains or the Veľká Fatra Mts. Its characteristic feature is a very low plant species diversity, therefore this community is floristically (mostly) negatively differentiated against other acid Norway spruce communities. 151 P. K u č e r a Picea abies is dominant and frequently the only species of the tree layer especially in phytocoenoses influenced by past land management (including historical deforestation). However, Sorbus aucuparia (usually ssp. gabrata) is also the natural component of stands, very often represented by rejuvenated individuals mostly with limited life span. In the Tatra region (and probably also in the Low Tatras), Larix decidua was native element of stands. The possibility of a natural Abies alba presence should be further studied (the species ascends in tree form also above 1500 m a.s.l.: cf. Kučera 2012a, 2021) In the understorey, presence of Ribes petraeum and Lonicera nigra was noted only sporadically, Pinus mugo is admixed in ecologically limit habitats. Only dwarf growth of Acer pseudoplatanus, Fagus sylvatica and Pinus cembra (only within the Tatra region) is considered for (sporadical) occurrences within this association, for the two former species exclusively in the lower altitudinal limit of the community. Species composition of the field layer is very poor, not seldom consisting of 3–5 basic constantly accompanying species only. The most frequent dominant is Vaccinium myrtillus, in some cases could (co-)dominate some of the species Homogyne alpina, Oxalis acetosella and especially Calamagrostis villosa. Higher cover could be here and there reached by Dryopteris dilatata, Luzula sylvatica ssp. sylvatica, D. expansa or Athyrium distentifolium. The three species V. myrtillus, C. villosa and A. distentifolium usually form characteristic small-scale dominance mosaic pattern of the community field layer (Trautmann 1952; Petermann et al. 1979; Kučera 2012a). Avenella flexuosa is almost a constantly present species. Vaccinium vitis-idaea, Gentiana asclepiadea, Rubus idaeus, (Prenanthes purpurea) belong to relative frequently admixed species. Other species are present in the stands of this association mostly sporadically, and generally with low cover-abundances, for example Dryopteris carthusiana, Huperzia selago, Trientalis europaea, Maianthemum bifolium etc., or species usually concentrated – within the group natural acid Picea abies associations – in other plant communities (Adenostyles alliariae, Lycopodium annotinum, Luzula luzuloides, Senecio hercynicus, Stellaria nemorum etc.). In the Tatra Mountains and the Low Tatras Soldanella marmarossiensis agg. grows abundantly here and there (a regional vicariant against woodlands of the north-eastern Alps and the Bohemian Forest with Soldanella montana Willd.: Valachovič et al. 2019). Dicranum scoparium is the most frequent species of the ground layer; however, the layer dominant is most frequently Polytrichum formosum (cover more than 25–50%), but the latter species could also be absent. Plagiothecium curvifolium and Pleurozium schreberi belong among regularly present species, even if with lower constancy. Occasionally also other species grow in the stands (Lepidozia reptans, Plagiomnium affine, Plagiothecium undulatum, Rhytidiadelphus triquetrus etc.). Some habitat types are characterized by the presence of Sphagnum species (usually with higher cover-abundance values), especially S. girgensohnii (often typically with Polytrichum commune); S. capillifolium and S. quinquefarium were noted less frequently. Sample phytocoenosis (Krajčí 2008, tab. 1, rel. 15, Low Tatras, 1440 m a.s.l.; for bryophytes see Krajčí 2009): E3: Picea abies 4, E2: Picea abies 1, 152 Norway spruce woodlands in Slovakia and their syntaxonomical classification E1: Vaccinium myrtillus 3, Calamagrostis villosa 2, Homogyne alpina 2, Oxalis acetosella 2, Avenella flexuosa 1, Dryopteris dilatata 1, Athyrium distentifolium 1, Luzula sylvatica 1, Soldanella marmarossiensis agg. 1, Gentiana asclepiadea +, Prenanthes purpurea +, E0: Polytrichum formosum 2, Plagiothecium curvifolium 2, Dicranum scoparium 1, Pleurozium schreberi 1, Plagiothecium undulatum +. This association is distributed throughout whole Central Europe in the Carpathian and the Hercynian mountain ranges (Braun-Blanquet et al. 1939; Klika 1941 and later versions of this syntaxonomical summaries; Oberdorfer 1957; Matuszkiewicz & Matuszkiewicz 1960; Hartmann & Jahn 1967; Matuszkiewicz 1977, 2002; Seibert 1992; Wallnöfer 1993; Kasprowicz 1996; Exner 2007; Chytrý et al. 2013b); however, it is known under various names (see the nomenclatural note 1 below). Exner (2007) mentions its rare occurrence within the Alps. In relation to the distribution of Lophozio-Piceetum in the Slovak and Polish Western Carpathians, presence of this association is also possible within the Ukrainian Carpathians (cf. ShelyagSosonko et al. 2006; Dubyna et al. 2019), but phytochorological differences between the Eastern Carpathian and the Hercynian-Western Carpathian communities should be studied in more detail. However, the phytocoenosis documented by Solomakha et al. (2004) as a sample of the association Calamagrostio villosae-Piceetum comes from an anthropogenic Norway spruce forest of the class Carpino-Fagetea, most probably from the association Calamagrostio villosae-Fagetum Mikyška 1972 (cf. below the syntaxonomical note 3). Variability. – The very low number of species commonly growing in the phytocoenoses of this association is reflected in very limited available floristical differentiation of the subcommunities developed in clearly distinct habitat types. In some cases only quantitative differences could be present. Therefore, even considerable small phytocoenotic (and/or floristical) differences have syntaxonomically sufficient ecological value. The following subcommunities were only poorly documented from Slovakia, the typical subassociation being the only exception. In addition, a separate geographical variant of hochgebirge mountain ranges could be differentiated (probably within several following subunits, especially subassociation typicum) recognized by native occurrence of Larix decidua, Athyrium filix-femina, partially Calamagrostis arundinacea (Dryopteris filix-mas): presence of these species within montane Picea stands of mittelgebirge mountain ranges usually indicates plantations (Larix) or anthropogenic degraded Carpino-Fagetea communities (Athyrium etc.). (1) The subassociation Lophozio-Piceetum typicum (first differentiated by Trautmann [1952]; nomenclatural type: not selected [cf. Trautmann 1952])3 unites the typical, most common phytocoenoses of the association. Already Trautmann (1952) called the attention to formation of characteristic small-scale dominance patterns of the field layer physiognomy made by species Vaccinium myrtillus, Calamagrostis villosa and Athyrium distentifolium within this subcommunity.4 V. vitis-idaea reaches in the phytocoenoses only low cover-abundance values or is missing. 3 Differential species: – ; syntax. syn.: Soldanello-Piceetum barbilophozietosum Oberdorfer 1957, Calamagrostio villosae-Piceetum Subassoziation nach Lophozia floerkei und Lophozia lycopodioides Hartmann et Jahn 1967 nom. superfl. (Art. 29c)/nom. illeg. (Art. 34c), Calamagrostio villosae-Piceetum typische Subassoziation (see Hartmann & Jahn 1967). Careful differentiation of such respective small-scale A. distentifolium dominances and more species-rich as well as ecologically different woodlands of the association Athyrio distentifolii-Piceetum is necessary. 4 153 P. K u č e r a (2) Within the subassociation Lophozio-Piceetum vaccinietosum vitis-idaeae Trautmann 1952 (nomenclatural type: not selected)5, there are delimited phytocoenoses occupying edaphically more extreme habitats, most commonly on steep, sun-exposed and quickly drying ± bouldery sites. They are characterized by a constant and more abundant presence of Vaccinium vitis- idaea, retreat of species demanding higher moisture and nutrient supply as well as by a constant occurrence of lichens and ecologically specific concentration of selected moss species to dry moss cushions, e.g. Pleurozium schreberi and Hylocomium splendens (Trautmann 1952). Close related phytocoenoses were documented in Slovakia by Krajina (1933, tab. 69, rels. 9, 11) and Kubíček & Šomšák (1993, tab. 2, rel. 8). (3) Within the subassociation Lophozio-Piceetum sphagnetosum [quinquaefarii ] (Tx. 1937) P. Kučera 2023 comb. nov. hoc loco (Rec. 10C) (basionym: Piceetum excelsae sphagnetosum [quinquaefarii ] Tx. 1937, published by Tüxen (1937: 123) (cf. Kučera 2019b: 321, 328, Suppl. A3: e7), nomenclatural type: not selected)6 are comprised phytocoenoses of humid and cold, usually towards the north (to the east) oriented slopes. They are notable for numerous wet Sphagnum cushions (Tüxen 1937); however, they do not create a dominant physiognomical feature of the phytocoenoses. (4) The subassociation Lophozio-Piceetum polytrichetosum communis P. Kučera 2023 subass. nov. hoc loco (nomenclatural type: Kučera (2012a): 295, rel. 29, holotypus hoc loco; original diagnosis: Kučera (2019b): 294 –295, rels. 26 –29; differential species: Polytrichum commune [dom.], Sphagnum girgensohnii [dom.])7 is here newly described for phytocoenoses of wet habitats which develop on very slightly inclined and plateau-like sites. They are characterized by a distinct development of the bryophyte cover with a larger number of represented species. Dominating species are Polytrichum commune, Sphagnum girgensohnii and P. formosum. Avenella flexuosa is missing in the hitherto known relevés. (5) The other new subassociation Lophozio-Piceetum nardetosum strictae P. Kučera 2023 subass. nov. hoc loco (nomenclatural type: Kučera (2012a): 312, rel. 78, holotypus hoc loco; original diagnosis: Kučera (2012a): 312, rel. 78 + Lepš et al. (1985), tab. 1, rel. 6 + Petermann et al. (1979), tab. 3, rel. c8 + hochgebirge variant Krajina (1933), tab. 61, rel. 3, and tab. 64, rels. 3, 4, 6, 7; see also Kučera (2012a): 293–294, rel. 24 and page 311, rels. 72–73 + Hartmann & Jahn (1967), tab. 2, rels. 9, 13, 14) includes phytocoenoses similar to the subassociation typicum, however, with diagnostic species such as Nardus stricta, Carex pilulifera, C. canescens, partially Deschampsia cespitosa etc. (see Trautmann 1952: 302), further C. ovalis, Potentilla aurea, Agrostis capillaris, Hypericum maculatum, Bistorta major or Pulsatilla scherfelii, Anthoxanthum alpinum etc. which are characteristic for habitats influenced by mountain pasture or complete past deforestation of the respective area (Krajina 1933; Kučera, 2012a, 2019a).8 These phytocoenoses 5 Differential species: Vaccinium vitis-idaea (constant species); corresp. name: Vaccinio vitis-idaeae-Piceetum Kubíček et Šomšák 1993 nom. inval. (Art. 3b). 6 Differential species: Sphagnum spp. (constant species); corresp. name: Sphagno [quinquefarii ]-Piceetum (Tx. 1937) Hartmann 1953, cf. Kučera (2019b), non: Calamagrostio villosae-Piceetum sphagnetosum Hartmann et Jahn 1967. 7 Original diagnosis: Kučera (2012a): 294–295, rels. 27–29. However, Nardus, Deschampsia etc. could be natural components of Lophozio-Piceetum as well, for example on permanently wet habitats: such phytocoenoses do not belong to the Lophozio-Piceetum nardetosum strictae. 8 154 Norway spruce woodlands in Slovakia and their syntaxonomical classification are already known from older studies, cf. constancy tables of Braun-Blanquet et al. (1939) and Trautmann (1952). Nomenclatural note 1. – This community is known under various names in the Central European literature, initially as Lophozio-Piceetum (Braun-Blanquet et al. 1939; Klika 1941; Trautmann 1952; Hartmann 1953) and Piceetum hercynicum Tx. in Br.-Bl. et al. 1939 (Braun-Blanquet et al. 1939; Klika 1941; Matuszkiewicz & Matuszkiewicz 1960). In the later decades the name Calamagrostio villosae-Piceetum9 Hartmann et Jahn 1967 came into use (Hartmann & Jahn 1967; Oberdorfer et al. 1967; Jirásek 1996, 2002; Exner 2007; Chytrý et al. 2013b); some authors used the name Soldanello montanae-Piceetum instead (Oberdorfer 1957; Petermann et al. 1979; Wallnöfer 1993) – however, the respective name application was syntaxonomically incorrect (cf. Kučera 2019b) which resulted in repeated pseudonymical use of the name (i.e. Soldanello montanae-Piceetum auct. non Volk in Braun-Blanquet et al. 1939). The names Plagiothecio-Piceetum hercynicum and Plagiothecio-Piceetum tatricum are used in modern Polish literature for this community (cf. Matuszkiewicz 1977, 2002). Slovak authors use the name Vaccinio myrtilli-Piceetum Šoltés 1976 (cf. Šomšák in Mucina et al. 1985; Kanka 2008; Kučera 2012a) in accordance with the syntaxonomical survey of Šoltés (1976), or, alternatively, following the studies of Šomšák (cf. Kučera 2012a: 243) the name Calamagrostio villosae-Piceetum is applied (simultaneously with the former name or exclusively the latter name) (Šomšák in Mucina et al. 1985; Jarolímek et al. 2008a). Part of the authors prefer to use the name Calamagrostio villosae-Piceetum Hartmann et Jahn 1967 in the present (Jirásek 2002; Exner 2007; Willner 2007); however, Kučera (2010a, 2012a) reminded that this name is an illegitimate name (Art. 31), because it is a younger homonym to the name Calamagrostio villosae-Piceetum Schlüter 1966 (used already by Seibert 1992: 69) and at the same time it is a superfluous name in relation to Lophozio-Piceetum Volk in Br.-Bl. et al. 1939 (Art. 29c, cf. Hartmann & Jahn 1967). The name Calamagrostio villosae-Piceetum Schlüter 1966 was recently accepted by Chytrý et al. (2013b); however, the name Lophozio-Piceetum has to be prioritized for nomenclatural reasons (Moravec in Jirásek 2002: 37; Kučera 2012a). Moreover, the use of Schlüter’s association name is problematic from the syntaxonomical point of view (see below). Nomenclatural note 2. – Frequent application of ‘Picea abies syntaxa names’ (and their original diagnoses) to natural (Vaccinio-Piceetea) as well as to anthropogenic Norway spruce phytocoenoses (Carpino-Fagetea) (see below) is the reason why numerous above-cited synonyms and other related syntaxa names are here preliminary cited as ‘pro parte’-related names. Syntaxonomical note 1. – The original description of the association Lophozio-Piceetum is based on the woodlands of the Bavarian Forest (Braun-Blanquet et al. 1939; see the later studies of Trautmann (1952), Petermann et al. (1979), Ewald et al. (2011) etc.). The Western Carpathian phytocoenoses of the association Lophozio-Piceetum differentiate phytochorologically only by a more infrequent presence of Barbilophozia lycopodioides, Trientalis europaea etc. as well as by the absence of Soldanella montana Willd. and Galium saxatile. However, the two latter species are not among frequent and distinctive species of the true supramontane Norway 9 Either as nomen fictum Calamagrostio villosae-Piceetum Hartmann 1953 (and various fictitious author combinations) or later validly published as Calamagrostio villosae-Piceetum Hartmann et Jahn 1967. 155 P. K u č e r a spruce woodland even within the Bavarian Forest. These species differences could be evaluated as phytochorological variants within the association Lophozio-Piceetum. Syntaxonomical note 2. – Careful consideration is required for the substantial differentiation of the associations Lophozio-Piceetum and Athyrio distentifolii-Piceetum (see below). Contrary to prevalent opinions, their phytocoenoses do not differ in the absence of poor abundance of Athyrium distentifolium (cf. Sofron 1981; Jirásek 1996; Neuhäuslová & Eltsova 2003; Exner 2007; Willner et al. 2007; Chytrý et al. 2013b: 374), but primarily in the group of differential species defined within the original description of Athyrio distentifolii-Piceetum (see Hartmann & Jahn 1967, tab. 1). The species Athyrium distentifolium is not mentioned within the original description of LophozioPiceetum (Braun-Blanquet et al. 1939: 30–31); however, this case may be result of the specific approach of the authors of that study in respect of the compilation of their phytocoenological tables (see Kučera 2008: 167). As could be clearly seen from the later studies from the Bavarian Forest (Trautmann 1952; Petermann et al. 1979; Ewald et al. 2011), A. distentifolium is a regular component of the Lophozio-Piceetum phytocoenoses. Its cover-abundance within Lophozio-Piceetum could exceed even the value 25% (cf. Krajčí 2008, tab. 2, rel. 30).10 Absence of A. distentifolium in the lower montane altitudes of the Central European mountain ranges is a typical attribute of the non-natural origin of the respective Norway spruce forest stands; larger areas of stands without A. distentifolium presence in the higher altitudes may indicate historical anthropogenic influences (deforestation in the deeper past). Syntaxonomical note 3. – Jirásek (1996) described the subassociation Calamagrostio villosae- Piceetum fagetosum Jirásek 1996 in which he included ‘climax montane communities distributed on the lower [altitudinal] limit of the climatic Norway spruce woodlands therefore the tree canopy is composed of prevailing Picea abies with admixture of Fagus sylvatica and Abies alba’ (cf. Jirásek 2002; Neuhäuslová & Eltsova 2003). According to the recent field revisions, the respective documented forest stands are considered to represent anthropogenically changed phytocoenoses in habitats of the former natural mixed Fagus woodland (however, they were more frequently completely replaced by substitute P. abies forests). The same evaluation can be applied to the unit Calamagrostio villosae-Piceetum typicum var. calamagrostiosum arundinaceae Jirásek 1996 (cf. Kučera 2012a, 2013a, 2014), the phytocoenoses of which were incorrectly included by Chytrý (2012) into a ‘mountain taiga’ (see above). Equivalently, questionable are numerous stands from the lower elevations documented for example by Hueck (1939), Matuszkiewicz & Matuszkiewicz (1960), Hartmann & Jahn (1967), Mikyška (1972), Matuszkiewicz (1977) or Sofron (1981) from the Hercynian and Western Carpathian mountain ranges, especially those indicated by presence of Athyrium filix- femina, Calamagrostis arundinacea, Polygonatum verticillatum or Luzula pilosa.11 Full (but somewhat different) relevé version was given by Krajčí (2009 msc.), tab. 5, rel. 43: E3: Picea abies 4, E2: Picea abies 2, E1: Picea abies +, Sorbus aucuparia +, Vaccinium myrtillus 3, Athyrium distentifolium 3, Calamagrostis villosa 2, Homogyne alpina 2, Avenella flexuosa 1, Luzula sylvatica 1, Oxalis acetosella 1, Soldanella hungarica +, E0: Polytrichum formosum 2, Dicranum scoparium 1, Pleurozium schreberi 1, Plagiothecium curvifolium +, Plagiothecium undulatum +. 10 It should be noted that species as Blechnum spicant, Streptopus amplexifolius or Trientalis europaea are not exclusive species of natural Norway spruce woodlands within Central Europe (cf. Schlüter 1969; Mikyška 1972; Neuhäuslová & Sofron 2005), instead, especially the first two could more frequently indicate the existence of former mixed Fagus-Abies-Picea forests of the class Carpino-Fagetea. 11 156 Norway spruce woodlands in Slovakia and their syntaxonomical classification Also other selected Western Carpathian Picea forest stands with the species A. filix-femina, C. arundinacea, Dryopteris filix-mas from the altitudes ±1400–1450 m a.s.l. probably suggest the former existence of the upper montane woodland with F. sylvatica of the class Carpino-Fagetea (cf. Kučera 2012a). Moreover, the same evaluation is valid for substitute Norway spruce stands, in which centuries-long land management resulted in a total change of tree species composition and Picea is nowadays the only canopy species. This long-term anthropogenic impact may have influence on degradation of soil conditions and subsequent floristical change – resulting in development of plant assemblage resembling natural Norway spruce phytocoenoses from their lower altitudinal limit; however, this change is reversible. Such anthropogenic stands are usually notable for gradual secondary succession of Fagus (when a Fagus population was preserved in the vicinity) (Kučera 2012a). Further studies should question the possibility of differentiation of the above specified non- natural Picea and mixed Picea stands by means of their soil type: while podzols are typical of the true supramontane acid Norway spruce woodland, cambisols (cf. Hartmann & Jahn 1967; Jirásek 2002; Chytrý et al. 2013b) could indicate sub-/anthropogenic Picea stands replacing the former mixed Fagus woodland and thus belonging to the class Carpino-Fagetea (cf. Kučera 2022). Syntaxonomical note 4. – The name Calamagrostio villosae-Piceetum Schlüter 1966 should not be treated as a syntaxonomical synonym to Lophozio-Piceetum Volk in Br-Bl. et al. 1939 (cf. Kučera 2012a). Absence of species as Athyrium distentifolium or Homogyne alpina in the relevés of Schlüter (1966, 1969) most probably indicate absence of real natural supramontane Norway spruce vegetation belt within the Thuringian Forest. The documented phytocoenoses are here considered for old anthropogenic Norway spruce stands originated upon centuries long land management (see also Schlüter 1969: 158!), in the same manner as corresponding Western Carpathian stands. The name should be applied for species-poor substitute Picea forests of the order Luzulo-Fagetalia sylvaticae Scamoni et Passarge 1959 which replace original mixed Fagus woodland. The species Calamagrostis villosa is not exclusively bound to natural Norway spruce woodland (cf. Schlüter 1969; Mikyška 1972; Neuhäuslová & Sofron 2005), moreover, it should be noted that also A. distentifolium could be found as native species within upper montane Fagus phytocoenoses from the Black Forest (Bartsch & Bartsch 1940), the Sudetes (Mikyška 1972) and the Bohemian Forest (Neuhäuslová & Sofron 2005) to the Western Carpathians (Kasprowicz 1996; Ujházyová et al. 2021; Kučera, not.). Syntaxonomical note 5. – Recent Austrian authors included into the association Lophozio-Piceetum stands from the Alps with Pinus cembra and Rhododendron ferrugineum L. (Exner 2007; see Willner et al. 2007, tab. 43; ut Calamagrostio villosae-Piceetum). However, the latter species is characteristic of syntaxa phytochorologically different from the whole Central European region. Moreover, Pinus cembra presence determines affiliation of the respective relevés to the alliance Homogyno alpinae-Pinion cembrae P. Kučera 2017. On the contrary, the presence of Fagus sylvatica within the relevés from the Bohemian Massif indicate that the authors – similarly as Jirásek 1996 (see above note 3) – included in the respective dataset also the anthropogenic Picea phytocoenoses of the class Carpino-Fagetea (cf. Kučera 2022). 157 P. K u č e r a Figure 2. Distribution of analysed relevés of the acid Norway spruce woodlands in Slovakia (central part): circles – Lophozio-Piceetum; diamonds – Athyrio distentifolii-Piceetum. Made with QGIS. 2.2. Athyrio distentifolii-Piceetum abietis Hartmann ex Hartmann et Jahn 1967 nom. corr. Nomenclatural type: Hartmann & Jahn (1967), tab. 1, rel. 27, lectotype (Jirásek 1996: 250). Original name: Athyrio alpestris-Piceetum F.K. Hartmann 1959 (Hartmann & Jahn 1967: [15], 23, 381), i.e. Athyrio alpestris-Piceetum abietis Hartmann ex Hartmann et Jahn 1967 nom. inept. (Rec. 10C, Art. 44, Rec. 46D) Syntax. syn.: Athyrio alpestris-Piceetum Hartmann ex Sýkora 1971 nom. illeg. (Art. 31) Incl.: Piceetum altherbosum typ Adenostyles alliariae variant silicolum sensu Svoboda 1939 p. p., ? Hieracio transsilvanici-Piceetum athyrietosum alpestris Pawłowski et Walas 1949, Homogyno-Piceetum athyrietosum alpestris Samek et al. 1957 p. p. (Art. 14a, 30) ≡ Piceetum myrtilletosum athyrietosum alpestris Samek et al. 1957 nom. inval. (čl. 3e, 4a) p. p., Athyrio alpestris-Piceetum Hartmann 1959 nom. nud. (Art. 2b), Plagiothecio-Piceetum hercynicum filicetosum J. Matuszkiewicz 1977 nom. illeg. (Art. 34a) p. p., Plagiothecio-Piceetum tatricum filicetosum J. Matuszkiewicz 1977 nom. illeg. (Art. 34a) p. p., Piceetum excelsae carpaticum athyrietosum alpestris Celiński et Wojterski 1978 p. p. Pseud.: Adenostylo-Piceetum sensu Hartmann et Jahn 1967 non Hartmann 1953 Corresponding nomina ficta (phantom names): Athyrio alpestris-Piceetum Hartmann 1953 apud Hartmann et Jahn 1967 (only in tab. 1) Non: Piceetum altherbosum silicicolum Sillinger 1933 nom. illeg. (Art. 13a, 34a); Adenostylo-Piceetum Hartmann 1953 [in relation to original diagnosis]; Adenostylo alliariae-Piceetum Zukrigl 1973 nom. illeg. (Art. 31); Adenostylo-Piceetum Ellenberg et Klötzli 1974 nom. illeg. (Art. 31) 158 Norway spruce woodlands in Slovakia and their syntaxonomical classification Figure 3. Distribution of analysed relevés of the acid Norway spruce woodlands in Slovakia (central part): diamonds – Solidagini virgaureae-Piceetum; triangles – Parido quadrifoliae-Piceetum; stars – Lycopodio annotini-Sorbetum; squares – Listero cordatae-Piceetum; asterisks – Sphagno capillifolii-Piceetum. Made with QGIS. Set of the diagnostic species within the evaluated dataset: E1: Acetosa arifolia, Soldanella marmarossiensis agg., Milium effusum, *Stellaria nemorum, E0: –. Relevé data: Samek et al. (1957), tab. 15, rels. 26, 37; Šoltés 1976, tab. 4, rel. 20; Horák (1971), tab. 1, rel. 6; Naďová (1987, msc.), tab. 3, rels. 3, 8; Rajcová (1987, msc.), tab. I.3, rel. 6 and tab. I.6, rel. 1; Krajčí (2009, msc.), tab. 3, rels. 11, 26 and tab. 5, rels. 45, 47, 50 [cf. Krajčí 2008]; Jančovičová et al. (2011), tab. 2, rels. 2, 7; D. Miadok ined. (1 rel.). See Fig. 2. This supramontane plant community is a typical companion of the association Lophozio- Piceetum – it replaces the latter unit on more humid and especially more trophically favourable habitats. It commonly develops on variable concave-shaped sites, where snow accumulates, as well as near slope springs (Hartmann 1953, 1959; Jirásek 1996). The dominant canopy species Picea abies is regularly accompanied by Sorbus aucuparia (usually ssp. glabrata) though the spatial abundance pattern of the latter species is significantly influenced by impacts of historical land management in same areas (cf. the previous association). Abies alba probably entered the stands on the lower altitudinal limit of Athyrio distentifolii-Piceetum as a native species, Fagus sylvatica naturally occurs only rarely and only in shrubby growth. Pinus mugo could be present in the understorey in some habitat types, sporadically Lonicera nigra, Ribes petraeum and Sambucus racemosa are present. 159 P. K u č e r a A substantial part of the constant species of the field layer corresponds to association Lophozio- Piceetum (Oxalis acetosella, Vaccinium myrtillus, Homogyne alpina, Calamagrostis villosa etc.). However, Athyrio distentifolii-Piceetum significantly differs by a set of differential species Acetosa arifolia, Adenostyles alliariae (within the subassociation adenostyletosum), Cicerbita alpina, Senecio hercynicus, Stellaria nemorum, Streptopus amplexifolius, Veratrum album (ssp. lobelianum in the Western Carpathians) and others (cf. Hartmann & Jahn 1967, tab. 1 and tab. II). A. distentifolium is a constant and usually markedly dominating species, Vaccinium myrtillus has lower cover-abundances in comparison to Lophozio-Piceetum. More frequent are Luzula luzuloides and Prenanthes purpurea. A weak positive differential species against the previous association is Milium effusum, V. vitis-idaea occurs, on the contrary, much scarcely. Less frequently grows also Avenella flexuosa. The most frequent species of the ground layer are Polytrichum formosum, Dicranum scoparium and Plagiothecium curvifolium; the differentiation against Lophozio-Piceetum is only minimal. Relative less frequent are Dicranum scoparium and Sphagnum spp., on the contrary more abundant is Rhizomnium punctatum (cf. Hartmann & Jahn, 1967; Sýkora 1971; Chytrý et al. 2013b). Sample phytocoenosis (Krajčí 2008, tab. 2, rel. 25, Low Tatras, 1 440 m a.s.l.; for bryophytes see Krajčí 2009): E3: Picea abies 4, E1: Picea abies +, Sorbus aucuparia +, Athyrium distentifolium 4, Luzula sylvatica 1, Gentiana asclepiadea 1, Oxalis acetosella 1, Acetosa arifolia +, Adenostyles alliariae +, Dryopteris dilatata +, Gymnocarpium dryopteris +, Homogyne alpina +, Soldanella marmarossiensis agg. +, Stellaria nemorum +, Prenanthes purpurea +, Senecio nemorensis agg. +, Vaccinium myrtillus +, E0: Pleurozium schreberi 2, Dicranum scoparium 1, Plagiomnium cuspidatum 1, Plagiothecium curvifolium 1, Rhytidiadelphus squarrosus +. The association is widely distributed in Central Europe within the higher Hercynian mountain ranges (Matuszkiewicz & Matuszkiewicz 1960; Hartmann & Jahn 1967; Petermann et al. 1979; Jirásek 1996, 2002; Exner 2007; Chytrý et al. 2013b), existence of stands is also supposed in the Alps (Exner 2007). Beside the distribution data from Slovakia, the community is documented from the Polish part of the Western Carpathians, too (Ralski 1930; Matuszkiewicz 1977; Kasprowicz 1996). With regard to relevé data of Pawłowski & Wałas (1949), the occurrence of Athyrio distentifolii- Piceetum might be deduced also within the northern Eastern Carpathians, but phytochorological differences between the Eastern Carpathian and the Hercynian-Western Carpathian communities should be studied in more detail. However, the recent documents on the distribution of the association within the Ukraine cited by Dubyna et al. (2019) are partly examples of anthropogenically changed phytocoenoses of the class Carpino-Fagetea (cf. the syntaxonomical note 2 below). Variability. – Phytocoenoses of the association are traditionally differentiated into two subcommunities. Part of the relevé samples from Slovakia do not represent their typical phytocoenotic development. (1) The subassociation Athyrio distentifolii-Piceetum typicum (first differentiated by Hartmann & Jahn (1967); nomenclatural type: Hartmann & Jahn (1967), tab. 1, rel. 27, automatical type 160 Norway spruce woodlands in Slovakia and their syntaxonomical classification (cf. Jirásek 1996: 254)12 include typical stands of the association characteristically with striking dominance of A. distentifolium. (2) The subassociation Athyrio distentifolii-Piceetum adenostyletosum alliariae Hartmann et Jahn 1967 (nomenclatural type: Hartmann & Jahn (1967), tab. 1, rel. 1 (Jirásek 1996: 255))13 unites ± species-richer phytocoenoses on trophically more favourable habitats characterized by presence of Adenostyles alliariae, here and there even in subdominant abundance. Nomenclatural note 1. – The name Athyrio alpestris-Piceetum was firstly introduced by Hartmann (1959) – and validly published by Hartmann & Jahn (1967) – who proposed this name as a replacement for his own older name Adenostylo-Piceetum Hartmann 1953. The latter name was only rarely used by later phytocoenologists, therefore Willner (2007) and later Chytrý et al. (2013b) proposed the conservation of the name Athyrio distentifolii-Piceetum Hartmann ex Hartmann et Jahn 1967 [nom. corr.] as against Adenostylo alliariae-Piceetum Hartmann 1953 which is commonly considered to be an older synonym. However, these two names are not syntaxonomical synonyms and there is no real need to propose conservation of Athyrio distentifolii-Piceetum Hartmann ex Hartmann et Jahn 1967 as against Adenostylo-Piceetum Hartmann 1953 (see summarization by Kučera 2022: 132). The original diagnosis of the association Adenostylo-Piceetum Hartmann 1953 (Hartmann 1953: Anhang, p. XIII) consists of three relevés of Bartsch & Bartsch (1940) originally classified as ‘Luzulo nemorosae-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 Luzula sylvatica-Fazies’ (see also Willner & Zukrigl 1999: 153). However, it should be noted that the characterization of the community in the text and table section of Hartmann’s study does not correspond with the validly published part of the cited original diagnosis – i.e. Hartmann (1953) used his own name as a pseudonym (Kučera 2012a: 239–240). Following the original diagnosis,14 the name Adenostylo-Piceetum Hartmann 1953 represents Carpino-Fagetea phytocoenoses with anthropogenically changed proportions of canopy species in favour of Picea abies: Adenostylo-Piceetum Hartmann 1953 = Luzulo luzuloidis-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 Luzula sylvatica-Fazies (sensu Bartsch et Bartsch 1940) = Luzulo luzuloidis-Abietetum luzuletosum sylvaticae Oberdorfer 1957 (see also Kučera 2009a). Nomenclatural note 2. – Similarly as mentioned above within the Lophozio-Piceetum subchapter, frequent application of syntaxa names which include anthropogenic Norway spruce phytocoenoses – correctly classified within the class Carpino-Fagetea (Kučera 2012a, 2022) – is the reason why some of the above-cited synonyms and other related syntaxa names are here preliminary cited as ‘pro parte’-related names. Syntaxonomical note. – Phytocoenoses classified into the subassociation Athyrio distentifolii-Piceetum athyrietosum filicis-feminae Hartmann et Jahn 1967 (Hartmann & Jahn 1967; Jirásek 1996, 2002; Neuhäuslová & Eltsova 2003; Chytrý et al. 2013b) or into the variant Athyrio distentifolii-Piceetum typicum calamagrostiosum arundinaceae Jirásek 1996 (Jirásek 1996, 2002) are anthropogenically changed communities of the class Carpino-Fagetea (i.e. originally upper montane mixed Fagus-Abies-Picea communities), in which Fagus (eventually also Acer 12 Without positive differential species. 13 Differential species: Adenostyles alliariae. 14 Nomenclatural type selected by Kučera & Kliment (2011: 90). 161 P. K u č e r a pseudoplatanus) was not completely suppressed by historical land management. The same case represent the relevés originally assigned by Sillinger (1933) into the subassociation Piceetum altherbosum silicicolum Sillinger 1933 (see also Lophozio-Piceetum, syntaxonomical note 3). Relevés of Sedláčková (1978) directly indicate spontaneous reverse succession of Fagus within substitutionary Picea forests. The rest of the original relevés of the association published by Hartmann & Jahn (1967) should also be re-evaluated: they often represent anthropogenically changed Carpino-Fagetea communities, therefore, the authors’ differentiation between Athyrio distentifolii-Piceetum and Lophozio-Piceetum (ut Calamagrostio villosae-Piceetum) was less exact. It should also be noted that A. distentifolium could dominate the field layer even in the Fagus woodland as Kasprowicz (1996) documented form the northern slopes of the Babia Góra Mt. massif, the central Western Beskids. Therefore, this species is not an exclusive distinguishing species of natural Norway spruce woodland within the forest stands. The phytocoenotic delimitation of typically developed Athyrio distentifolii-Piceetum phytocoenoses was suitably narrowed by Jirásek’s (1996) choice of lectotype. 2.3. Solidagini virgaureae-Piceetum abietis P. Kučera in P. Kučera et al. 2023 Nomenclatural type: Kučera et al. (2023), tab. 1, rel. 12, holotype (Kučera et al. 2023: in press). Incl.: Piceetum altherbosum typ Adenostyles alliariae variant silicolum sensu Svoboda 1939 p. p., Adenostylo alliariae-Piceetum typicum Šoltés 1976 p. p. min., spoločenstvo Adenostyles alliariae-Picea abies P. Kučera 2007 nom. ined. (Art. 1) p. p. Pseud.: Adenostylo-Piceetum auct. slov. non Hartmann 1953 p. p. (see Kučera 2012a: 239) Non: Piceetum altherbosum silicicolum Sillinger 1933 nom. illeg. (Art. 13a, 34a) Set of the diagnostic species within the evaluated dataset: E1: Solidago virgaurea, Adenostyles alliariae, Hieracium murorum, Rubus idaeus, *Luzula luzuloides, *Senecio nemorensis agg., E0: Plagiothecium curvifolium, Chiloscyphus pallescens. Relevé data (cf. Kučera et al. 2023, tab. 1): Moravčíková (1987, msc.), tab. 2, rel. 8 and tab. 4, rels. 5, 7, 9, 16, 19–21, 23, 26 and tab. 6, rels. 2–4, 10, 12–14, 17, 18; Rajcová (1987, msc.), tab. I.1, rels. 29, 35. See Fig. 3. This natural acid Norway spruce community represents an ecological counterpart of the association Athyrio distentifolii-Piceetum as it is developed on sun-exposed steep slopes. Its original description has been recently published by Kučera et al. (2023). According to the current knowledge, distribution of the considered phytocoenoses is bound to the supramontane vegetation zone of hochgebirge mountain ranges, known localities were only documented from the Western Tatra Mts until now. Similar phytocoenoses in the Low Tatras (Kučera 2021, not.) should be studied in more detail. The canopy of the hitherto known stands is shaped almost exclusively by Picea abies, only scarcely Sorbus aucuparia (ssp. glabrata) was noted. Larix decidua was probably a natural component of the canopy; however, the currently known relevés did not record this species. Sorbus samplings are constantly present in the stands. 162 Norway spruce woodlands in Slovakia and their syntaxonomical classification In the understorey shrub, Lonicera nigra, Ribes petraeum and Sambucus racemosa are rarely present. The field layer is distinguished by set of constant species Adenostyles alliariae, Solidago virgaurea, Senecio nemorensis agg. (most probably S. hercynicus, cf. Hodálová 1999), Luzula luzuloides; Adenostyles frequently with high cover-abundance values (even more than 50–75%). Less frequent significant species are Calamagrostis arundinacea (infrequently as a subdominant), Athyrium filix-femina, Doronicum austriacum, Milium effusum, Cicerbita alpina and Hieracium murorum: their presence in the habitats developed on non-carbonate rocks even in altitudes above 1500 –1550 m a.s.l. distinctly contribute to a clear differentiation of Solidagini-Piceetum from the other natural Norway spruce phytocoenoses common in mittelgebirge mountain ranges (e.g. the Veľká Fatra Mts, the Western Beskids or the Bavarian Forest, the Giant Mountains). The other species common in natural Norway spruce woodland are represented as well: Vaccinium myrtillus, Oxalis acetosella, Homogyne alpina, Luzula sylvatica ssp. sylvatica, Dryopteris dilatata [D. expansa was not recognized in the time of the field studies], Gentiana asclepiadea, here and there also Calamagrostis villosa; V. vitis-idaea is infrequent. V. myrtillus, Oxalis and Calamagrostis could reach cover-abundances between 25–50%. In contrast to Athyrio distentifolii-Piceetum, species typical for the latter unit such as Athyrium distentifolium, Stellaria nemorum or Veratrum album ssp. lobelianum are mostly absent in the hitherto documented relevés of Solidagini-Piceetum. The most frequent species of the ground layer, occasionally with cover-abundance more than 5%, are Plagiothecium curvifolium, Dicranum scoparium and Polytrichum formosum. Other moss species have scattered occurrence, e.g. Chiloscyphus pallescens, Plagiomnium affine, Pleurozium schreberi etc. Sample phytocoenosis (Kučera et al. 2023, tab. 1, rel. 1, Western Tatra Mts, 1540 m a.s.l.): E3: Picea abies 4, E1: Sorbus aucuparia r, Adenostyles alliariae 5, Calamagrostis arundinacea 2, C. villosa 2, Senecio nemorensis agg. 2, Prenanthes purpurea 2, Homogyne alpina 1, Luzula luzuloides 1, Oxalis acetosella 1, Acetosa arifolia +, Avenella flexuosa +, Cicerbita alpina r, Doronicum austriacum +, Milium effusum +, Luzula sylvatica +, Rubus idaeus +, Vaccinium myrtillus +, Gentiana asclepiadea r, Ranunculus platanifolius r, E0: Dicranum scoparium +, Plagiomnium affine +, Plagiothecium curvifolium +. The frequent dominant role of Adenostyles alliariae within Solidagini virgaurae-Piceetum is similar to phytocoenoses Adenostylo alliariae-Piceetum abietis Samek et al. 1957 nom. corr. et nom. cons. propos. (cf. Kučera 2022); however, the latter community considerably differs by the presence of a group of calcareous and/or nutrient-demanding species (within the supramontane vegetation belt) (cf. Kučera 2022). Syntaxonomical note 1. – The synoptic table column of ‘Piceetum altherbosum silicicolum typ Adenostyles alliariae’ published by Sillinger (1933: 96 –98) consists of two relevés from which only the second one might possibly represent a natural Norway spruce stand (?); however, the exact location in the field and the respective species composition is uncertain. The column represents a mixture of phytocoenoses, therefore Sillinger’s name was not accepted as a corresponding name. Syntaxonomical note 2. – The relevé of Homogyno alpinae-Piceetum luzuletosum sylvaticae Zukrigl 1973 Adenostyles alliariae-Variante published by Zukrigl (1973, tab. II) might represent a syntaxonomically related community to Solidagini virgaureae-Piceetum, though it comes from 163 P. K u č e r a a phytochorologically different area (the Eastern Alps) than the Hercynian-Western Carpathian region. The Gleinalpe, the Koralpe and the Tatra Mountains have their hochgebirge landform character in common; however, a more detailed comparison of the respective units is difficult due to the small number of documented relevés. 2.4. Parido quadrifoliae-Piceetum abietis P. Kučera in P. Kučera et al. 2023 Nomenclatural type: Kučera et al. (2023), tab. 1, rel. 27, holotype (Kučera et al. 2023: in press). Set of the diagnostic species within the evaluated dataset: (E3: Larix decidua), E1: Melampyrum sylvaticum, Paris quadrifolia, Epilobium montanum, Blechnum spicant, Chaerophyllum hirsutum, Galeobdolon montanum, Luzula pilosa, *Stellaria nemorum, *Luzula luzuloides, *Calamagrostis arundinacea, *Athyrium filix-femina, *Senecio nemorensis agg., E0: Plagiochila porelloides, Plagiomnium undulatum, Sphagnum girgensohnii. Relevé data (cf. Kučera et al. 2023, tab. 1): Horák (1971), tab. 1, rel. 5; Naďová (1987, msc.), tab. 1, rels. 13, 14, 17–19, 25, 27, 30 and tab. 3, rels. 2, 6. See Fig. 3. This recently distinguished association was described for another natural supramontane acid Norway spruce woodland plant community with a hochgebirge distribution pattern (Kučera et al. 2023) – currently known localities were only documented from the Western Tatra Mts. The unit comprises relatively nutrient rich and humid acid Picea phytocoenoses floristically and ecologically different from all previous associations. By the limited current knowledge, the canopy of the stands is dominated by Picea abies, sometimes admixed with both Larix decidua and Sorbus aucuparia (ssp. glabrata). Lonicera nigra was sparsely documented in the understorey, Pinus mugo grows in some localities. The field layer of the typical stands is characterized by the co-occurrence of more nutrient-demanding species as Stellaria nemorum, Paris quadrifolia, Athyrium filix-femina, Senecio nemorensis agg. (most probably S. hercynicus, cf. Hodálová 1999), Calamagrostis arundinacea, accompanied by Luzula luzuloides, Melampyrum sylvaticum and Vaccinium vitis-idaea. Epilobium montanum and Blechnum spicant grow less frequently, examples of rarer species are Galeobdolon montanum, Chaerophyllum hirsutum or Luzula pilosa. The dominant field layer species is usually Vaccinium myrtillus, accompanied by common species of Western Carpathian species of montane woodlands: Homogyne alpina, Luzula sylvatica ssp. sylvatica, Oxalis acetosella (subdominant), Calamagrostis villosa. Rarely Dryopteris carthusiana or D. dilatata could become dominants of the field layer [D. expansa was not recognized in the time of the field study]. Differential species of the ground layer are Plagiochila porelloides and Sphagnum girgensohnii, together with less frequent Plagiomnium undulatum. Common forest species as Dicranum scoparium and Polytrichum formosum belong to constant species, less frequently also Hylocomium splendens or Plagiomnium affine were found. Sample phytocoenosis (Kučera et al. 2023, tab. 1, rel. 26, Western Tatra Mts, 1470 m a.s.l.): E3: Picea abies 4, Larix decidua r, E2: Picea abies +, 164 Norway spruce woodlands in Slovakia and their syntaxonomical classification E1: Picea abies +, Lonicera nigra r, Sorbus aucuparia r, Calamagrostis villosa 2, Vaccinium myrtillus 2, Calamagrostis arundinacea 1, Homogyne alpina 1, Oxalis acetosella 1, Athyrium filix-femina +, Avenella flexuosa +, Chaerophyllum hirsutum +, Luzula luzuloides +, L sylvatica +, Stellaria nemorum +, Senecio nemorensis agg. +, Vaccinium vitis-idaea +, Epilobium montanum r, Melampyrum sylvaticum r, Paris quadrifolia r, Prenanthes purpurea r, E0: Dicranum scoparium 1, Plagiochila porelloides +, Plagiomnium affine +, Polytrichum formosum +, Sphagnum girgensohnii +. Syntaxonomical note. – Small total number of the hitherto documented relevés does not allow the comprehensive evaluation of the phytocoenotic amplitude and the variability of Parido quadrifoliae- Piceetum. As typical phytocoenoses are considered stands with presence of Melampyrum sylvaticum, Stellaria nemorum and Paris quadrifolia. A part of the relevés assigned to this association lack these species; however, the presence of Athyrium filix-femina and Calamagrostis arundinacea and absence of differential species of the association Solidagini virgaureae-Piceetum indicate that the mentioned relevés most probably represent a variation of the association Parido quadrifoliae-Piceetum. Further studies should resolve the question of syntaxonomical position of the special relevé of Kobzáková (1987, tab. 6, rel. 15; currently classified within Lophozio-Piceetum) – Vaccinium vitis-idaea cover-abundance value is ‘3’ – with Melampyrum, Luzula luzuloides, C. arundinacea, S. nemorensis agg., but with absence of other species of this community. 2.5. Lycopodio annotini-Sorbetum aucupariae P. Kučera ass. nov. hoc loco Nomenclatural type: Šoltés (1976), tab. 4, rel. 30, holotypus hoc loco. Non: Piceo abietis-Sorbetum aucupariae Oberdorfer 1978, Athyrio-Sorbetum Borysiak 1984 Set of the diagnostic species within the evaluated dataset: E3: Betula carpatica, E1: Lonicera nigra, Gymnocarpium dryopteris, Hylotelephium argutum, Dryopteris filix-mas, Doronicum austriacum, Prenanthes purpurea, Ranunculus platanifolius, *Calamagrostis arundinacea, *Athyrium filix- femina, *Lycopodium annotinum, *Senecio nemorensis agg., E0: Sphenolobus minutus, Lophozia cf. incisa, Plagiothecium denticulatum, Tortella tortuosa, Tetraphis pellucida, Blepharostoma trichophyllum, Mnium sp., *Hylocomium splendens, *Rhytidiadelphus triquetrus, *Plagiochila asplenioides. Relevé data and original diagnosis: Lakatosová (1971, msc.), tab. 3, rel. 10; Šoltés (1976), tab. 4, rels. 25–28, 30, 34; Moravčíková (1987, msc.), tab. 17, rel. 1. See Fig. 3. Occurrence of this community is usually bound to old windthrows in the supramontane (to montane?) vegetation zone in the region of the High Tatras; as typically developed phytocoenoses are here considered those occupying a scree habitat. The age of documented stands was 18 –55 years (Šoltés 1976). In contrast to the previous communities, the dominant species of the canopy is most frequently Sorbus aucuparia (ssp. aucuparia; cf. Šoltés 1969; Dzubinová et al. 1971) and Picea abies is either only admixed (eventually missing) or gradually superseding the former species. Other tree species in stands are Betula carpatica, Larix decidua, Salix caprea, eventually Abies alba and probably also Acer pseudoplatanus as (historically) indigenous species. 165 P. K u č e r a In the understorey Lonicera nigra, Salix silesiaca and, eventually, Pinus mugo are present. A characteristic feature of the field layer is the presence of Gymnocarpium dryopteris, Hylotelephium argutum, Lycopodium annotinum (with variable frequency in the hitherto known relevés) along with the group of more or less constant species as Athyrium filix-femina, Calamagrostis arundinacea, Prenanthes purpurea, Senecio nemorensis agg., Rubus idaeus. Other (mostly) constant species contributing to the physiognomical appearance are common species of mountain woodlands as Homogyne alpina, Avenella flexuosa, Dryopteris dilatata, Vaccinium myrtillus, Luzula sylvatica ssp. sylvatica and Gentiana asclepiadea; Calamagrostis villosa has lower frequency, while C. arundinacea gained (sub)dominant role in some phytocoenoses within the relevés classified here. Adenostyles alliariae, Cicerbita alpina, Doronicum austriacum, Dryopteris filix-mas, Veratrum album subsp. lobelianum etc. belong to less frequent species. Relevés with the group of ground layer species Blepharostoma trichophyllum, Lophozia cf. incisa [R. Šoltés, in e-mail, for all occurrences within his relevés in the association], Plagiothecium denticulatum, Sphenolobus minutus, Tetraphis pellucida and Tortella tortuosa are here considered to represent typical phytocoenoses which significantly differ from other natural acid Norway spruce communities; with addition of constant as well as characteristic species Hylocomium splendens and Rhytidiadelphus triquetrus which indicate specific and ecologically distinct habitat types. Other common companions are Dicranum scoparium and Polytrichum formosum, Pleurozium schreberi grows with lower frequency. Sample phytocoenosis (Šoltés 1976, tab. 4, rel. 28, High Tatras, 1 415 m a.s.l., windthrow site): E3: Sorbus aucuparia 5, Betula carpatica +, Picea abies +, E2: Picea abies 1, Abies alba + [planted: Šoltés 1969], E1: Abies alba + [planted: Šoltés 1969], Picea abies +, Sorbus aucuparia r, Avenella flexuosa 2, Calamagrostis villosa 2, Dryopteris dilatata 2, Homogyne alpina 2, C. arundinacea 1, Senecio nemorensis agg. 1, Vaccinium myrtillus 1, Athyrium filix-femina +, Chamerion angustifolium +, Dryopteris filix-mas +, Hylotelephium argutum +, Lycopodium annotinum +, Rubus idaeus +, Veratrum album ssp. lobelianum +, Cicerbita alpina r, Prenanthes purpurea r, E0: Polytrichum formosum 2, Blepharostoma trichophyllum +, Dicranum scoparium +, Hylocomium splendens +, Lophozia cf. incisa + [R. Šoltés, in e-mail], Plagiothecium denticulatum +, Pleurozium schreberi +, Rhytidiadelphus triquetrus +, Tetraphis pellucida +, Tortella tortuosa +. The hitherto known relevés of the association were documented mainly from the High Tatras, therefore it is possible that Lycopodio annotini-Sorbetum could represent another type of community regionally limited to hochgebirge mountain ranges of the Western Carpathians. Physiognomically similar Sorbus communities in old windthrows from the Veľká Fatra Mts, Oravské Beskydy Mts etc. have a species composition similar to woodland types of Lophozio-Piceetum or, eventually, Athyrio distentifolii-Piceetum (see below). Syntaxonomical note 1. – The existence and the development of natural Picea abies woodland is inseparably connected with small- or large-scale natural disturbances caused by wind storms (and frequently by subsequent outbreak of phloemophagous insects) (cf. Heurich 2001; Máliš et al. 2015; Nováková & Edward-Jonášová 2015; Janda et al. 2017; Červenka et al. 2019 etc.). The first more or less ‘forest phase’ of a series of secondary succession stages developed on Picea forest windthrows is frequently formed by temporary (up to several decades) stands with prevailing Sorbus aucuparia. However, their overall floristical composition mostly does not 166 Norway spruce woodlands in Slovakia and their syntaxonomical classification considerably differ from the respective disturbed Picea community, therefore such phytocoenoses should be classified within that community. For example Athyrio-Sorbetum Borysiak 1984 stands from the Babia Góra Mt. represent at least partly a secondary succession variant of Athyrio distentifolii- Piceetum. In this respect and according to the current knowledge, plant species composition of Lycopodio annotini-Sorbetum aucupariae phytocoenoses – especially ground layer species – represent a distinct syntaxon from other communities evaluated here. Further field studies should bring more data on Sorbus-dominated stands of the Tatra Mountains (as well as of the Low Tatra Mts) to a more accurate discrimination of Lycopodio annotini-Sorbetum and temporary Sorbus-phases of Solidagini virgaureae-Piceetum and Parido quadrifoliae-Piceetum as well as possible re-evaluation of here classified relevés. Syntaxonomical note 2. – Especially the low total number of known phytosociological relevés is the reason why their overall floristical composition and mutual differences between them might appear unbalanced. For example two relevés of Šoltés (1976, tab. 4, rels. 25, 26) were originally classified into the cluster of Parido quadrifoliae-Piceetum in the final version of statistical classification. However, in respect of the presence of Blepharostoma trichophyllum, Lophozia cf. incisa, Plagiothecium denticulatum, Sphenolobus minutus, Tetraphis pellucida or Hylocomium splendens, I have moved them into Lycopodio annotini-Sorbetum and thus I followed the pre-final version of statistical comparison which included both field and ground layer species. Syntaxonomical note 3. – Oberdorfer (1973) described within the alliance Sambuco-Salicion capreae the association Piceo abietis-Sorbetum aucupariae Oberdorfer 1973 which is also characterized by the dominance of Sorbus aucuparia (cf. Oberdorfer 1978; Exner & Willner 2007). The community was primarily defined for relative species-poor montane phytocoenoses developing on clearcuts and other harvested sites as well as thinned sites within non-carbonate Fagus and [anthropogenic] Picea forests. This community significantly differs floristically, ecologically and altitudinally from Lycopodio annotini-Sorbetum. Sádlo et al. (2013) classified within Piceo abietis-Sorbetum also floristically and by their origin different phytocoenoses developing by means of secondary succession on anthropogenic nonforest habitats (cf. Calamagrostis villosa, Holcus spp., Nardus stricta). Similarly, Valachovič & Hegedüšová (2020) included into that association the entirely phytocoenotically unrelated relevé of succession Sorbus stands which gradually overgrow the former mountain pastures of Flochová Mt., the Kremnické Vrchy Mts. Together with the Picea-Sorbus-Fagus relevé of Kučera (2012a: 132), these two relevés are components of secondary succession series heading towards the re-establishment of an upper montane woodland of the allliance Luzulo-Fagion Lohmeyer et Tx. in Tx. 1954, phytocoenologically similar to phytocoenoses in the wider surroundings of the mountain top of Vtáčnik Mt. and primarily also Predná Poľana Mt. (Kučera 2012a). 2.6. Listero cordatae-Piceetum abietis (Samek et al. 1957) P. Kučera 2023 comb. nov. hoc loco Nomenclatural type: Samek et al. (1957), tab. 15, rel. 35, holotypus hoc loco. Basionym: Homogyno-Piceetum sphagnetosum acutifolii Samek et al. 1957 (Art. 14a, 30) ≡ Piceetum myrtilletosum sphagnetosum acutifolii Samek et al. 1957 nom inval. (Art. 3e, 4a) (Samek et al. 1957: 18) 167 P. K u č e r a Incl.: ? Piceetum excelsae myrtilletosum Pawłowski ex Pawłowski et al. 1928 nom. illeg. (čl. 14b, 31) p. p. (i.e. Pawłowski et al. (1928), tab. XII, rel. 3), ? Hieracio transsilvanici-Piceetum vaccinietosum myrtilli Pawłowski et Walas 1949 Non: Lycopodio-Piceetum montanum Stefanović et Popović 1961 nom. nud. (Art. 2b), Lycopodio-Piceetum montanum Stefanović et Popović ex Stefanović 1964 nom. illeg. (Art. 34a), Lycopodio annotini-Piceetum Faliński 1965 nom. superfl. (Art. 29c), Lycopodio annotini-Piceetum W. Matuszkiewicz et al. 1994 nom. inval. (čl. 3b); Listero cordatae-Piceetum subalpinum Mayer et Hofmann 1969 nom. illeg. (Art. 34a) (cf. Listero cordatae- Piceetum (Mayer et Hofmann 1969) Pignatti 1998 nom. inval. (Art. 3a) ≡ Listero cordatae- Piceetum (Mayer et Hofmann 1969) Pignatti et Pignatti 2014 nom. inval. (Art. 3i, 39b) Set of the diagnostic species within the evaluated dataset: E1: Listera cordata, Huperzia selago, Veratrum album ssp. lobelianum, *Lycopodium annotinum, *Athyrium distentifolium, E0: Bazzania trilobata, Calypogeia azurea, Cladonia sp., Pleurozium schreberi, Barbilophozia lycopodioides, Sphagnum recurvum agg., Rhytidiadelphus squarrosus, Schistidium apocarpum, Plagiothecium undulatum, Plagiothecium laetum, *Hylocomium splendens, *Rhytidiadelphus triquetrus, *Plagiochila asplenioides, *Sphagnum capillifolium. Relevé data and original diagnosis: Samek et al. (1957), tab. 15, rels. 20, 24, 31, 33, 35, 38; Jasík & Dítě (2016): 11, rel. 2. See Fig. 3. This montane to supramontane Norway spruce community is limited to stony and bouldery habitats, i.e. to small- or larger-sized screes, with inter-boulder places filled with raw humus. Such habitats are frequently found on steep slopes with seeping water (Samek et al. 1957); commonly on colder, from the north-west to the east oriented slope expositions. Picea abies dominates in the stands of this association, Sorbus aucuparia could be admixed; both species regularly rejuvenate; sporadic occurrence of Salix silexiaca. Pinus mugo grows in the understorey on some localities, eventually with higher cover-abundance. The bouldery habitat is in the field layer expressed by the frequent presence of Lycopodium annotinum, Huperzia selago and (less frequently documented) Gymnocarpium dryopteris. The relict character of the phytocoenoses is represented by the constant presence of Listera cordata as well as by the unique occurrence of Linnaea borealis – a very rare species within the Western Carpathians (cf. Jasík et al. 2014; Jasík & Dítě 2016). The dominant species of the field layer is Vaccinium myrtillus, with constant companions Oxalis acetosella, Homogyne alpina (both occasionally with cover-abundance more than 5%), Dryopteris carthusiana, Avenella flexuosa. The special habitat type forces significant limitation of cover- abundance values of other more or less constant species Athyrium distentifolium, Calamagrostis villosa or Luzula sylvatica ssp. sylvatica. Among the less frequent species are Gentiana asclepiadea, Veratrum album ssp. lobelianum, sporadically Adenostyles alliariae, Valeriana tripteris or Ligusticum mutellina, Gentiana punctata are documented. Cover of the ground layer species reaches high cover-abundances in the phytocoenoses (usually more than 70%). Peat moss clusters or cushions (Sphagnum capillifolium, S. cf. fallax [ut S. recurvum]) are found in small depressions, while wet boulders are overgrown by blankets of Plagiothecium undulatum, Rhytidiadelphus triquetrus etc. (Samek et al. 1957). Constant species 168 Norway spruce woodlands in Slovakia and their syntaxonomical classification (partly with higher cover) are Dicranum scoparium, Polytrichum formosum, Hylocomium splendens or Pleurozium schreberi. Higher frequency also have Barbilophozia lycopodioides, Calypogeia azurea, infrequently are documented hitherto Bazzania trilobata, Plagiochila asplenioides, R. squarrosus etc., including lichens (Cetraria islandica, Cladonia sp.). Sample phytocoenosis (Samek et al. 1957, tab. 15, rel. 20, High Tatras, 1300 m a.s.l.): E3: Picea abies 5, E1: Picea abies +, Sorbus aucuparia +, Vaccinium myrtillus 4, Homogyne alpina 2, Oxalis acetosella 2, Athyrium distentifolium 1, Avenella flexuosa +, Calamagrostis villosa +, Dryopteris carthusiana +, Gymnocarpium dryopteris +, Huperzia selago +, Lycopodium annotinum +, Luzula sylvatica +, Listera cordata +, Phegopteris connectilis +, Solidago virgaurea +, Veratrum album ssp. lobelianum +, E0: Polytrichum formosum 4, Sphagnum capillifolium 2, Plagiothecium undulatum 2, Barbilophozia lycopodioides 1, Dicranum scoparium 1, Hylocomium splendens 1, Pleurozium schreberi 1, Scleropodium purum 1, Bazzania trilobata +, Lepidozia reptans +, Cladonia sp. +, Peltigera canina +, Plagiochila asplenioides +, Plagiothecium laetum +, Rhytidiadelphus squarrosus +, R. triquetrus +, Tetraphis pellucida +. The relevés of Listero cordatae-Piceetum were documented hitherto from the northern part of the High Tatras (cf. Samek et al. 1957; Jasík & Dítě 2016); a corresponding habitat or phytocoenosis were not documented from the mittelgebirge mountain ranges of the Western Carpathians till now. Relevés classified by Sofron (1976) under the association name Anastrepto-Piceetum Stöcker 1967 might also marginally belong to Listero cordatae-Piceetum, likewise the scree phytocoenoses from the Ukrainian Gorgany Mts documented by Iakushenko et al. (2006: ‘Luzulo-Piceetum sphagnetosum’). Taxonomical note. – Samek et al. (1957) listed Sphagnum recurvum within the stands of Listero cordatae-Piceetum. However, this species does not occur in Europe (Flatberg 1992); probably S. fallax grows in the respective sites. Record of S. girgensohnii domination by Jasík & Dítě (2016, rel. 2) may be problematic as well. Nomenclatural note. – Pignatti (1998: 141) included in the synonymy of the association Homogyno alpinae-Piceetum Zukrigl 1973 the name ‘Listero-Piceetum Mayer (1969)’, without a reference to the original publication of Mayer & Hofmann (1969), where the original name Listero-Piceetum subalpinum was published. Pignatti’s name might be viewed as a nomen novum (Art. 39b) but the more appropriate evaluation is that it represents an inaccurate adoption of the older name, i.e. a fictitious name (nomen fictum or ‘phantom name’) as Mayer et Hofmann did not publish the respective name form ‘Listero-Piceetum’; nevertheless, Pignatti published the name invalidly (Art. 3a). Later, Pignatti & Pignatti (2014: 191) again published ‘Listero-Piceetum Mayer et Hofmann 1969’, this time as an accepted name, albeit invalidly as well (Art. 3i, 39b). These three names do not represent a syntaxonomical synonym of Listero cordatae-Piceetum abietis (Samek et al. 1957) P. Kučera 2022, because they represent phytochorologically different alpine Norway spruce community of non-extreme habitat, partially also Lophozio-Piceetum (p. p. min.). Syntaxonomical note. – Listero cordatae-Piceetum abietis (Samek et al. 1957) P. Kučera 2022 belongs ecologically and floristically to the group (series) of distinctive natural acid Norway 169 P. K u č e r a spruce communities developed on soil ecologically specific scree habitats found hitherto in the Central European mountain ranges: Betulo carpaticae-Piceetum Stöcker 1967 (ecologically the most unfavourable unit) – Anastrepto-Piceetum Stöcker 1967 – Listero cordatae-Piceetum – Dryopterido dilatatae-Piceetum Sýkora ex Jirásek 1996 (± the least extreme unit) (cf. Stöcker 1967, 1968; Sýkora 1971; Jirásek 1996). 2.7. Sphagno capillifolii-Piceetum abietis Zukrigl 1973 nom. corr. Nomenclatural type: Zukrigl (1973), tab 6, rel. 2, lectotype (Willner & Zukrigl 1999: 154). Original name: Sphagno-Piceetum Zukrigl 1973 (Zukrigl 1973: 151), i.e. Sphagno acutifolii-Piceetum abietis Zukrigl 1973 nom. inept. (Rec. 10C, Art. 44) in the sense of lectotypification by Willner & Zukrigl (1999: 154) as well as their statement on Sphagnum species (cf. nomenclatural note 1 below). Non: Sphagno [quinquefarii]-Piceetum (Tx. 1937) Hartmann 1953 (Rec. 10C, cf. Kučera 2019b) [≡ Piceetum excelsae sphagnetosum [quinquefarii] Tx. 1937], Sphagno-Piceetum auct. non (Tüxen 1937) Hartmann 1953 (e.g. Hartmann 1953; Sofron 1981), Sphagno-Piceetum Kuoch 1954 nom. superfl. (Art. 25, 29c), Sphagno-Piceetum Ellenberg et Klötzli 1974 nom. superfl. (Art. 25, 29c); Sphagno-Piceetum montanum Stefanović et Popović 1961 nom. nud. (Art. 2b), Sphagno-Piceetum montanum Stefanović 1964 nom. inval. (Art. 3b); Sphagno girgensohnii-Piceetum Polakowski 1962 nom. cons. propos. (cf. Kučera 2019b), Sphagno palustris-Piceetum Šomšák 1979, Sphagno acutifolii-Piceetum (Březina et Hadač in Hadač et al. 1969) Hadač 1987 nom. illeg. (Art. 31). Set of the diagnostic species within the evaluated dataset: E1: Carex canescens, Nardus stricta, Juncus filiformis, Eriophorum vaginatum, Carex echinata, Carex nigra, *Athyrium distentifolium, E0: Polytrichum commune, Barbilophozia floerkei, Sphagnum rubellum, Pohlia nutans, Lophocolea heterophylla, Dicranum montanum, *Sphagnum capillifolium. Relevé data: Kučera (2005): 65, rel. 3; Kučera (2012a): 292, rel. 20 + page 295, rel. 30 + page 311, rel. 74 + page 312, rel. 77, + page 317, rel. 97. See Fig. 3. This association constitutes a marginal community within the group of natural acid Norway spruce communities (Piceion excelsae Pawłowski ex Pawłowski et al. 1928), developed within the Western Carpathian region on bogside ecotones or groundwater-influenced habitats confined to gentle (moderate) slopes adjacent to mountain plateaus of some mountain ranges, mostly in the supramontane vegetation zone. The phytocoenoses are characterized by the co-occurrence of (1) mire species as Eriophorum vaginatum, Carex echinata etc. and selected Sphagnum species other than S. girgensohnii and (2) constantly present species characteristic of climax supramontane Picea woodland on acid soils (see below; Kučera 2019b). Canopy species composition in the hitherto known relevés from the Western Carpathians consists of the dominating Picea abies, frequently with cover lower than 50%, and admixed Sorbus aucuparia (ssp. glabrata). Occasionally Abies alba was present in tree form (Kučera 2012: 80). Pinus mugo is present in the understorey in several documented habitats of this community. The field layer is dominated by Vaccinium myrtillus, higher cover is reached in some sites by constant species as Calamagrostis villosa, Athyrium distentifolium or, eventually, Avenella flexuosa. 170 Norway spruce woodlands in Slovakia and their syntaxonomical classification Other constant companions are Homogyne alpina and Dryopteris dilatata (in some localities D. expansa is present as well). The characteristic floristic feature of Sphagno capillifolii-Piceetum phytocoenoses is the presence of habitat-specific sedges (Carex canescens, C. nigra, C. echinata), Eriophorum vaginatum, Juncus filiformis and, eventually, Nardus stricta. Current abundance of the latter species may reflect long-term impact of (former) high mountain grazing and associated (pre-)historical deforestation. In some documented phytocoenoses Vaccinium vitis-idaea, Luzula sylvatica ssp. sylvatica, rarely Oxalis acetosella, L. luzuloides and Equisetum sylvaticum are present. Vaccinium uliginosum was an indigenous species in some areas. The ground layer has high cover within the phytocoenoses, about 60 – 80% in the relevé plots, and it is characterized by constant presence and dominance of two Polytrichum species (P. formosum, P. commune, occasionally only one of them) and peat mosses – especially Sphagnum capillifolium. S. girgensohnii, S. rubellum and S. fuscum were documented as well. Dicranum scoparium is constantly present, lower frequency have species Plagiothecium curvifolium, D. montanum and Pleurozium schreberi. Calypogeia azurea, Lophocolea heterophylla, Pohlia nutans, Rhytidiadelphus triquetrus and other species were also recorded. Sample phytocoenosis (Kučera 2012a: 312, rel. 77, the Veterné hole Mts, 1470 m a.s.l.): E3: Picea abies 3, Sorbus aucuparia 1, E2: Pinus mugo 2b, P. abies 1, E1: P. mugo 1, P. abies +, Sorbus aucuparia +, Abies alba r, Vaccinium myrtillus 4, Avenella flexuosa 2a, V. vitis-idaea 2a, Eriophorum vaginatum 1, Homogyne alpina 1, Lycopodium annotinum 1, Athyrium distentifolium +, Calamagrostis villosa +, Carex canescens +, Dryopteris dilatata +, Juncus filiformis +, E0: Sphagnum capillifolium 3, Polytrichum formosum 3, Dicranum scoparium 2a, P. alpinum 1, P. commune 1, Sphagnum rubellum 1, Barbilophozia attenuata +, Barbilophozia lycopodioides +, Dicranum montanum +, Sphagnum girgensohnii +, Calypogeia integristipula +. The overall distribution of Sphagno capillifolii-Piceetum Zukrigl 1973 within Central Europe is insufficiently known. Kučera (2019b) summarized published occurrences from the Western Carpathians,15 in this phytocoenological statistic synthesis two other (phytocoenotically marginal) relevés from the Veľká Fatra Mts were included into the association. Similar, very rare stands were noticed in the Oravské Beskydy Mts. and Stolické vrchy Mts. (Kučera, ined.). The equivalent habitats and phytocoenoses most probably also occur in the Czech Republic; however, Chytrý et al. (2013b) included the relevant Sphagnum-rich communities inadequately into the association Vaccinio uliginosi-Piceetum Schubert 1972. Exner’s (2007) delimitation of the association Sphagno capillifolii-Piceetum Zukrigl 1973 from Austria should be re-evaluated as well. Nomenclatural note 1. – Several authors published association names using the combination of genera names ‘Sphagno-Piceetum’ (cf. Willner & Zukrigl 1999; Kučera 2012a; Chytrý et al. 2013b). However, they are only fictitious homonyms in many cases, and usually they are not syntaxonomical synonyms (cf. Kučera 2019b). To support the easier differentiation of the respective communities as well as scientific conservation of the well-established and phytocoenologically useful names (especially Sphagno 15 Two relevés (Kučera 2012a: 311–312, rels. 75, 76) were excluded from the here evaluated dataset due to methodical restrictions regarding the plot size (see chapter ‘Material and methods’). 171 P. K u č e r a girgensohnii- Piceetum Polakowski 1962, Sphagno-Piceetum Zukrigl 197316), Kučera (2019b) published nomenclatural proposals to the completion of some names (cf. Theurillat et al. 2021, Rec. 10B, 10C); syntaxonomical reconsideration of the original diagnoses of the relevant units was resolved as well. The original table of Sphagno-Piceetum Zukrigl 1973 published by Zukrigl (1973: 152) comprises four distinct phytocoenological communities (Kučera 2019b, Suppl. A3: e7). As the nomenclatural type of this association (Willner & Zukrigl 1999: 154) is the only relevé representing one of these four units and at the same time containing only one Sphagnum species (ut Sphagnum cf. capillifolium by Zukrigl [1973], ut S. capillifolium by Willner & Zukrigl [1999: 154]), the association name could be completed to the form Sphagno acutifolii-Piceetum Zukrigl 1973 nom. inept., i.e. Sphagno capillifolii-Piceetum Zukrigl 1973 nom. corr. (Kučera 2019b; cf. Theurillat et al. 2021). Nomenclatural note 2. – On condition that the completion of the name Sphagno-Piceetum Zukrigl 1973 to the form Sphagno capillifolii-Piceetum Zukrigl 1973 nom. corr. (Sphagno acutifoliiPiceetum Zukrigl 1973 nom. inept) is accepted, Sphagno acutifolii-Piceetum (Březina et Hadač in Hadač et al. 1969) Hadač 1987 becomes a later homonym. As the latter unit represents an anthropogenically changed forest community correctly classified within the alliance Luzulo-Fagion Lohmeyer et Tx. in Tx. 1954 (Kučera 2009b, 2012a: 250), the following name substitution is proposed here: Sphagno acutifolii-Abietetum (Hadač 1987) P. Kučera 2022 nom. nov. hoc loco Replaced name: Sphagno acutifolii-Piceetum (Březina et Hadač in Hadač et al. 1969) Hadač 1987 (Hadač 1987: 13). Syntaxonomical note 1. – Syntaxonomical interpretation of Sphagno capillifolii-Piceetum Zukrigl 1973 should strictly follow the lectotypification of this unit by Willner & Zukrigl (1999) as a transitional unit between the alliance Piceion excelsae Pawłowski ex Pawłowski et al. 1928 (however, within this alliance) and non-forest commmunities of the class Oxycocco-Sphagnetea Br.-Bl. et Tx. ex Westhof et al. 1964 or, eventually, even woodland (or krummholz-forest) bog communities of the class Vaccinio uliginosi-Pinetea sylvestris Passarge 1968 (cf. Kučera 2019b). Syntaxonomical note 2. – More abundant field data are required and a specialized study should be devoted to the more exact delimitation of Sphagno capillifolii-Piceetum Zukrigl 1973 vs. Lophozio-Piceetum polytrichetosum communis P. Kučera 2023 or, eventually, subunits of the association Soldanello montanae-Piceetum Volk in Br.-Bl. et al. 1939 (Chytrý et al. 2013b; Kučera 2019b) – including the subassociation Soldanello montanae-Piceetum molinietosum caerulae (Sýkora ex Jirásek 1996) P. Kučera 2023 comb. nov. hoc loco (basionym: SphagnoPiceetum molinietosum Sýkora ex Jirásek 1996 (Jirásek 1996: 250); nomenclatural type: Sýkora (1971), tab. 6, rel. 8, holotype (Jirásek 1996: 250); incl. Molinio-Piceetum Sýkora 1971 nom. inval. (Art. 3b); differential taxa: Molinia caerulea, (?) Trientalis europaea) (cf. Kučera in red.). 2.8. Notes on the delimitation of the association Dryopterido dilatatae-Piceetum abietis Sýkora ex Jirásek 1996 and its occurrence in the Western Carpathians Nomenclatural syn.: Dryopterido dilatatae-Piceetum Sýkora 1971 nom. inval. (Art. 3b, 14), Dryopterido dilatatae-Piceetum Sýkora ex Sofron 1981 nom. inval. (Art. 30, 5) 16 See above the note under the paragraph ‘Original name’. 172 Norway spruce woodlands in Slovakia and their syntaxonomical classification The original delimitation of this association consists of four relevés of the Norway spruce phytocoenoses found in the Jizerské Hory Mts, Czech Republic, on steep ([20]45–50°) to the north and east oriented bouldery slopes, with habitat type similar to the lower-elevated communities of the alliance Tilio-Acerion Klika 1955 (Sýkora 1971: 45). Picea abies is the dominating tree. The community is poor in species, characterized by the constant presence of Sorbus aucuparia in the canopy (in the understorey too) as well as by the co-dominant species Dryopteris dilatata and Vaccinium myrtillus. Accompanying species are Vaccinium vitis-idaea, Rubus idaea and Trientalis europaea; the rich abundance of the latter species probably reflects the phytochorological position of the Hercynian mountain ranges within Central Europe. In a lower number of relevés Lycopodium annotinum (rarely also Huperzia selago), Calamagrostis villosa were recorded, in one from four relevés, for example, Avenella flexuosa, Oxalis acetosella and Homogyne alpina. The absence of Athyrium distentifolium is noteworthy. Characteristic feature of the ground layer is the explicit domination of Polytrichum formosum, accompanied by Sphagnum girgensohnii (occasionally S. capillifolium), Dicranum scoparium is frequent as well. The mostly negative floristic differentiation of the Dryopterido dilatatae-Piceetum phytocoenoses (sensu Sýkora 1971!), especially against the other species-poor phytocoenoses of the association Lophozio-Piceetum, is the reason that they are frequently classified into the ‘Calamagrostio villosaePiceetum’-type of communities (cf. Jirásek 1996, 2002 vs. Exner 2007; Chytrý et al. 2013b). However, Dryopterido dilatatae-Piceetum is ecologically more closely related to the association Listero cordatae-Piceetum (see above) – the differences are more favourable soil conditions of the former unit as well as distinct floristic patterns of these two associations. Stands of this community from Slovakia were referred by Sofron (1976 msc., 1981: 48) from the northern part of the High Tatras. The evaluation of naturalness of the respective phytocoenoses should be subject of further detailed studies, as Acer pseudoplatanus might also be a potential natural component of the stands (cf. Myczkovski & Lesiński 1974) and Fagus sylvatica absence in the area of Baboš Mt. is the result of past land management – in the adjacent region remnants of Fagus populations are present (cf. Sofron 1976 vs. Samek et al. 1957; Kanka 2008). Nomenclatural note. – The name Dryopterido dilatatae-Piceetum Sýkora ex Sofron 1981 is usually accepted as valid form of this association name (see Jirásek 1996, 2002; Chytrý et al. 2013b); however, the name was not validly published by Sofron (1981) (see Kučera 2012a). Syntaxonomical note. – Although Sofron (1981: 48) classified his own phytocoenological relevé from the Ore Mountains (the Krušné Hory Mts) into the Dryopterido dilatatae-Piceetum, the documented community does not correspond to the referred association neither ecologically (wet peaty soil) nor floristically (Carex canescens !) (Kučera 2012a): the more adequate classification is within the association Soldanello montanae-Piceetum abietis Volk in Br.-Bl. et al. 1939 nom. corr. The extent of the Dryopterido dilatatae-Piceetum distribution in the Czech Republic indicated by Jirásek (1996, 2002) should be verified: for example, the record from the Moravian-Silesian Beskids represents a historical anthropogenically changed stand replacing the former natural upper montane mixed woodland with Fagus of the class Carpino-Fagetea (Kučera 2012a). The phytocoenological classification of the rest of Dryopterido dilatatae-Piceetum records of Jirásek (1996) as communities of the class Vaccinio-Piceetea should be re-evaluated as well. 173 P. K u č e r a Similarly, Solomakha et al. (2004, tab. 3.27) included into the association Dryopterido dilatatae- Piceetum phytocoenoses which could not be syntaxonomically identified with this association and do not belong to the class Vaccinio-Piceetea: their correct classification is within the order Luzulo-Fagetalia sylvaticae Scamoni et Passarge 1959. 3. Higher syntaxonomical units of acid Norway spruce woodlands Picea abies communities were traditionally classified syntaxonomically within the order Piceetalia abietis Pawłowski ex Pawłowski et al. 1928 and the alliance Piceion abietis Pawłowski ex Pawłowski et al. 1928 which originally documented non-carbonate Norway spruce (and Arolla pine) communities (Pawłowski 1928; and subsequently Pawłowski et al. 1928) or, alternatively, they were usually included under younger synonymous names Vaccinio-Piceetalia Br.-Bl. in Br.- Bl. et al. 1939 and Vaccinio-Piceion Br.-Bl. in Br.-Bl. et al. 1939 (Braun-Blanquet et al. 1939; Tüxen 1955; Oberdorfer 1957; Oberdorfer et al. 1967; Matuszkiewicz 1977). However, already Hadač (1962; in Hadač et al. 1969) recognized distinct ecological and floristical uniqueness of calcicolous Norway spruce woodlands and described for them a separate syntaxonomical unit in the rank of an order – Athyrio-Piceetalia – the acceptance of which is continuously growing among European scientists (cf. the literature overview as well as important nomenclatural proposal to a name change to Cortuso-Piceetalia by Kučera 2023). The respective plant communities are (usually) rich in calcicoles (Asplenium viride, Calamagrostis varia, Corthusa matthioli, Sesleria albicans etc.) as well as rich in species which (with few exceptions) prefer calcareous soils within the supramontane altitudinal vegetation zone of Central European mountain ranges (Astrantia major, Galium schultesii, Geranium sylvaticum, Phyteuma spicatum, Polygonatum verticillatum, Primula elatior, Valeriana tripteris) (Hadač et al. 1969; Kučera 2012a, 2022; Juvan et al. 2013). Nevertheless, as a result of long-term traditional use – based on a too broad original description of the class by Braun-Blanquet et al. (1939) and the traditional focus on silicicolous Norway spruce communities even in later trend-setting surveys (Oberdorfer 1957; Seibert 1992; Chytrý et al. 2013b), the whole class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 used to be commonly characterized as a unit of acidophilic communities, of forests on acid, base-poor, oligotrophic soils, or the species composition of its plant communities is characterized by acidophytes/calcifuges (see Seibert 1992; Theurillat et al. 1995; Rameau 1997; Jirásek 2002; Bardat et al. 2004; Rivas-Martínez et al. 2011; Ermakov 2012; Šilc & Čarni 2012; Chytrý et al. 2013b; Biondi et al. 2014; Mucina et al. 2016; Dubyna et al. 2019; Bergmeier 2020). These descriptions are inappropriate if all communities of the class Vaccinio-Piceetea need to be addressed as one vegetation type, i.e. including various calcareous Picea abies and Pinus cembra woodland types of the Carpathians and the Alps. This is also the reason why the class Vaccinio- Piceetea as such could not be geobotanically characterized by ecological epithets, which would imply a calcifugous species composition of the included plant communities (see the contradiction in the ecological descriptions of the class and the subordinated order Athyrio-Piceetea by Mucina et al. 2016; Bergmeier 2020). Instead of species including Vaccinium myrtillus, V. vitis-idaea, Avenella flexuosa, Melampyrum sylvaticum, Lycopodium annotinum, Trientalis europaea, Oxalis acetosella or Dicranum scoparium and Pleurozium schreberi (Braun-Blanquet et al. 1939; Wallnöfer 1993; Exner 2007; Chytrý 174 Norway spruce woodlands in Slovakia and their syntaxonomical classification et al. 2013b; Chifu 2014; Dubyna et al. 2019 etc.) which are not ecologically and chorologically restricted to Picea abies communities17 and frequent in a broad variety of non-forest vegetation types,18 the class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 should be syntaxonomically qualified by species which are in general common for both calcicolous and silicolous communities of natural Norway spruce (and Arolla pine) phytocoenoses and distinguishing them as an entity within the respective basic formation type (cf. Theurillat et al. 1995), including Adenostyles alliariae, Calamagrostis villosa, Gentiana asclepiadea, Homogyne alpina, Luzula sylvatica (see Table 1 and: Jirásek 1996; Willner et al. 2007, tab. 39 and 33; Kučera 2012a, 2017, 2019b tab. 1, 2022, in red., tables 1–3; Chytrý et al. 2013b; Coldea 2015), bearing in mind their partial overlapping into upper montane Carpino-Fagetea woodlands. Syntaxonomical note. – Species including (group A) Athyrium filix-femina, Carex digitata, Fragaria vesca, Gymnocarpium dryopteris, Maianthemum bifolium, Luzula pilosa, Oxalis acetosella, Trientalis europaea; Dicranum scoparium, Hylocomium splendens, Pleurozium schreberi, Rhytidiadelphus triquetrus, Vaccinium myrtillus or (group B) Betula pubescens, Empetrum nigrum, Pinus sylvestris, Populus tremula are in the studies and surveys on Siberian and in particular on European Russian woodland vegetation referred to as diagnostic species of the alliance Piceion abietis (or Piceetalia abietis/Vaccinio-Piceetea) (Ermakov et al. 2002; Martynenko et al. 2008; Zaugolnova et al. 2009; Ermakov & Makhatkov 2011; Ermakov 2013, 2014; Lashchinsky & Pisarenko 2016; Morozova et al. 2017; Brianskaia et al. 2019). However, the statistical results of the surveys cited above from Austria, Czech Republic, Germany, Slovakia justify the assessment that these species are not specific for the alliance Piceion abietis (see group A above) or they are not regular natural components of its communities in Central Europe (see group B) (Exner 2007; Kučera 2012a, 2019b; Chytrý et al. 2013b) – the region where this unit was originally described. This is even more true for species selected as diagnostic in the mentioned Russian studies which are not native in the respective area of Central Europe or relevant adjacent regions (western Alps and Pyrenees to Southern Carpathians), e.g. †Abies sibirica, †Larix sibirica, †Lonicera caerulea ssp. altaica, †Picea obovata or even within Europe – † Pyrola asarifolia ssp. incarnata, †Rhododendron dauricum (marginally †Orthilia obtusata). Moreover, the referred Northeast European and Siberian coniferous woodlands (various taiga vegetation types) are characterized by the absence of the species which are – within the woodland types formation (Theurillat et al. 1995) – typical of the communities of the class Vaccinio- Piceetea in the European orobiomes of the Alps, Carpathians etc. (see above). Therefore, similar to the example of exclusion of the order Abietetalia sibiricae (Ermakov in Ermakov et al. 2000) Ermakov 2006 from the class Carpino-Fagetea into a separate syntaxonomical class Asaro europaei-Abietetea sibiricae Ermakov et al. in Willner et al. 2016 (Willner et al. 2016), the considered Northeast European (to Siberian) coniferous woodland communities For the Central European woodland vegetation see for example: Hölzel et al. (1996); Matuszkiewicz (2002); Willner et al. (2007); Heinken (2008); Chytrý et al. (2013a); Slezák et al. (2014, 2016, 2020); Ujházyová et al. (2021). 17 18 See for example Chytrý & Tichý (2003); Jarolímek et al. (2008a) [however, considered should be the respective too wide syntaxonomical delimitations of the class Vaccinio-Piceetea, cf. Theurillat et al. (1995) and Šibík (2007) for the first survey and Kučera (2012a, 2022 and this study) for the second one] as well as Hájek & Háberová (2001); Šoltés et al. (2001); Chytrý et al. (2007); Kliment et al. (2007); Šibík et al. (2010); Hájková et al. (2011); Kliment & Ujházy (2014). 175 P. K u č e r a usually classified within the alliance Piceion abietis are here delimited into a separate class Piceo obovatae- Abietetea sibiricae and the following syntaxonomical system is proposed:19 Class Piceo obovatae-Abietetea sibiricae P. Kučera cl. nov. hoc loco Nomenclatural type: Calamagrostio arundinaceae-Abietetalia sibiricae P. Kučera ord. nov. (see below) Original diagnosis: Clematido sibiricae-Abietetalia sibiricae P. Kučera ord. nov., Calamagrostio arundinaceae- Abietetalia sibiricae P. Kučera ord. nov., Vaccinio vitis-idaeae-Piceetalia obovatae P. Kučera ord. nov. Non: Asaro europaei-Abietetea sibiricae Ermakov et al. in Willner et al. 2016, Dicrano-Pinetea Hartmann et Jahn 1967, Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939, Vaccinio uliginosi-Pinetea Passarge 1968 Differential species: †Clematis sibirica, Linnaea borealis, Luzula pilosa, Melica nutans, Trientalis europaea; † Abies sibirica, Betula pubescens, †Picea obovata, †Pinus sibirica, Pinus sylvestris (against the class VaccinioPiceetea Br.-Bl. in Br.-Bl. et al. 1939); negatively differentiated against Asaro europaei-Abietetea sibiricae Ermakov et al. in Willner et al. 2016 by the absence of South to East Siberian species. A. Very species-rich mesotrophic (to eutrophic) order Clematido sibiricae-Abietetalia sibiricae P. Kučera ord. nov. hoc loco Nomenclatural type: †Clematido sibiricae-Piceion obovatae (Zaugolnova et al. 2009) P. Kučera stat. nov. (see below) Original diagnosis: †Clematido sibiricae-Piceion obovatae (Zaugolnova et al. 2009) P. Kučera stat. nov. (see below), Aconito septentrionalis-Piceion obovatae Solomeshch et al. in Martynenko et al. 2008 Non: Abietetalia sibiricae (Ermakov in Ermakov et al. 2000) Ermakov 2006, Piceo obovatae-Pinetalia sibiricae Ermakov 201320 Differential species: †Aconitum septentrionale, Aegopodium podagraria, Cirsium heterophyllum, †Clematis sibirica, Fragaria vesca, Lathyrus vernus, Lonicera xylosteum, †Parasenecio hastatus, Paris quadrifolia, Pulmonaria mollis, P. obscura, Stellaria nemorum. A.1. Alliance Aconito septentrionalis-Piceion obovatae Solomeshch et al. in Martynenko et al. 2008 Differential species against the alliance Clematido sibiricae-Piceion obovatae: Acer platanoides, Carex pilosa, Quercus robur, Tilia cordata, Ulmus glabra. Including the association: Clematido sibiricae-Piceetum abietis (Zaugolnova et Morozova in Morozova et al. 2017) P. Kučera stat. nov. hoc loco: basionym – Rhodobryo rosei-Piceetum abietis abietetosum sibiricae Zaugolnova et Morozova in Morozova et al. 2017 (Morozova et al. 2017: 48); nomenclatural type: Morozova et al. (2017: 48). Note: The nomenclatural type of the alliance – the association Cerastio pauciflori-Piceetum obovatae Solomesch et al. in Martynenko et al. 2008 (Martynenko et al. 2008) as well the same Eastern European geobotanical and geographical position with the alliance Clematido sibiricae-Piceion obovatae present stronger phytocoenological ties than the similarity of Aconito septentrionalis-Piceion obovatae with the alliance Milio effusi-Abietion sibiricae Zhitlukhina ex Ermakov et al. 2000 (order Abietetalia sibiricae (Ermakov in Ermakov et al. 2000) Ermakov 2006, class Asaro europaei-Abietetea sibiricae Ermakov et al. in Willner et al. 2016) described from mountain ranges of South Siberia. 19 Only the most essential data of subordinated units are given. Both orders belong to the geobotanical region of high South Siberian mountain ranges. Their subordinated alliances (including Aconito rubicundi-Abietion sibiricae Anenkhonov et Chytrý 1998) should be probably united into one order not belonging to the class Piceo obovatae-Abietetea sibiricae. 20 176 Norway spruce woodlands in Slovakia and their syntaxonomical classification A.2. Alliance Clematido sibiricae-Piceion obovatae (Zaugolnova et al. 2009) P. Kučera stat. nov. hoc loco et nom. corr. Basionym: Atrageno sibiricae-Piceenion obovatae Zaugolnova et al. 2009 (Zaugolnova et al. 2009: 5, 8). See also: Aleinikov et al. (2016), Shevchenko & Smirnova (2017). B. Submesotrophic order Calamagrostio arundinaceae-Abietetalia sibiricae P. Kučera ord. nov. hoc loco Nomenclatural type: Melico nutantis-Abietion sibiricae P. Kučera all. nov. (see below) Original diagnosis: Melico nutantis-Abietion sibiricae P. Kučera all. nov. (see below) Differential species: Calamagrostis arundinacea, Linnaea borealis, Maianthemum bifolium, Trientalis europaea (largely negative species differentiation, similarly as in case of the order Piceetalia abietis within the class Vaccinio-Piceetea: see Kučera 2019b – tab. 1; Kučera in red. – tab. 1); †Abies sibirica, Athyrium filix-femina, Carex digitata, Melica nutans, Stellaria holostea ([lower constant] differential species against the order Vaccinio vitis-idaeae-Piceetalia obovatae) B.1. Alliance Melico nutantis-Abietion sibiricae P. Kučera all. nov. hoc loco Nomenclatural type: Melico nutantis-Abietetum sibiricae (Martynenko et al. ex P. Kučera 2023) P. Kučera stat. nov. (see below). Original diagnosis: Melico nutantis-Abietetum sibiricae (Martynenko et al. ex P. Kučera 2023) P. Kučera stat. nov. (see below). Differential species: Hieracium albocostatum, †Hieracium subpellucidum, Linnaea borealis, Gymnocarpium dryopteris, Oxalis acetosella, Phegopteris connectilis, Trientalis europaea (largely negative species differentiation, similar as in case of the alliance Piceion abietis within the class Vaccinio-Piceetea: see Kučera in red. – tab. 1, tab. 4). B.1.1. Association Melico nutantis-Abietetum sibiricae (Martynenko et al. ex P. Kučera 2023) P. Kučera stat. nov. hoc loco Nomenclatural type: Martynenko et al. (2008), tab. 73, rel. 13. Original diagnosis: Martynenko et al. (2008), tab. 73, rels. 1–33. Basionym of Melico nutantis-Abietetum sibiricae (Martynenko et al. ex P. Kučera 2023) P. Kučera 2023: Linnaeo borealis-Piceetum abietetosum sibiricae Martynenko et al. ex P. Kučera subass. nov. hoc loco [≡ Linnaeo borealis-Piceetum abietosum sibiricae Martynenko et al. 2008 nom. inval. (Art. 3b, 3e); Martynenko et al. (2008: 232, 439, 444)]; nomenclatural type: Martynenko et al. (2008), tab. 73, rel. 13, holotypus hoc loco (i.e. following the proposal of Martynenko et al. 2008). C. Oligotrophic order Vaccinio vitis-idaeae-Piceetalia obovatae P. Kučera ord. nov. hoc loco Nomenclatural type: Vaccinio vitis-idaeae-Piceion obovatae P. Kučera all. nov. (see below) Original diagnosis: Vaccinio vitis-idaeae-Piceion obovatae P. Kučera all. nov. (see below), Empetro- Piceion obovatae Morozova in Morozova et al. 2008 Differential species: Avenella flexuosa, †Cornus suecica, Empetrum hermaphroditum, Juniperus sibirica, Pinus sylvestris (tree layer), Vaccinium uliginosum (? V. gaultherioides); Cladonia stellaris C.1. Alliance Vaccinio vitis-idaeae-Piceion obovatae P. Kučera all. nov. hoc loco Nomenclatural type: Vaccinio vitis-idaeae-Piceetum obovatae P. Kučera ass. nov. (see below) Original diagnosis: Vaccinio vitis-idaeae-Piceetum obovatae P. Kučera ass. nov. (see below) 177 P. K u č e r a Differential species: †Abies sibirica, Maianthemum bifolium, Vaccinium vitis-idaea (dom.); Dicranum montanum, Ptilium crista-castrensis Non: Pino sibiricae-Laricion sibiricae Guinochet ex Dostálek et al. 198821 C.1.1. Association Vaccinio vitis-idaeae-Piceetum obovatae P. Kučera ass. nov. hoc loco Nomenclatural type: Martynenko et al. (2008), tab. 72, rel. 14. Original diagnosis: Martynenko et al. (2008), tab. 72, rels. 11–14. C.2. Alliance Empetro-Piceion obovatae Morozova in Morozova et al. 200822 C.2.1. Including the association: Junipero sibiricae-Piceetum obovatae P. Kučera ass. nov. hoc loco Nomenclatural type: Morozova et al. (2008), tab. 6, rel. 6 (26), holotypus hoc loco Incl.: Flavocetrario nivalis-Pinetum sylvestris typicum var. Picea obovata – Morozova et al. (2008) This association ecologically represents a marginal unit of the class Abieteto sibiricae-Piceetea obovatae, transitional towards Pinus sylvestris taiga woodland (cf. Dicrano-Pinetea Hartmann et Jahn 1967). C.2.2. Including the community Salix glauca-Picea obovata Martynenko et al. 2008 3.1. Piceetalia abietis Pawłowski ex Pawłowski et al. 1928 nom. corr.23 Nomenclatural type: alliance Piceion excelsae Pawłowski ex Pawłowski et al. 1928 (Pawłowski et al. 1928: 257), automatic lectotype (Art. 20). Original name: Piceetalia excelsae Pawłowski ex Pawłowski et al. 1928 nom. inept. (Art. 44) Nomencl. syn.: Myrtillo-Piceetalia excelsae Hadač 1962 nom. superfl. (Art. 10, 14b, 29c)24 Syntax. syn.: Vaccinio-Piceetalia Br.-Bl. in Br.-Bl. et al. 1939 nom. illeg.25 Differential species (see Kučera 2019b, Suppl. B1/Tab. 1): Dryopteris dilatata, Avenella flexuosa; Polytrichum formosum, Lophozia ventricosa, Bazzania tricrenata, Calypogeia integristipula (mostly negative to quantitative species differentiation against the order Cortuso matthioliPiceetalia). Floristical delimitation. – Communities of the order Piceetalia abietis constitute a parallel ecological group to the order Cortuso matthioli-Piceetalia abietis P. Kučera 2022. They develop on nutrient-poor and very poor soils inducing usually remarkable low abundance of species growing in the respective phytocoenoses. The essential tree species are Picea abies and Sorbus aucuparia, in the hochgebirge mountain ranges the canopy species composition is enriched by Larix decidua and Pinus cembra. Norway spruce is within the Pyrenees replaced by †Pinus uncinata which participates in Vaccinio-Piceetea communities also in the western Alps. 21 The alliance as defined by its nomenclatural type (see Dostálek et al. 1988: 33; Guinochet 1982) does not belong to the class Piceo obovatae-Abietetea sibiricae due to its East Siberian geobotanical affiliation. 22 Classification of this alliance within the order Ledo palustris-Laricetalia gmelinii Ermakov in Ermakov et Alsynbayev 2004 and the assigned short characteristics ‘Northeastern European taiga on long-frozen soils and permafrost’ by Mucina et al. (2016) does not correspond to the unit delimitation by the original authors Morozova et al. (2008). 23 See the comment on the author’s citation by Kučera (2013b). The author’s reference to original diagnosis of the subordinated name Myrtillo-Piceion Březina et Hadač in Hadač 1962 (indirectly) includes the nomenclatural type of the alliance Piceion abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. (cf. Krajina 1933: 152). 24 Following the regulations of the 3rd edition of the syntaxonomical Code (Weber et al. 2000), this name was evaluated as nomen invalidum, therefore also the superordinated name Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al.1939 had to be regarded as invalidly published (Kučera 2010b; cf. Theurillat in Willner et al. 2015: 179). 25 178 Norway spruce woodlands in Slovakia and their syntaxonomical classification The field layer species composition of the Piceetalia abietis communities is generally characterized in a negative way: by absence or only very low frequency of species typical of calcareous Cortuso matthioli-Piceetalia abietis P. Kučera 2022 and as well as of wetland woodlands of Sphagno palustris-Piceetalia abietis P. Kučera 2019 (Kučera 2019b, suppl. B1/tab. 1, 2022, tab. 4, in red.). With spatially adjacent but altitudinally lower lying montane mixed Fagus sylvatica woodlands of the same type of geological background, they have common occurrence of Luzula sylvatica ssp. sylvatica, Gentiana asclepiadea, Adenostyles alliariae, Homogyne alpina, Athyrium distentifolium, Calamagrostis villosa, etc. (majority of them also grow in calcareous montane and supramontane woodlands). The occurrence of species including Avenella flexuosa, Dryopteris carthusiana as well as Vaccinium myrtillus, V. vitis-idaea, Luzula luzuloides and D. expansa expresses ecological similarity of Piceetalia abietis communities to acid woodlands from other syntaxonomical classes. Furthermore, their species pool includes taxa common in woodlands in general, e.g. Oxalis acetosella, Rubus idaeus, Dryopteris dilatata, Prenanthes purpurea. In the region of the Tatras and the Low Tatras, Soldanella marmarossiensis agg. (cf. Valachovič et al. 2019) participates in the species composition. Occurrence of slightly more nutrient-demandig species is concentrated only to some communities (such as Solidagini virgaureae-Piceetum or Parido quadrifoliae-Piceetum), for example, Acetosa arifolia, Stellaria nemorum, Veratrum album ssp. lobelianum, Senecio nemorensis agg., Solidago virgaurea, Calamagrostis arundinacea, Athyrium filix femina, Cicerbita alpina and Doronicum austriacum. Remarkable is the considerable difference in their distribution pattern within mittelgebirge vs. hochgebirge mountain ranges, as such species could be more or less absent in natural acid supramontane Norway spruce communities of the first group. Moreover, in the Piceetalia abietis communities are only exceptionally and usually infrequently found species as Milium effusum, Mycelis muralis, Viola biflora, Hieracium murorum, Paris quadrifolia, Valeriana tripteris, Phyteuma spicatum etc. Their presence indicates uncommon habitats with especially favourable soil ecological conditions (high abundance of these species is typical for Cortuso matthioli-Piceetalia communities, cf. Kučera 2022). Following species are bound to ecologically specific habitats within the order Piceetalia abietis : Empetrum hermaphroditum, Listera cordata, Huperzia selago, Lycopodium annotinum, Melampyrum sylvaticum etc., species of hochgebirge mountain ranges Gentiana punctata, Vaccinium gaultherioides, Ligusticum mutellina, eventually also mire species (Carex nigra, Eriophorum vaginatum, within the association Sphagno capillifolii-Piceetum; Kučera 2019b). Bryophyte species composition of the Piceetalia abietis communities is characterized by the absence of calcicoles, in addition, calcifuges like Lophozia ventricosa and Mylia taylori are present in some communities. In general, common mosses predominate in the ground layer of the phytocoenoses, especially Polytrichum formosum, Dicranum scoparium, Pleurozium schreberi, Plagiothecium curvifolium etc. Some woodland types are characterized by abundant peat mosses, primarily Sphagnum capillifolium and S. girgensohnii. Lichens are growing in the phytocoenoses usually within more extreme habitat types only. Ecological delimitation. – The ecological environment for the development of Piceetalia abietis communities is provided by soils with a low supply of available nutrients, with strongly acidic to extremely acidic soil pH (even below 4.0 value; cf. Šoltés 1976) and with low nitrification (Hadač 179 P. K u č e r a et al. 1969). Therefore, they are exclusively bound to non-carbonate geological background only – on granitoid rocks (granites, gneisses, tonalites etc.), quartzites, non-calcareous flysch and so on. The occupied soil types are podzols (cf. Šály 1986) and rankers (non-carbonate leptosols as haplic leptosols to leptic podzols), in habitats with more extreme relief, there are also lithosols (lithic leptosols). In the region of the Western Carpathians, presence of cambisol soil type under a Norway spruce stand usually indicates (sub-)anthropogenic origin of the current woodland on a former (ancient) Carpino-Fagetea habitat. The Piceetalia abietis communities can grow on carbonate rocks only in the case of development of very thick isolating soil layer which prevents the existence and successful growth of calcicoles as well as more nutrient-demanding species. In flat relief habitats periodical waterlogging can occur here and there, in the vicinity of bogs, springs or on floodplains of mountain streams more permanent waterlogging. Syntaxonomical delimitation. – Similar to Cortuso matthioli-Piceetalia classification (Kučera 2022), the order Piceetalia abietis has to be syntaxonomically divided into four basic groups. (A) The first of them is the alliance Piceion abietis Pawłowski ex Pawłowski et al. 1928 (see below) which includes communities of the supramontane Norway spruce woodlands in particular of Central to Southeastern Europe, covering the uppermost elevations of high mountain ranges which do not reach or only slightly exceed the natural alpine forest line (so-called mittelgebirge mountain ranges, cf. Kučera 2022). Moreover, they form the lower part of the uppermost forest zone – natural coniferous woodland – of the European hochgebirge mountain ranges as the Alps and the Tatra Mountains. (B) The alliance Homogyno alpinae-Pinion cembrae P. Kučera 2017 (syn. Pinion cembrae RivasMartínez in Rivas-Martínez et al. 2011 nom. inval.) represents an ecological and floristical analogy to calcicolous Calamagrostio variae-Pinion cembrae P. Kučera 2017 (cf. Kučera 2017, Kučera & Barančok 2021). Its communities comprising the Arolla pine and mixed Arolla pine woodlands shape the upper part of the coniferous zone of the mentioned hochgebirge mountain ranges which provided a postglacial (especially post-Boreal and post-Atlantic) refugium for Pinus cembra populations. Despite of its less expressed floristical differentiation from Piceion abietis (see Table 3, the Western Carpathian phytocoenoses are impoverished in species in comparison to the Alps or Southwestern Carpathians) than in the case of their calcicolous counterparts Calamagrostio variae-Pinion cembrae – Cortuso matthioli-Piceion, the alliance of acid (mixed) Arolla pine woodlands should be recognized as a separate syntaxon due to its specific ecology, distribution patterns and postglacial history. This view is supported also by the potential and advantageous practical use of the unit, for example in forest management and nature conservation. (C) Geographically vicariant unit of the Pyrenees is the alliance Pinion uncinatae Rivas-Martínez et Costa 1998 (corresp. name Rhododendro ferruginei-Pinenion uncinatae Rivas-Martínez et al. 1991) which is incorrectly identified by various authors with the calcicolous alliance Seslerio caeruleae-Pinion uncinatae Vigo 1974 (cf. Rivas-Martínez & Costa 1998; Rivas-Martínez et al. 2001; Thébaud & Bernard 2018), because the latter unit syntaxonomically belongs to the order Cortuso matthioli-Piceetalia P. Kučera 2022. The Pinion uncinatae communities are predominated by †Pinus uncinata (and Abies alba) and they form a separate supramontane (to altimontane) altitudinal vegetation zone in that region. 180 Norway spruce woodlands in Slovakia and their syntaxonomical classification Table 3. Differential table of the alliances of the order Piceetalia abietis Pawłowski ex Pawłowski et al. 1928 in Slovakia with values of constancy (%) and fidelity (φ × 100) in the exponent. The relevé dataset is identical with tab. 3 (synoptic table of the order Piceetalia abietis) compiled by Kučera (in red.). Field and ground layer species with frequency lower than 5% in an individual column are omitted. Group 1 – Piceion abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. Group 2 – Homogyno alpinae-Pinion cembrae P. Kučera 2017 Group No. No. of relevés Tree and shrub species Canopy (E3) Picea abies Pinus cembra Sorbus aucuparia Larix decidua Betula carpatica Salix silesiaca Salix caprea Understorey E2 Picea abies Pinus mugo Sorbus aucuparia Pinus cembra Salix silesiaca Ribes petraeum Lonicera nigra Sambucus racemosa Salix caprea Abies alba Fagus sylvatica Juniperus sibirica Betula carpatica Larix decidua E1 Sorbus aucuparia Picea abies Pinus cembra Lonicera nigra Pinus mugo Ribes petraeum Larix decidua Salix silesiaca Salix sp. Abies alba Fagus sylvatica Sambucus racemosa Juniperus sibirica Rosa pendulina 1 109 2 76 98 – .– 25 – 6– 3– 1– 1– 99 – 100 100.0 37 – 11 – .– 1– .– 32 – 9– 14 – .– 1– 1– 1– 1– 1– 1– 1– .– .– .– 51 19.5 46 41.2 32 21.3 21 34.3 4– 1– 1– .– .– .– .– 1– 1– 1– 87 – 61 16.8 5– 13 – 2– 3– 2– 1– 2– 5– 3– 1– .– .– 89 – 45 – 33 36.3 7– 14 23.1 4– 3– 3– 1– .– .– .– 3– 1– 181 P. K u č e r a Group No. Differential field layer species (E1) Athyrium distentifolium Vaccinium vitis-idaea Other field layer species (E1) Vaccinium myrtillus Dryopteris carthusiana agg. Homogyne alpina Avenella flexuosa Oxalis acetosella Calamagrostis villosa Luzula sylvatica ssp. sylvatica Rubus idaeus Luzula luzuloides Adenostyles alliariae Gentiana asclepiadea Senecio nemorensis agg. Prenanthes purpurea Calamagrostis arundinacea Athyrium filix-femina Solidago virgaurea Lycopodium annotinum Veratrum album ssp. lobelianum Huperzia selago Soldanella marmarossiensis agg. Stellaria nemorum Cicerbita alpina Gymnocarpium dryopteris Acetosa arifolia Doronicum austriacum Milium effusum Hieracium murorum Polygonatum verticillatum Melampyrum sylvaticum Epilobium angustifolium Gentiana punctata Phegopteris connectilis Nardus stricta Dryopteris filix-mas Listera cordata Paris quadrifolia Carex canescens Differential ground layer species (E0) Lophozia ventricosa Bazzania tricrenata Mylia taylorii Calypogeia integristipula Cladonia pyxidata ssp. chlorophaea 182 1 2 39 37.1 39 – 8– 98 – 90 – 93 – 83 – 13.7 89 79 – 76 24.6 48 – 42 – 42 – 44 – 46 21.8 33 – 29 – 28 18.8 19 – 14 – 19 – 6– 16 14.4 17 24.6 15 – 13 – 12 – 12 – 11 – 6– 7– 8 16.3 4– 1– 4– 6 18.2 5– 6– 6– 68 30.0 100 – 89 – 86 – 97 23.6 79 – 70 – 53 – 59 – 51 – 38 – 33 – 25 – 22 – 18 – 13 – 24 – 28 17.1 17 – 21 21.3 7– 3– 7– 7– 8– 5– 4– 11 – 4– 1– 8– 6 16.8 12 22.4 5– .– 3– 1– 1– .– .– .– .– 12 – .– 24 36.7 22 35.5 21 34.3 39 31.5 14 27.9 Norway spruce woodlands in Slovakia and their syntaxonomical classification Group No. Dicranoweisia crispula Barbilophozia attenuata Cladonia digitata Racomitrium microcarpon Diplophyllum taxifolium Other ground layer species (E0) Dicranum scoparium Polytrichum formosum Plagiothecium curvifolium Hylocomium splendens Pleurozium schreberi Sphagnum girgensohnii Rhytidiadelphus triquetrus Plagiothecium undulatum Lepidozia reptans Blepharostoma trichophyllum Sphagnum capillifolium Tetraphis pellucida Calypogeia azurea Polytrichum commune Plagiomnium affine Barbilophozia lycopodioides Dicranella heteromalla Dicranum montanum Cetraria islandica Lophozia cf. incisa Rhytidiadelphus squarrosus Plagiochila porelloides Hypnum cupressiforme Plagiothecium denticulatum Ditrichum heteromallum Cladonia gracilis Anastrepta orcadensis Lophozia sudetica Cladonia coccifera Plagiothecium laetum Brachythecium starkei Cladonia squamosa Ptilidium ciliare Bazzania trilobata Polytrichum juniperinum Cladonia rangiferina 1 .– 1– .– .– .– 2 13 26.5 14 25.4 12 25.1 12 25.1 12 25.1 81 – 75 – 41 – 26 – 28 – 17 – 15 – 15 – 13 – 11 – 93 18.9 66 – 50 – 15 15.7 7– 9– 13 – 12 – 8– 6– 9– 3– 8 16.3 8 16.3 8 16.3 2– 7– .– 1– .– .– .– 6 16.8 5– 1– 1– 3– 1– .– 42 17.3 28 – 30 16.2 16 – 11 – 13 – 14 – 5– 13 – 11 – 5– 7– 11 – 14 15.0 7– 14 20.9 1– 1– 1– 11 18.0 1– 11 23.6 8 17.0 9 22.0 9 22.0 9 22.0 .– 1– 7 14.9 7 14.9 4– 7 14.9 7 18.4 183 P. K u č e r a (D) Another example of geographically separated vicariant unit (of the alliance Piceion abietis) is the group of Scandinavian Norway spruce communities, recognized as the alliance Linnaeo borealis-Piceion abietis Oberdorfer ex Jahn 198526 (Jahn 1985; Kielland-Lund 1981, 1994; Dierssen & Dierssen 1996). While still integral part of the order Piceetalia abietis, its differential species including Trientalis europaea (as constant species) and especially Linnaea borealis represent phytochorological relation to East European-Siberian taiga woodlands of the class Piceo obovatae-Abietetea sibiricae (see above). The natural altitudinal distribution of Scandinavian Norway spruce woodland is considerably influenced by pre-/historical deforestation and pasture. Within the upper part of its potential natural distribution, large-scale substitutionary non-forest vegetation is developed, in abandoned places evolution of secondary and temporary birch phytocoenoses is in progress. Currently, Norway spruce is only artificially planted in the relevant altitudes, mostly in very small stands (Kučera, not.). On the contrary, large-scale Norway spruce forests of lower altitudes, especially in the southern part of Scandinavia, are replacing mixed broadleaved woodland of Quercus, Fagus, Acer spp. etc. of much larger potential natural distribution. (E) Mucina et al. (2016) include in the order Piceetalia abietis also the alliance Pinion peucis Horvat 1950 from the Southern Balkans comprising acid Macedonian-pine woodlands. (F) Similar as in detail explained in the survey on calcareous Norway spruce woodlands of Slovakia (Kučera 2022; see also above), incorrect syntaxonomical classification of the Norway spruce forest stands with direct anthropogenic as well as subanthropogenic origin is frequently found in the literature dealing with acid Norway spruce vegetation types. Numerous non-calcareous Picea abies forest stands of the Western Carpathians are secondary forest communities with the spontaneous secondary succession of Fagus sylvatica, and they should be syntaxonomically classified within the class Carpino-Fagetea. Therefore, the total number of available records of authentic Piceetalia abietis woodlands is much smaller than commonly expected not only within the Western Carpathians (see Table 1 and the accompanying text) but undoubtedly also in other European regions. One of the latest examples of inappropriate evaluation is a statement that Piceion abietis phytocoenoses (with the occurrence of Soldanella carpatica) are in the Western Carpathians distributed already at the altitude of 940 m a.s.l.27 (Valachovič et al. 2019). All parallel records of non-natural and assumed natural acid Norway spruce forests – but in fact anthropogenically changed Carpino-Fagetea phytocoenoses – from other European mountain ranges should be syntaxonomically re-evaluated. (G) True bog woodlands with Pinus sylvestris, Central European P. hartenbergiensis Liebich (P. rotundata auct. non Link, cf. Businský & Kirschner 2006) and various Pinus hybrids 26 See Jahn (1985: 36); syn.: Linnaeo borealis-Piceion Oberdorfer 1979 nom. inval. (Art. 2b), Oberdorfer (1979: 45) rather as an alternative name (cf. Theurillat et al. 2021: 17) than a nomen novum; corresp. name: LinnaeoPiceenion (Br.-Bl. et Sissingh in Br.-Bl. et al. 1939) Förster in Jahn 1977 (Jahn 1977: 486); non: Linnaeo-Piceion abietis (Br.-Bl. et Sissingh in Br.-Bl. et al. 1939) Rivas-Mart. in Rivas-Mart. et al. 2011 nom. illeg. (cf. Kučera 2022). 27 The respective record and all similar ones of low montane altitudes represent anthropogenically changed CarpinoFagetea phytocoenoses. Moreover, the relevé under consideration (i.e. Valachovič & Jarolímek 1988: 14) does not belong to the vegetation type of acid woodland phytocoenoses, where Piceion abietis is assigned: the correct syntaxonomical evaluation is within calcareous woodlands of the order Cephalanthero damasonii-Fagetalia sylvaticae Boeuf et Royer in Boeuf et al. 2014. At the same time, this relevé should also be included in Tab. 1/Part 1 published by Kučera (2022). 184 Norway spruce woodlands in Slovakia and their syntaxonomical classification (cf. Businský & Kirschner 2010), marginally also with Betula pubescens (in some regions Betula carpatica is also referred: e.g. Šmarda 1950; Dierssen & Dierssen 1984) and/or Picea abies, usually classified within the class Vaccinio-Piceetea (Wallnöfer 1993; Theurillat et al. 1995; Jirásek & Moravec 2002; Jarolímek et al. 2008b; Chytrý et al. 2013b;28 Chifu 2014; Coldea 2015; Mucina et al. 2016), represent a group of an ecologically, geobotanically and floristically distinct woodland types unit classified as separate class Vaccinio uliginosi-Pinetea Passarge 1968 (Passarge 1968; Passarge & Hofmann 1968; Kučera 2007; Willner & Steiner 2007; Renaux 2015). In the Western Carpathians, partly marginal syntaxonomical position within the latter class – and within the order Vaccinio uliginosi-Pinetalia Passarge 1968 (cf. Willner & Steiner 2007) – take Betula pubescens phytocoenoses recorded by Šomšák (1979) and included by him to the association ‘Eriophoro vaginati-Betuletum Hueck 1925 em. Passarge et Hofmann 1968’. Similar as in the case of the association Sphagno palustris-Piceetum Šomšák 1979 (order Sphagno palustrisPiceetalia P. Kučera 2019), some relevés have a transitional position towards the class Alnetea glutinosae Br.-Bl. et Tx. ex Westhoff et al. 1946. However, a large number of the later recorded relevés referred to Šomšák’s unit by Slovak authors, including by Šomšák himself, are not bog phytocoenoses and they belong to the order Sphagno palustris-Piceetalia (see the syntaxonomical revision by Kučera 2019b). Other part of Betula pubescens mire (non-true bog) phytocoenoses from Slovakia form a nutrient-poorer section of the class Alnetea glutinosae Br.-Bl. et Tx. ex Westhoff et al. 1946 (incl. Molinio-Betuletalia pubescentis Passarge 1968) (cf. Franz & Willner 2007; Renaux 2015). (H) Floristically and ecologically specific communities of waterlogged (mixed) Norway spruce woodlands are traditionally classified within the order Piceetalia abietis as well, for example Bazanio-Piceetum auct. non (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939, Equiseto sylvatici-Piceetum Šmarda 1950, Soldanello montanae-Piceetum Volk in Br.-Bl. et al. 1939 and Sphagno palustris-Piceetum Šomšák 1979 (Oberdorfer 1957; Oberdorfer et al. 1967; Šomšák in Mucina et al. 1985; Pott 1992; Seibert 1992; Wallnöfer 1993; Jirásek 1996, 2002; Shelyag-Sosonko et al. 2006; Exner 2007; Jarolímek et al. 2008a; Solomakha 2008; Kučera 2012a; Chytrý et al. 2013; cf. also Dubyna et al. 2019). Based on their substantial phytocoenological differences from the group of supramontane hillside acid Norway spruce woodlands, Kučera (2019b) separated them to an independent order Sphagno palustris-Piceetalia P. Kučera 2019, which should be syntaxonomically included as an independent order into the class Vaccinio uliginosi-Pinetea Passarge 1968 (cf. Kučera 2007).29 However, the association Sphagno capillifolii-Piceetum Zukrigl 1973 syntaxonomically belongs to the order Piceetalia abietis, even if the community represents marginal phytocoenoses of the alliance Piceion abietis (Kučera 2019b). Syntaxonomical note. – The alliance Athyrio alpestris-Piceion Sýkora 1971 based on floristically poor phytocoenoses recorded by Sýkora (1971) is not distinguished as an independent unit of the order Piceetalia abietis in this syntaxonomical survey due to absence of the sufficient floristical In this survey is, however, only one part of woodland (and scrub) bog communities of the Czech Republic included: the other part was elaborated within non-forest communities of the class Oxycocco-Sphagnetea Br.-Bl. et Tx. ex Westhoff et al. 1946 (Hájková et al. 2011). 28 29 In this way, equivalently to the class Vaccinio-Piceetea consisting of two orders considerably differing in their nutrient (and calcium) supply, the classes Vaccinio uliginosi-Pinetea and Alnetea glutinosae would have broader syntaxonomical content and geobotanical application as well. 185 P. K u č e r a differentiation in comparison to the alliance Piceion abietis (Šomšák 1983; Exner 2007; Kučera 2010a, 2010b, 2012a; Chytrý et al. 2013b). However, closer examination should be devoted to field research and possible differentation of group of species-richer syntaxa as, for example, the associations Solidagini-Piceetum and Parido-Piceetum and their equivalents in other European regions. Mucina et al. (2016) incorrectly associated the name Athyrio alpestris-Piceion Sýkora 1971 as a synonym of the alliance name Chrysanthemo rotundifolii-Piceion (Krajina 1933) Březina et Hadač in Hadač 1962 nom. superfl. = Chrysanthemion rotundifolii Krajina 1933 (cf. Kučera 2023). 3.2. Piceion abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. Nomenclatural type: association Piceetum excelsae Pawłowski ex Pawłowski et al. 192830 (Pawłowski et al. 1928: 257), automatic holotype (Art. 18). Original name: Piceion excelsae Pawłowski ex Pawłowski et al. 1928 nom. inept. (Art. 44) (Pawłowski et al. 1928: 218–219, 257) Nomencl. syn.: Vaccinion myrtilli Krajina 1933 p. p. = typus excl. (see Krajina 1933: 152, 195 vs. Šibík et al. 2007) = Myrtillo-Piceion excelsae Březina et Hadač in Hadač 1962 nom. superfl.31 (Art. 10, 14b, 29c) Syntax. syn.: Piceion excelsae Sillinger 1933 p. p. min., Vaccinio-Piceion excelsae Br.-Bl. in Br.-Bl. et al. 1939 p. p. min.,32 Athyrio alpestris-Piceion Sýkora 1971 Non: Piceion excelsae Luquet 1926 nom. inval. (Art. 3f),33 Piceion excelsae Br.-Bl. 1930 nom. inval. (Art. 2b, 8), Chrysanthemion rotundifolii Krajina 1933 = Chrysanthemo-Piceion (Krajina 1933) Březina et Hadač 1962 nom. superfl. (Art. 29c) = Adenostylo-Piceenion Borhidi 1969, Oxalidion acetosellae Krajina 1933 nom. illeg. (Art. 29b) = Oxalido-Piceion (Krajina 1933) Březina et Hadač in Hadač 1962, Chrysanthemo-Piceion auct. non (Krajina 1933) Březina et Hadač in Hadač 1962, Oxalido-Piceion sensu Hadač et al. 1969 non Březina et Hadač in Hadač 1962, Vaccinio vitis-idaeae-Piceion (Br.-Bl. in Br.-Bl. et al. 1939) Passarge 1971 p. p. max., 34 Luzulo 30 The nomenclatural type of this association was selected by Wallnöfer (1993: 287). 31 See above comment on the name Myrtillo-Piceetalia excelsae Hadač 1962. 32 See the very wide original syntaxonomical content of Braun-Blanquet et al. (1939), including not only coniferous substitutionary Carpino-Fagetea woodlands and Cortuso matthioli-Piceetalia abietis communities, but also some scrub and non-forest communities. Although the chapter on Piceion excelsae contains a reference to the unit ‘Piceo-Abietetum albae Szafer et al. 1923’ (Luquet 1926: 164; Thébaud & Bernard 2018), this citation is a reference to a compared vegetation type and not an element of the original diagnosis of the alliance name (cf. also Kučera 2012a: 177). Moreover, considering the methodical approach of Szafer et al. (1923), their new association names are not validly published (Art. 2b → Art. 7) as a ‘relevé’ in the sense of Szafer et al. (1923: 13) consists, in fact, from set of 5 to 25 small plots (Kučera 2007). 33 Change of the name Vaccinio-Piceion Br.-Bl. in Br.-Bl. et al. 1939 to the form ‘Vaccinio vitis-idaeae-Piceion’ by Passarge (1971) should not be considered as an alliance name completion according to Rec. 10C, because the survey of Braun-Blanquet et al. (1939) does not provide a key to such completion (cf. Art. 3g). Considering the new syntaxonomical classification by Passarge (1971) (cf. also Art. 47), the new Passarge’s alliance has considerably narrowed syntaxonomical content and does not include the nomenclatural type of the name Vaccinio-Piceion Br.-Bl. in Br.-Bl. et al. 1939 (cf. Dengler et al. 2004). However, the original alliance name ‘Vaccinio-Piceion Br.-Bl. in Br.-Bl. et al. 1939’ was not retained according to the Art. 24 by Passarge (1971) for any other alliance. 34 186 Norway spruce woodlands in Slovakia and their syntaxonomical classification luzuloidis- Piceion abietis Passarge 1971 nom. corr. (Rec. 10C, Art. 44) p. p. max., 35 Oxalido-Piceion (Krajina 1933) Passarge 1971 nom. illeg. (Art. 31) p. p. max. Differential species (see Table 3): Athyrium distentifolium (mostly negative to quantitative species differentiation). Floristical delimitation. – The canopy dominant species is Picea abies, Sorbus aucuparia (usually ssp. glabrata) is constantly admixed. Within the Western Carpathians (and for example in the Alps), Larix decidua is a natural component of stands in the region of Tatra Mts, in some habitats permanently also Betula carpatica. Larix and Sorbus (and on the respective localities also Betula) have increased abundance in successional stages of stands influenced by wind and other natural disturbances. L. decidua had probably the same distribution pattern also within Piceion abietis communities of the Low Tatra Mts. The stands of the lower part of the altitudinal distribution of the Piceion abietis woodlands were enriched by natural presence of Abies alba,36 in some localities Acer pseudoplatanus was probably present, marginally also Fagus sylvatica of lower growth and without an ecological influence on the development and species diversity of phytocoenoses. Careful consideration of progressive spontaneous secondary succession of F. sylvatica in Picea stands is needed, because this process indicates considerable anthropogenically influenced forests in habitats, where the potential natural vegetation is a mixed Fagus-Abies(-Picea) woodland of the class Carpino Fagetea. Such phytocoenoses represent temporary Picea abies communities which should be correctly classified within the latter class. It would be incorrect to label the described vegetation change as cessation of Norway spruce stands of lower altitudes due to climate change. For such evaluation detailed field study of localities of natural altitudinal transition of natural upper montane mixed acid Fagus woodland into natural supramontane acid Picea woodland are required. However, such stands were not preserved within the Western Carpathians and, moreover, the altitude ca. 1250 m a.s.l. generally assumed to be the natural lower limit of altitudinal distribution of Norway spruce woodlands does not correspond to recent field revisions (see above and Kučera 2012a, 2013a, 2014, 2015, 2022). In addition, woodlands with a permanent natural occurrence of Pinus cembra in the canopy belong to the alliance Homogyno alpinae-Pinion cembrae P. Kučera 2017 (cf. Kučera 2022). P. cembra could be present in Piceion abietis communities only as temporary species occurrence – mostly of anthropogenic origin. Such plantations are locally found within the High Tatras in the region of the Štrbské pleso Lake or in the Mengusovská dolina Valley (2.10.2020, Kučera, not.) In the understorey of Piceion abietis coomunities are, especially in the region of the Tatra Mountains, occasionally admixed other woody species (Lonicera nigra, Sambucus racemosa, Ribes petraeum), including Pinus mugo permanently present in the ecologically more extreme habitats. Thébaud & Bernard (2018) used and lectotypified the name ‘Luzulo luzuloidis-Piceion abietis Passarge 1978’. However, Passarge (1971) validly published the relevant name already earlier (i.e. Luzulo nemorosae-Piceion abietis Passarge 1971 nom. inept. [Rec. 10C, Art. 44]) and it is automatically typified with the name Luzulo nemorosae (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939. According to the phytocoenotic content of the latter association name as well its nomenclatural type (see Kučera 2010a: 834), the considered association belongs to the class Carpino-Fagetea, because the original relevé records represent an anthropogenically changed substitutionary woodland (cf. Kučera 2022). 35 Sporadic trees were found in the Western Carpathians in acid habitats even above 1500 m a.s.l. (cf. Kučera 2012a, 2021), similarly in the easternmost part of the Alps (Zukrigl 1973). 36 187 P. K u č e r a The field layer species composition of the alliance Piceion abietis is – especially within the Western Carpathians and Hercynian mountain ranges with impoverished flora in comparison to the Alps and Southern Carpathians – characterized by the absence of distinct Braun-Blanquetian character-species sensu stricto. The differentiation against the alliance Homogyno alpinae-Pinion cembrae is represented only by mostly a small difference in frequency of species and absence of high-mountain species (Kučera 2017; Zięba et al. 2018). The basis of species composition of the most widespread communities consists of Vaccinium myrtillus, Calamagrostis villosa, Homogyne alpina, Oxalis acetosella, Luzula sylvatica ssp. sylvatica and taxa of Dryopteris carthusiana agg. (especially Dryopteris expansa and hybrids are not sufficiently recognized to the present). Species like Athyrium distentifolium, V. vitis-idaea, Gentiana asclepiadea, Rubus idaeus, Prenanthes purpurea are less abundant. Other species are more or less bound to specific habitat types (e.g. Acetosa arifolia, Adenostyles alliariae, Luzula luzuloides, Solidago virgaurea, Veratrum album ssp. lobelianum), eventually they are also restricted to a special distribution pattern (Athyrium filix-femina, Calamagrostis arundinacea, Melampyrum sylvaticum, Paris quadrifolia) (Kučera et al. 2023). Phytocoenoses with admixed Carex canescens, C. echinata, Eriophorum vaginatum have a marginal syntaxonomical position within the alliance Piceion abietis (Kučera 2019b). In contrast to the mountain ranges lying more to the west, the hitherto known Western Carpathian records of the natural acid Piceion abietis communities only sporadically document the occurrence of Trientalis europea and only very rarely species Blechnum spicant, Streptopus amplexifolius, Polygonatum verticillatum. The same is valid for moss species including Barbilophozia lycopodioides, Bazzania trilobata, Rhytidiadelphus loreus (cf. Matuszkiewicz & Matuszkiewicz 1960; Hartmann & Jahn 1967; Seibert 1992; Willner et al. 2007; Chytrý et al. 2013b). Similarly to the field layer, the ground layer of Piceion abietis phytocoenoses is not characterized by distinct differential species. Commonly distributed mosses Dicranum scoparium and Polytrichum formosum represent the usual constant species, higher frequency values are reached by Plagiothecium curvifolium and Pleurozium schreberi. Several woodland types are characterized by abundant Sphagnum girgensohnii and S. capillifolium. Occurrence of species as Hylocomium splendens, Rhytidiadelphus triquetrus, Polytrichum commune, Anastrophyllum minutum, Plagiochila porelloides is bound to ecological specific habitat types (e.g. screes, waterlogged soils). Other bryophyte species are present only with low frequency or sporadically, including Lepidozia reptans, Calypogeia integristipula, Plagiomnium affine, Plagiothecium undulatum, Rhytidiadelphus squarrosus etc. Lichens occur in Piceion abietis communities only rarely as elements of the ground layer flora (Cetraria islandica, Cladonia spp.). Distribution, ecological delimitation. – The alliance Piceion abietis comprises mountain woodlands of natural Norway spruce phytocoenoses bound to considerably nutrient-poor habitats. As such they represent ecological vicariant to the Cortuso matthioli-Piceion woodlands. The communities of Piceion abietis are widely distributed within different parts of European mountain systems. On the respective geological background they form a more or less continuous zone in the Alps from France to Slovenia (Wallnöfer 1993; Keller et al. 1998; Pignatti 1998, Zupančič 1999; Exner 2007; Thébaud & Bernard 2018) including the Pohorje Mts (Wraber 1960, 1963). Within the Hercynian orographical system, the natural Norway spruce woodlands are fragmented into usually distant isolated islands due to the considerable lower total 188 Norway spruce woodlands in Slovakia and their syntaxonomical classification altitude of the individual mountain ranges, including the Harz Mts, where the occurrence of natural Norway spruce woodland is also referred (Seibert 1992; Matuszkiewicz 2002; Sautter 2003; Exner 2007; Ewald et al. 2011; Chytrý et al. 2013b). The communities of this alliance are also distributed in all main units of the Carpathians: in the Western Carpathians (Šoltés 1976; Matuszkiewicz 2002; Kučera 2012a) as well as in the Eastern and Southern Carpathians (Borhidi 1971; Shelyag-Sosonko et al. 2006; Chifu 2014; Coldea 2015; Dubyna et al. 2019). On the example of the Hercynian system could be explained the importance of distinction between (A) regions with occurrence of true supramontane acid Norway spruce woodland (alliance Piceion abietis) including the Harz Mts, the High Sudetes, the Bohemian Forest (BraunBlanquet et al. 1939; Klika 1944; Oberdorfer 1957; Matuszkiewicz & Matuszkiewicz 1960; Hartmann & Jahn 1967; Matuszkiewicz 1977, 2002; Sofron 1981; Pott 1992; Seibert 1992; Wallnöfer 1993; Jirásek 1996, 2002; Exner 2007; Chytrý et al. 2013b) and (B) regions where the natural occurrence of Picea abies is preserved (occasionally only in specific habitats such as mires), however, the altitudinal vegetation zone of supramontane Norway spruce woodland is not naturally developed, for example the Vosges, the Black Forest, the Thuringian Forest (cf. Bartsch & Bartsch 1940; Issler 1942; Schlüter 1966; Kučera 2012a). Their differentiation is complicated by thousands of years of anthropogenic impacts, i.e. including considerable prehistorical deforestation (cf. Shennan 1993, Ellenberg 1996, Kaplan et al. 2009, 2016; Kolář et al. 2018) which, eventually, influenced species composition of Central European mountain woodlands (especially in favour of P. abies) as well as by establishment of Norway spruce monocultures long before the 20th century (for comparison in the region of the Western Carpathians see: Ložek 1973, 2007; Obuch et al. 2008; Obuch 2021; Pieta 2010). These two long-term impacts caused the change of undergrowth phytocoenoses resulting in the imitation of Piceion abietis communities (cf. Hadač & Sofron 1980 vs. Kučera 2012a). The lower line of altitudinal distribution of the Piceion abietis communities in the Carpathian and Hercynian mountain ranges is limited by occurrence of the natural upper montane mixed Fagus sylvatica woodland of the class Carpino-Fagetea (including substitutionary secondary successional Picea abies stands of subanthropogenic and direct anthropogenic origin [plantations] with various stages of the progressive recovery of a respective mixed Fagus woodland type). Within the Western Carpathians, the natural acid Norway spruce communities are usually widespread above ca. 1400 m a.s.l. forming a separate altitudinal vegetation zone, similarly as in the case of Cortuso matthioli-Piceion (Kučera 2012a, 2013a, 2014). They are descending into lower altitudes only under influence of extreme habitat conditions, generally on screes with various boulder sizes, in glacially formed valleys of the Tatra Mountains even in spatially more continuous stands. Spatially extensive Norway spruce stands of lower altitudes outside of such specific habitats as well as in lower mountain ranges (e.g. the Kysucké Beskydy Mts, the Branisko Mts., the Klenovský Vepor Mts etc.) have usually significant secondary successional character (progressive reverse spontaneous succession of Fagus), therefore they do not belong to the class Vaccinio-Piceetea: they represent above-mentioned substitutionary Picea forests (Kučera 2012a, 2022). Within the Poľana Mts, natural Norway spruce communities were probably spatially limited to more extreme habitats only as the natural distribution of mixed (Fagus-Abies-Picea) woodland ascended up the to peak of Poľana Mt. (Kučera 2011b, 2012a). 189 P. K u č e r a The elevational span of the Norway spruce altitudinal vegetation zone has three main types within individual mountain ranges of the Western Carpathians (Kučera 2022): (1) the respective supramontane Norway spruce zone is limited by the total height of the individual summits: the mittelgebirge mountain ranges which do not exceed the alpine forest line – for example the Veporské vrchy Mts (Fabova hoľa-group), the Stolické vrchy Mts (Stolica–Kohút group); (2) the supramontane Norway spruce zone is fully developed and the alpine forest line is formed by Picea abies (originally above 1700 m a.s.l., locally lower under the influence of summit syndrome or unsuitable soil conditions; cf. Körner 2012): the mittelgebirge mountain ranges with the highest isolated summits or more continuous areas exceeding this line – for example the Oravské Beskydy Mts or the Low Tatras (Nízke Tatry Mts; with transitional character to a hochgebirge mountain range); (3) the alpine forest line is formed by (mixed) Pinus cembra communities: the hochgebirge mountain ranges which provided a postglacial refugium for survival of Pinus cembra populations – the individual regions of the Tatra Mountains. Here the elevation span of natural Norway spruce communities was originally limited by abundant development of the Homogyno alpinae- Pinion cembrae P. Kučera 2017 (and calcicolous Calamagrostio variae-Pinion cembrae P. Kučera 2017) communities which, however, were preserved only in fragments until the middle of the 20th century (Zięba et al. 2018; Kučera 2019a). Therefore, the Picea(-Larix) stands of the Tatra Mountains ascend secondarily higher, partially with support of artificial reforestation, also above the altitudes 1550–1650 m a.s.l., replacing the former natural mixed Pinus cembra communities (Kučera 2012a; cf. Braun-Blanquet 1930; Somora 1969, 1976, 1977; Plesník 1971; Somora & Humlová 1971). The natural alpine forest line is preserved only exceptionally within the Western Carpathians (the frame of climate conditions is considered for the period 1950 –1980). Current Norway spruce stands vertically (locally also horizontally) border sub-/anthropogenic Pinus mugo stands or remnants and various successional stages of the former high-mountain pastures, usually with a transitional spontaneous woodland recovery zone (cf. Kučera 2019a vs. relevés of Krajina 1933). Syntaxonomical delimitation. – The currently accepted syntaxonomical content of the alliance Piceion abietis is considerably narrowed in comparison to historical conceptions (Pawłowski et al. 1928; Braun-Blanquet et al. 1939; Klika 1944 vs. Hadač 1962 to Mucina et al. 2016), because the calcareous Picea phytocoenoses are excluded in the order Cortuso matthioli-Piceetalia (= Athyrio-Piceetalia auct. non Hadač 1962). Also wet Norway spruce woodlands on mire habitats were recognized as a separate unit on the rank of order (Kučera 2019b). Similarly, acid Arolla pine communities have to by separated as well (Kučera 2017). The most serious and most frequent question is a proper as well as essential distinction between natural acid Norway spruce communities (class Vaccinio-Piceetea) and various types of substitutionary Norway spruce stands replacing former natural (mixed) Fagus(-Abies-Picea) woodlands (class Carpino-Fagetea) (see above and Kučera 2012a, 2022). In addition to Table 1, the following chapter illustrates examples of disputable syntaxa from various European regions (cf. also Kučera 2012a, chapter). 190 Norway spruce woodlands in Slovakia and their syntaxonomical classification Syntaxonomical note. – Passarge (1971) proposed splitting of all European Norway spruce communities historically included to one alliance Piceion abietis (ut Vaccinio-Piceion Br.-Bl. in Br.-Bl. et al. 1939) into three trophically different alliances labelled Vaccinio vitis-idaeae- Piceion, Luzulo nemorosae-Piceion and Oxalido-Piceion;37 however, calcareous Norway spruce communities were not properly recognized as a separate unit. Even if his original intention of classification reflects on general logical division according to nutrient-supply of habitats, the floristical differentiation of true natural acid Norway spruce communities of Central Europe in the present included within the alliance Piceion abietis seems not convincing in favour of differentiation of such three alliances. Moreover, the considerable number of subordinated syntaxa considered by Passarge (1971) belong syntaxonomically and phytochorologically either to other alliances than Piceion abietis (see above) or, in fact, outside the class Vaccinio-Piceetea – most frequently to Carpino-Fagetea (cf. also Kučera 2012a, 2019b). Nomenclatural note 1. – Willner (2007: 239) evaluated the name Piceion excelsae Pawłowski ex Pawłowski et al. 1928 (nom. inept.) formed from the name of one species only (Picea excelsa Link, nom. illeg.) as misleading. Therefore, he proposed the conservation of younger name Vaccinio-Piceion Br.-Bl. in Br.-Bl. et al. 1939. Considering all current knowledge, this proposal has to be considered as unnecessary and superfluous because the nomenclatural and syntaxonomical application of the name Piceion excelsae Pawłowski ex Pawłowski et al. 1928 is unambiguously and clearly determined by its nomenclatural type belonging to natural acid Norway spruce community: “Names are only labels (…) It is far more important to know exactly what is meant by a name than to find one that seems in every respect to be characteristic.” (Weber et al. 2000: 740; Kučera 2012a: 177). Nomenclatural note 2. – Willner (2007: 239) considered the alliance Oxalido-Piceion (Krajina 1933) Březina et Hadač in Hadač 1962 (= Oxalidion acetosellae Krajina 1933 nom. illeg., Art. 29b) to be homotypic with Piceion excelsae Pawłowski ex Pawłowski et al. 1928 nom. inept. However, as the alliance Piceion abietis is formally mediated by the subassociation Piceetum myrtilletosum Pawłowski et al. 1928 (Wallnöfer 1993: 287) and Krajina (1933: 152) proposed his alliance Oxalidion acetosellae on a base of division of the Piceion abietis alliance and unambiguous exclusion of the considered Piceetum myrtilletosum Pawłowski et al. 1928 from Oxalidion acetosellae, thus Willner’s respective nomenclatural evaluation is incorrect. 4. Selected examples of commonly assumed natural Norway spruce communities (I) The classical case of secondary non-natural Norway spruce forests derived from Carpino-Fagetea communities represent records of Piceetum excelsae (especially Piceetum normale sensu Szafer et al. non Beger 1922) and Piceo-Abietetum albae published by Szafer et al. (1923) from the montane altitudes of the Dolina Chochołowska Valley (the Western Tatras, Poland). The whole region was strongly influenced by historical deforestation, high-mountain pasture and forest exploitation due to mining-related activities. As a result, Fagus population was completely destroyed at the time within the whole valley (Szafer et al. 1923; Hołub-Pacewiczowa 1931; Fabijanowski 1962) and the Fagus phytocoenoses, more or less degraded by historical land management, were in the beginning of the 20th century preserved only in the adjacent territories in Poland and Slovakia (Szafer et al. 1927a; Svoboda 1939; Černušáková & Dobšovičová 2005; Kučera 37 The important syntaxonomical proposals published by Hadač (1962) and Hadač et al. (1969) were not taken into account; partially only in the author’s later paper (Passarge 1978). 191 P. K u č e r a 2012a; Ociepa et al. 2020; Pielech et al. 2021). The anthropogenic origin of the considered Picea and Picea-Abies forests of the Dolina Chochołowska Valley was correctly identified already by Szafer et al. (1927b). (II) Hieracio transsilvanici-Piceetum Pawłowski et Br.-Bl. in Br.-Bl. et al. 1939 nom. corr. (Hieracio rotundatae-Piceetum Pawłowski et Br.-Bl. in Br.-Bl. et al. 1939 nom. inept., resp. Hieracio rotundatae-Piceetum (Zlatník 1935) Pawłowski et Br.-Bl. in Br.-Bl. et al. 1939 nom. inept.)38 described from the Eastern Carpathians is at least partially based on upper montane degraded mixed Fagus forests and substitutionary Picea forests. This evaluation could be supported by presence of species as Anemone nemorosa, Galeopsis speciosa or high constancy of Calamagrostis arundinacea or Athyrium filix-femina (see Zlatník 1935), both unusual for parallel Western Carpathian mittelgebirge mountain ranges. Detailed reconsideration of the real natural distribution of supramontane (i.e. natural) Norway spruce woodlands – equivalent to the one made for the Western Carpathians (Kučera 2012a) – should be realized. (III) Luzulo luzuloidis-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 nom. corr. (see comments below under ‘A’) and Bazzanio trilobatae-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 nom. corr. (Mastigobryo-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 nom. inept.) (see comments below under ‘B’) are two communities originally described from the Northern Black Forest (southwest Germany). Up to the present, both names (or at least the second one) are applied for true Vaccinio-Piceetea woodlands (cf. Pott 1992; Seibert 1992; Wallnöfer 1993; Exner 2007; Bergmeier 2020). However, little attention was paid to the fact that the original relevé data of both associations as well as other communities published by Schmid & Gaisberg (1936, relevé tables II–VI) were recorded purposefully on carefully selected relevé plots limited to the phytocoenoses dominated by Picea abies regardless of their naturalness (see Schmid & Gaisberg 1936: 28). For this reason, the relevés of Oberdorfer (1938, tabs. 24, 25) and Bartsch & Bartsch (1940, tabs. 20, 21) represent vegetation records partially less biased in respect of tree species occurrences which also influenced the overall recorded species richness. More numerous and phytocoenotically diverse records of the woodland cover of the Northern Black Forest were published by MurmannKristen (1987), including various Fagus and Abies phytocoenoses. As seen from most of the later various geobotanical applications (cf. Seibert 1992; Kučera 2007, 2012a: 241–242 and 2019b, Suppl. 3/sect. II), the artificial phytocoenotical character of the original diagnoses of Luzulo luzuloidis-Piceetum and Bazzanio-Piceetum was neglected and, for example, in the lands of former Czechoslovakia the latter association was commonly understood as a natural wetland Picea community, i.e. for the most part as pseudonym Bazzanio trilobatae-Piceetum auct. non (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 s. str. This association was understood by some German authors in the same way (e.g. Schlüter 1969; Dierssen & Dierssen 1984; Murmann-Kristen 1987); on the contrary, such wetland The formal validity of names published by Zlatník (1935) (for example, Dentario bulbiferae-Fagetum Zlatník 1935) could still be disputable: even though the synoptic tables 1 and 2 of Zlatník (1935, beginning after page 122) only contain the species of forest undergrowth, the respective frequency values for individual tree canopy species within the considered associations could be found elsewhere (see Zlatník 1935: 99, 112–113, 116–117) as for example Braun-Blanquet et al. (1939: 28: values for Picea abies) did. Probably the only possible way to finish the solution of the nomenclatural issue concerning the original association names of Zlatník (1935) is to ask for a binding decision following the regulations of the new Code edition (Theurillat et al. 2021). 38 192 Norway spruce woodlands in Slovakia and their syntaxonomical classification Norway spruce phytocoenoses were excluded from Bazzanio-Piceetum in the most recent Austrian woodland vegetation survey (cf. Exner 2007). However, already Schmid & Gaisberg (1936) (see also Oberdorfer 1938, Bartsch & Bartsch 1940) reminded of important anthropogenically induced changes of these communities. The long-term artificial predominance of Norway spruce considerably unified the appearance of the field layer flora (cf. Braun-Blanquet et al. 1939: 33) and supported secondary expansion of the ground layer species as well as their total cover. Thus, the primary floristical differences between different vegetation types mostly disappeared (see relevés of Schmid & Gaisberg 1936, tab. III). Modern geobotanical knowledge on anthropogenic changes of the Northern Black Forest vegetation was summarized by Murmann-Kristen (1987) who explicitly labelled the original diagnosis of Luzulo luzuloidis-Piceetum as ‘woodland-artificial forest hybrid’. However, the original relevés of Schmid & Gaisberg (1936) separated by Braun-Blanquet et al. (1939) into the Bazzanio trilobatae-Piceetum (ut Mastigobryo-Piceetum) also represent succession stages of anthropogenic phytocoenoses, partially on formerly deforested habitats. (A1) Within the Luzulo-Piceetum (= Piceetum normale of Schmid & Gaisberg [1936]), the ‘Luzula sylvatica facies’ represents a degraded, substitutionary Picea version of distinct Luzula sylvatica-rich montane mixed Abies-Fagus-Picea woodland (cf. Oberdorfer 1938, tab. 24, rel. 8; Bartsch & Bartsch 1940, tab. 21, rels. 10–12) somewhat related to Aceri-Fagetum Bartsch et Bartsch ex Trautmann 1952 (incl. Fago-Piceetum adenostyletosum albifrontis Oberdorfer 1938 nom. inept.).39 The former community was later classified as Luzulo luzuloidis-Abietetum luzuletosum sylvaticae Oberdorfer 1957 or, respectively, Adenostylo-Piceetum Hartmann 1953 (see below). It might constitute a Luzulo-Fagetalia equivalent to Acero-Fagetum. (A2+3) Both Luzulo-Piceetum facies Oxalis-Myrtillus and Luzula luzuloides-Myrtillus of Schmid & Gaisberg (1936) represent the nomenclaturally typical form of the association and at the same time degraded (see also Murmann-Kristen 1987) montane Luzulo-Fagetalia communities (cf. the occurrences of Carex pilulifera and Agrostis sp.). The later published association Luzulo luzuloidis-Abietetum Oberdorfer 195740 is for the most part syntaxonomically synonymous to Luzulo luzuloidis-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 nom. corr. and, at the same time, they both are closely related to the slightly species-richer association Galio rotundifolii-Piceetum J. Bartsch & M. Bartsch 1940 (see Bartsch & Bartsch 1940, tab. 21) with Ajuga reptans, Anemone nemorosa, Galium rotundifolium and Paris quadrifolia. (B1+2) Equivalently, the original diagnoses of the facies Myrtillus-Hylocomium and Myrtillus- Hylocomium-Sphagnum within the subassociation Bazzanio-Piceetum myrtilletosum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 193941 (Art. 14b) represent an impoverished version of the previously mentioned association Luzulo luzuloidis-Piceetum, i.e. A possible older publication of this name should be searched. Alternatively, the long time accepted name ‘Aceri- Fagetum Bartsch & Bartsch 1940’ should be proposed as nomen conservandum in respect of nomenclatural stability (cf. Kučera 2013a; cf. Theurillat et al. 2021). 39 This widely accepted and long-term used syntaxonomic name should probably be proposed for conservation against Luzulo luzuloidis-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 nom. corr. 40 This name would hypothetically constitute the autonym Bazzanio-Piceetum typicum (Art. 13b) according to lectotypification by Kučera (2010a: 834); however, see below. 41 193 P. K u č e r a even more degraded lower montane Luzulo-Fagetalia phytocoenoses; however, some habitats could also naturally promote a higher abundance of Picea. Already Schmid & Gaisberg (1936) reminded of the artificial character of this forest community and the higher abundance of Abies in the surveyed forests (outside of their relevé plots) and the same could be expected for the potential natural distribution of Fagus (see Murmann-Kristen 1987). In respect of an earlier lectotypification (Kučera 2010a) and contrary to my previous statement (Kučera 2009a), these two Bazzanio-Piceetum myrtilletosum types represent probably more humid variants of the subassociation Fago-Piceetum vaccinietosum Oberdorfer 1938 s. str. from the syntaxonomical point of view. Therefore, they should be united under the association name Fago-Piceetum Oberdorfer 1938 (syntax. syn.: Vaccinio myrtilli-Abietetum Zeidler 1953; non: Myrtillo-Abietetum Kuoch 1954 nom. illeg. [Art. 14b, 31], Bazzanio-Abietetum (Meyer 1949) Ellenberg et Klötzli 1974). Both names of Zeidler (1953) and Oberdorfer (1938) represent phytocoenologically very similar species-poor, anthropogenic mixed Abies forest communities, thus Oberdorfer’s association name Fago-Piceetum is probably the oldest validly published name for this syntaxon. (B3) The phytocoenoses of Myrtillus-Aspidium (Dryopteris carthusiana) 42 facies of the Bazzanio- Piceetum myrtilletosum (Schmid & Gaisberg 1936, tab. III) were recorded on ± steep and scree habitat types. Irrespective of their purposive Picea-biased character (see above), they should represent a slightly more natural community with originally more abundant Abies alba – cf. Silver fir abundances within the ecologically even more extreme habitats of Sphagno quinquefarii-Abietetum Chipon et al. ex Cartier et al. in Boeuf et al. 2014 (Boeuf et al. 2014). They form an ecologically ± analogous community to Luzulo luzuloidis-Abietetum luzuletosum sylvaticae (see above), but they occupy nutrient-poorer and more soil skeleton-rich habitats. Bartsch & Bartsch (1940, tab. 20) recorded partly the same community; however, partially with anthropogenic occurrence of Molinia caerulea (see below). Their Bazzanio-Piceetum relevés were later included by Oberdorfer (1957) into the subassociation ‘Bazzanio-Piceetuum typicum’ specifically including the Bazzania scree phytocoenoses (see below). Similar scree slope habitats with dominant D. dilatata are in the higher elevations of the Sudetes and the Western Carpathians occupied by woodland stands of the association Dryopterido dilatatae-Piceetum Sýkora ex Jirásek 1996 which is, in contrast, considered for true natural Piceion abietis community according to current knowledge (Jirásek 2002; cf. Kučera in red.). (C1–3) According to Schmid & Gaisberg (1936), the stands of subassociation Bazzanio-Piceetum vaccinietosum vitis-idaeae (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 (Rec. 10C vs. the previous name Bazzanio-Piceetum myrtilletosum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939) – especially the facies Vaccinium-Hylocomium-Sphagnum and Vaccinium-Hylocomium – should respresent the actual forest vegetation of higher elevations of the Northern Black Forest. Their original relevés still indicate a mixed Abies and Picea woodland and Schmid and Gaisberg properly recognized the artificial character of almost pure Norway spruce stands commonly found in the considered altitudinal zone. However, the existence of a supramontane natural Norway spruce altitudinal zone is not expected within the Northern Black Forest (see Bartsch & Bartsch 1940 vs. Murmann-Kristen 42 Most of the records of Dryopteris carthusiana of Schmid & Gaisberg (1963, tab. III) may, in fact, represent D. dilata (cf. Oberdorfer 1938, tabs. 24, 25; Bartsch & Bartsch 1940, tab. 20, 21; Murmann-Kristen 1987). 194 Norway spruce woodlands in Slovakia and their syntaxonomical classification 1987 and there cited literature). Records of Abies alba high cover-abundance values confirm the substantial vitality of this tree species also in the higher elevations of the Northern Black Forest (Bartsch & Bartsch 1940, Murmann-Kristen 1987). In this respect, further field studies should be performed to determine the potential natural abundance of Abies (as well as Fagus) in the highest vegetation zone of the Northern Black Forest as well as to solve the disputable question of their syntaxonomical classification (among very acid and species-poor upper montane Luzulo-Fagetalia syntaxa or, less probably, Piceetalia abietis syntaxa). In addition, the almost constant presence of Molinia caerulea within the Bazzanio-Piceetum vaccinietosum vitis-idaeae published by Schmid & Gaisberg (1936, tab. III), partially by both Bartsch & Bartsch (1940, tab. 20) and Oberdorfer (1938, tab. 25) indicate strong anthropogenic influence on the respective habitats: following Schmid & Gaisberg (1936), it should be reminded that past deforestation contributes to secondary expansion of Molinia. Murmann-Kristen (1987) explicitly includes M. caerulea in the group of indicators of former pasture management within the Northern Black Forest, together with Pteridium aquilinum and partially Galium saxatile and Sphagnum capillifolium. Thus, especially relevés published by Schmid and Gaisberg represent stages of spontaneous woodland secondary succession, probably mostly on historical totally deforested areas. (C1) In respect of the preceding Bazzanio-Piceetum lectotypifications (Kučera 2010a), the forest facies Vaccinium-Hylocomium-Sphagnum described by Schmid & Gaisberg (1936) and later transferred into Bazzanio-Piceetum vaccinietosum vitis-idaeae (Braun-Blanquet et al. 1939) should be considered as ecologically and phytocoenologically distinct syntaxon. In regard to considerable floristical similarity to the community described by Kuoch (1954) as ‘Myrtillo- Abietetum Kuoch 1954 Bazzania-variant’, the considered unit should be included into Myrtillo-Abietetum. However, considering the nomenclatural and syntaxonomical circumstances, this syntaxon is here differentiated within the association Lycopodio annotini-Abietetum Thébaud 200843 (syntax. syn. Myrtillo-Abietetum Kuoch 195444 nom. illeg.; non: Lycopodio-Abietetum Fajmonová 1974 ass. prov. [Art. 3b]) as the following subassociation: Lycopodio annotini-Abietetum albae vaccinietosum vitis-idaeae (Schmid et Gaisberg 1936) P. Kučera comb. nov. hoc loco (basionym: Piceetum vaccinietosum Schmid et Gaisberg 1936 s. str. (as delimited by its lectotypification), Schmid & Gaisberg (1936), tab. III; nomenclatural type: Kučera 2010a: 834). Considering the variability of the here accepted concept of the association Lycopodio annotini-Abietetum Thébaud 2008, following subassociations are further differentiated: – Lycopodio annotini-Abietetum typicum subass. nov. hoc loco (Art. 26) (≡ Lycopodio annotini-Abietetum Thébaud 2008 s. str. – original diagnosis: Thébaud (2008: 86), tab. 1, relevés of the column A; nomenclatural type: Thébaud [2008: 77], holotype), 43 Thébaud (2008) lists species including Blechnum spicant, Lycopodium annotinum, Plagiothecium undulatum, Ptilium crista-castrensis, Rhytidiadelphus triquetrus as differential taxa against Myrtillo-Abietetum Kuoch 1954 nom. illeg. (Art. 31, to Vaccinio myrtilli-Abietetum Zeidler 1953; cf. Art. 14b – without the correction of the Kuoch’s name form). However, the original diagnosis of the latter association proves their presence also in Myrtillo-Abietetum. For this reason, these two syntaxa are here united into one association with several subunits. 44 Lectotypification Thébaud (2008: 76). 195 P. K u č e r a – Lycopodio annotini-Abietetum bazzanietosum trilobatae P. Kučera subass. nov. hoc loco (original diagnosis: Myrtillo-Abietetum Kuoch 1954 Pleuroschisma-Variante, Kuoch (1954), tab. 7, rels. 34–46; nomenclatural type: Kuoch (1954), tab. 7, rel. 41). – Lycopodio annotini-Abietetum avenelletosum flexuosae (Thébaud 2008) P. Kučera comb. nov. hoc loco (basionym: Myrtillo-Abietetum avenelletosum flexuosae Thébaud 2008, Thébaud (2008: 76); nomenclatural type: Thébaud [2008: 76]). – Lycopodio annotini-Abietetum mycelidetosum muralis (Thébaud 2008) P. Kučera comb. nov. hoc loco (Art. 26, 44) (basionym: Myrtillo-Abietetum typicum differentiated by Thébaud (2008: 76); original diagnosis: Myrtillo-Abietetum Kuoch 1954 typische-Variante, Kuoch (1954), tab. 7, rels. 19–33;45 nomenclatural type: Thébaud [2008: 76]; the name-giving taxon Mycelis muralis is given by Kuoch (1954) under the older synonym ‘Cicerbita muralis (L.) Wallroth (Lactuca)’). (C2) The second original subcommunity of the Bazzanio-Piceetum vaccinietosum vitis-idaeae – the Vaccinium-Hylocomium facies Schmid & Gaisberg (1936) – was mostly recorded on steeper slopes of the higher elevations of the Northern Black Forest and the relevés represent mostly substitutionary Picea phytocoenoses according to the original authors. More detailed field examination should clear the syntaxonomical position of this subcommunity, either within Bazzanio-Piceetum sensu Oberdorfer 1957 or Lycopodio annotini-Abietetum or Sphagno quinquefarii-Abietetum. (C3) The third, Vaccinium-Sphagnum facies of Bazzanio-Piceetum vaccinietosum vitis-idaeae of Schmid & Gaisberg (1936) (cf. ‘Bazzanio-Piceetum vaccinietosum uliginosi’ Seibert 1992) demonstrates development of a waterlogged habitat; however, the species diversity and abundances are anthropogenically influenced by past deforestations and other indirect influences as well (Molinia caerulea, Pteridium aquilinum). Nevertheless, the presence of Empetrum nigrum and Vaccinium uliginosum in the smaller part of relevés indicate that the respective original relevés of Schmid & Gaisberg (1936) represent a distinct waterlogged community. Considering the anthropogenic influence on the phytocoenoses included by Schmid & Gaisberg (1936) into the Vaccinium-Sphagnum facies, the original relevés should be syntaxonomically revised and divided: probably into Lycopodio annotini-Abietetum albae vaccinietosum vitis-idaeae, Lycopodio annotini-Abietetum bazzanietosum trilobatae and Soldanello-Piceetum (see above) and, marginally, Vaccinio uliginosi-Pinetalia. Less biased relevés were published by Dierssen & Dierssen (1984, tab. 25); however, their records represent two different communities: –the relevés 1– 8 belong to the order Sphagno-Piceetalia P. Kučera 2019 and they are close to the association Soldanello montanae-Piceetum Volk in Br.-Bl. et al. 1939 (cf. subassociations bazzanietosum trilobatae and caricetosum nigrae; Kučera 2019b and Kučera in red.); for comparison the original diagnosis of the association Bazzanio-Abietetum (Meyer 1949) Ellenberg et Klötzli 1974 is also available (basionym: Mastigobryeto-Piceetum abietetosum Meyer 1949; cf. Meyer 1949 vs. Ellenberg & Klötzli 1972: 46; incl. Rhytidiadelpho lorei- Abietetum albae typicum Frehner ex Boeuf in Boeuf et al. 2014; cf. Boeuf et al. 2014) decribed for phytocoenoses of the lower altitudes; Species-rich relevés separated by Kuoch (1954, tab. 7, rels. 1–18) to the community ‘Myrtillo-Abietetum Kuoch 1954 Lysimachia-Variante’ floristically and ecologically do not belong to the association Lycopodio annotini-Abietetum Thébaud 2008 (cf. also Thébaud 2008: 77). 45 196 Norway spruce woodlands in Slovakia and their syntaxonomical classification –on the contrary, the relevés 9–22 with constant presence of Vaccinium uliginosum, Sphagnum angustifolium, S. magellanicum belong to the order Vaccinio uliginosi-Pinetalia Passarge 1968 (cf. Willner & Steiner 2007). Similarly, Murmann-Kristen (1987) published records of Bazzanio-Piceetum as well, differentiated into two subassociations sphagnetosum and typicum. However, the relevés come from floristically and ecologically different habitats, including: (1) waterlogged wetlands on flat relief (cf. Soldanello-Piceetum), (2) Bazzania-rich woodland of steeper slopes, partially with abundant selected Sphagnum species (? Bazzanio-Piceetum typicum sensu Oberdorfer 1957) and (3) a Vaccinio uliginosi-Pinetalia mire habitat (rel. 11). (C, final notes) As explained above, the specific approach of Schmid & Gaisberg (1936) to the selection of recorded relevé plots (mainly phytocoenoses with Picea abies dominance) was not reflected by most of the later scientists. At the same time, the great number of various later syntaxonomical applications of the association Bazzanio-Piceetum did not correspond to more or less any part of the original diagnosis of Bazzanio-Piceetum s. str. (i.e. as determined by Schmid & Gaisberg 1936). Therefore, although the relevant lectotypifications proposed by Kučera (2010a: 834) were made in effort to focus on the original character of the community as recorded by Schmid & Gaisberg (1936), they would represent a substitutionary Picea forest community and not the application as semi-natural community as presented, for example, by Oberdorfer (1957) and Seibert (1992). In spite of that, the name Bazzanio trilobatae-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 belong to a group of long-accepted and widely known syntaxa names in botanical science. Therefore, conservation of the name application should be considered, especially in the view of the best advantage of the potential use for a ± semi-natural community and at the same time close to Bazzanio trilobatae-Piceetum original diagnosis published by Schmid & Gaisberg (1936). However, to prevent the possibility that the names Soldanello montanae-Piceetum Volk in Br. -Bl. et al. 1939 and Bazzanio trilobatae-Piceetum would become syntaxonomical synonyms – as wetland more or less Sphagnum-rich communities of the order Sphagno-Piceetalia (cf. Kučera 2019b: Soldanello-Piceetum); see, for example, Dierssen & Dierssen (1984) and MurmannKristen (1987) – the appropriate syntaxonomical delimitation of the association Bazzanio trilobatae-Piceetum could be extracted from the relevés included by Oberdorfer (1957: 378) to the subassociation ‘Bazzanio trilobatae-Piceetum typicum’; however, with exclusion of mire communities and thus with specific focus on ± scree Bazzania trilobata-phytocoenoses (cf. Schmid & Gaisberg 1936, tab. III, Myrtillus-Aspidium facies and also Seibert 1992). Therefore, a new conserved nomenclatural type is proposed here following Oberdorfer’s selection of Bazzanio-Piceetum typicum relevés: Bazzanio trilobatae-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 nom. corr. et typus cons. propos. hoc loco Nomenclatural type: Bartsch & Bartsch (1940), tab. 20, rel. 2, lectotypus conservandum hoc loco (cf. also Bartsch & Bartsch (1940), tab. 20, rel. 6). (IV) The association Adenostylo-Piceetum Hartmann 1953 was commonly accepted to represent a synonym to the association Athyrio distentifolii-Piceetum Hartmann ex Hartmann et Jahn 1967 197 P. K u č e r a (see above the nomenclatural note to Athyrio distentifolii-Piceetum). However, the former name is based on relevés of the community ‘Luzulo luzuloidis-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 Luzula sylvatica-Fazies’ (Bartsch & Bartsch 1940, tab. 21, rels. 10–12) which features anthropogenically influenced mixed montane woodland of the class Carpino-Fagetea, originally with higher abundance of Fagus sylvatica (Kučera 2012a: 239–240). (V) The association Luzulo sylvaticae-Piceetum (Wraber ex) Wraber 1963 is commonly considered to represent a natural Picea abies woodland of the alliance Piceion abietis and its distribution is – except of Slovenia – suggested from Ukraine and by some authors within Austria and Romania (Wraber 1955; Zupančič 1999; Šilc & Čarni 2012; Juvan et al. 2013; Dubyna et al. 2019; cf. Wallnöfer 1993 vs. Exner 2007; Chifu 2014 vs. Coldea 2015). However, the only key to the appropriate interpretation of any syntaxon (Theurillat et al.2021) is the original diagnosis provided within the first valid publication of the respective name (and placed in a broader context): in this case the original relevé data of Luzulo sylvaticae-Piceetum published by Wraber (1963, tab. 1), mostly from the Pohorje Mts, a north Slovenian mountain range. Already Wraber (1963) highlighted the fact that Fagus sylvatica has substantial abundance within the considered forest type (almost 60% in the tree layer of 54 published relevés, half of the occurrences with cover-abundances 2 to 5, locally in co-dominance with Picea at the altitude of 1400 m a.s.l. on the north-west slope, abundant even at 1450 m a.s.l.) and that the long-term land management has markedly negative impact on the natural distribution of Fagus as well as of Abies alba. On the contrary, existence of pure Picea stands was explained by impacts of applied land management by Wraber (1955). Nevertheless, the highest-most localities of low-growth Fagus trees were noted by Wraber (1956, 1963) even at ca. 1520 –1530 m a.s.l. In addition, Wraber (1963: 104) included to his Luzulo sylvaticae-Piceetum even selected pure Fagus stands of high altitudes of the Pohorje Mts. However, the most important phytocoenological feature is the pattern of the floristical variability of the original diagnosis of Luzulo sylvaticae-Piceetum. Although the relevés of the Wraber’s subassociations reliably represent various ecological habitat types, they are considerably uniform – the only exception is the distinct habitat-specific subassociation Sphagnetosum acutifolii. This fact means that approximately the same vegetation composition within the individual subassociations is developed irrespectively to (historically recorded) Picea/Abies/Fagus abundances. Additional original relevés published by Zupančič (1999) show a similar vegetation type. As mixed Fagus woodlands are generally not classified within the class of natural Picea abies communities (Vaccinio-Piceetea) in the present, an other explanation for the vegetation type recorded by Wraber (1963) is needed. Wraber thoroughly studied the vegetation of Pohorje Mts and, among others, differentiated a distinct upper montane mixed Fagus community which was later named Aceri-Fagetum pohoricum (Wraber 1953, 1954, 1955, 1956, 1963) – the corresponding name was formally validated by Zupančič (1969). However, the development of this community was supposed by Wraber (1963) only locally under ‘more favorable habitat conditions within the Norway spruce vegetation zone’, up to 1400–1450 m a.s.l.. and the other type of more or less pure Fagus phytocoenoses was classified by Wraber into Luzulo sylvaticae-Piceetum (Wraber 1963: 157). However, Fagus phytocoenoses are not classified within Vaccinio-Piceetea communities (i.e. natural Picea abies woodlands) in compliance to modern phytocoenological approaches as they 198 Norway spruce woodlands in Slovakia and their syntaxonomical classification belong to Carpino-Fagetea syntaxa, at the same time the existence of multiple Fagus stands indicate affiliation of such habitats to upper montane vegetation and not to the supramontane zone. During my visit to Slovenia, existence of (close to natural) Fagus woodland islands above 1420 –1430 m a.s.l. in the Pohorje Mts. was confirmed on SE and NEN slope orientation eastwards of Jezerski vrh Mt. (1537 m a.s.l.) (e.g. 46°29'25" N, 15°16'35" E, ca. 1435 m a.s.l., 8.11.2013, P. Kučera, not.). The most conspicuous observed vegetation feature is a more or less very sharp vegetation boundary separating spatially directly adjacent pure Fagus and pure Picea phytocoenoses inhabiting the same ecological habitat. In addition, remnants of mountain pastures are present here and there indicating that the distribution of these Fagus stands was anthropogenically reduced (see also Wraber 1954). Symptomatic are not only more or less horizontal but also sharp vertical borders of such Fagus stands or islands (from above and even from below). Significant anthropogenic impact is further illustrated by occurrences of Nardus stricta, Potentilla erecta, Veronica officinalis, (partially also Deschampsia cespitosa), Hypericum maculatum and even H. perforatum which indicate former influence of mountain pasture or, alternatively, historical deforestation of the respective relevé localities of Wraber (1963). Moreover, Wraber’s records of species including Polygonatum verticillatum, Senecio ovatus, Anemone nemorosa, Galeobdolon luteum, Knautia drymeia, Silene dioica or Phyteuma spicatum indicate the rather upper montane mixed Carpino-Fagetea community than true natural acid Norway spruce community, represented in the regions of most Central European mittelgebirge mountain ranges built by silicate rocks most frequently by the association Lophozio-Piceetum. Long-term stability of the tree layer species composition, i.e. permanent dominance of Fagus without significant traces of re-establishment of Picea-dominated mixed stands, contradicts to hypothesis of Wraber (1963: 157) that such Fagus islands represent the result of selective tree harvesting. On the contrary, the secondary succession of Fagus within adjacent Picea stands is progressively developed – depending only on the amount of preserved (or previously recolonised) Fagus trees in the surroundings. Such processes indicate spontaneous re-establishment of natural mixed Fagus woodland of the upper montane vegetation zone. The same stability and Fagus secondary succession was observed in the Western Carpathian mountain ranges (Kučera 2012a, 2013a, 2014, 2015), although in lower altitudes due to more northern latitude (around 1350–1370–1400 m a.s.l.). It should be noted, that the respective vegetation changes should not be assigned only to climate change as its impact to the respective anthropogenic spreading of Fagus should be expected mainly within the potential natural altitudinal zone of Picea woodlands as reconstructed for the period 1950–1980. Another feature similar to surveyed Western Carpathian forest stands is that secondary Picea abies stands anthropogenically substituting the original mixed Fagus stands and bordering preserved Fagus woodland islands have frequently considerably changed the vegetation cover of the undergrowth layers. Long-term, yet temporary, dominance of Picea supported significantly increased ground layer cover as well as abundances of bryophyte species and at the same time subanthropogenic expansion of Vaccinium myrtillus, V. vitis-idaea, Homogyne alpina, partially also Luzula sylvatica. During spontaneous reverse succession of Fagus described above, these temporary vegetation changes disappear; however, this process would last more decades in high altitudes, where mixed Fagus woodlands were mostly destroyed. 199 P. K u č e r a Within the Pohorje Mts, multiple occurrences of high elevation Fagus stands, continuous woodlands or anthropogenically restricted islands could be found. as it can be seen from the maps provided by ‘The Surveying and Mapping Authority of the Republic of Slovenia’ (http://www. geoportal.gov.si/eng/viewers/), e.g. on the slopes of Mala kopa Mt. (1524 m), Otiše Mt. (1416 m), Črni vrh Mt. (1543 m), Jezerski vrh Mt. (1537 m), Javorič (1430 m). The evidence of Fagus woodland occurrences around 1400 m a.s.l. (and higher) is most important also in northwardly oriented habitats. Together, they indicate that the upper montane altitudinal vegetation zone, originally occupied by mixed Fagus woodland, reached probably ca. 1460 –1500 m a.s.l. in the Pohorje Mts and, equivalently, in other non-carbonate mountain ranges of non-dinaric mittelgebirge character. The statement of Wraber (1963) that the altitudinal zone from 1250 –1300 m a.s.l. is generally taken by Luzulo sylvaticae-Piceetum as a natural Norway spruce community is questionable. The opinion of Wraber (1963) that Luzulo sylvaticae-Piceetum represents for the most part a degraded Carpino-Fagetea phytocoenoses is further supported by soil types developed under Luzulo sylvaticae-Piceetum: according to Wraber (1963) frequently cambisols are developed under stands which he classified within the Luzulo sylvaticae-Piceetum while, on the contrary, podzols are characteristic of the altitudinal zone of natural Norway spruce communities. The observed vegetation and ecological pattern indicate that the original relevé data of the association Luzulo sylvaticae-Piceetum published by Wraber (1963) represent for the most part significantly anthropogenically modified phytocoenoses of the former natural mixed Fagus communities, and as such they have to be classified within the class Carpino-Fagetea (see above the related syntaxonomical comments within the individual subchapters on acid Norway spruce communities in Slovakia and Kučera 2022). Consequently, the below presented typifications aim to adjust application of the considered syntaxa to phytocoenological character recorded by Wraber (1963). In this sense, we also have to interprete the high proportion of Fagus and Abies (58%) in the group of natural ‘acidophilous high elevation spruce, larch and fir forests’ (i.e. including relevés from the Pohorje Mts.) within the Slovenian relevé dataset evaluated by Juvan et al. (2013). It is possible that a significant number of the relevés supposed to represent natural Norway spruce communities come from substitutionary Picea variants of Carpino-Fagetea communities (cf. above Table 1 and Kučera 2022). (VI) The association Calamagrostio villosae-Piceetum Schlüter 1966 originally described from the Thuringian Forest (eastern central Germany) was brought into use to replace the younger homonymous name Calamagrostio villosae-Piceetum Hartmann et Jahn 1967 nom. illeg. (Art. 31). However, the oldest validly published name corresponding to the latter name is Lophozio-Piceetum Volk in Braun-Blanquet et al. 1939 (Kučera 2012a). The name Calamagrostio villosae-Piceetum Schlüter 1966 was proposed by Chytrý (in Chytrý et al. 2013b: 406) as nomen conservandum against Lophozio-Piceetum Volk in Braun-Blanquet et al. 1939 and Sphagno-Piceetum (Tüxen 1937) Hartmann 1953. However, the two latter names represent syntaxonomically different communities in comparison to anthropogenically induced substitutionary forest stands of the original diagnosis of Calamagrostio villosae-Piceetum Schlüter 200 Norway spruce woodlands in Slovakia and their syntaxonomical classification 1966 (see also above notes within the subchapter Lophozio-Piceetum and Kučera 2019b). Therefore, the considered nomenclatural proposal is redundant. (VII) Careful consideration is necessary also in the case of the original phytocoenoses included by Hartmann & Jahn (1967) in their validly described associations Calamagrostio villosae-Piceetum Hartmann et Jahn 1967 nom. illeg. (Art. 31) as well as Athyrio distentifolii-Piceetum Hartmann ex Hartmann et Jahn 1967. In comparison to natural Picea woodlands of the Western Carpathian mittelgebirge mountain ranges, the original relevés published by Hartmann & Jahn (1967, tabs. 1, 2) contain significant number of species occurrences including Blechnum spicant, Calamagrostis arundinacea, Galium saxatile, Streptopus amplexifolius, Trientalis europaea and especially Polygonatum verticillatum. The first explanation is that their frequencies might represent a phytochorological variant of natural Picea abies phytocoenoses within the parallel Hercynian mittelgebirge mountain ranges. However, in my opinion a more probable interpretation is that the supposedly natural Picea forest stands having higher frequence of these species (except of Trientalis) within the considered relevés published by Hartmann & Jahn (1967) represent, in fact, mostly sub-/anthropogenic stands of degraded Carpino-Fagetea communities, developed under the impacts of long-term land management which caused a considerable species change of the original mixed Carpino- Fagetea phytocoenoses and a modification of habitat conditions (see above comments to Athyrio distentifolii-Piceetum athyrietosum filicis-feminae Hartmann et Jahn 1967 with regard to the revision of the natural distribution of Picea abies woodlands in the Western Carpathians [Kučera 2012a]). This view is supported by Murmann-Kristen (1987: 92) in case of Polygonatum verticillatum (in case of upper montane acid mixed Fagus woodlands); however, see also Blechnum spicant, Bazzania trilobata (Murmann-Kristen 1987, tab. 7, 8). Evidences of ± similar occurrence patterns of these species from the Hercynian region within supposedly natural Picea abies (or in broader sense coniferous) woodlands were published by Matuszkiewicz & Matuszkiewicz (1960); Samek (1961); Dunzendorfer (1974); Matuszkiewicz (1977); Sofron (1981); Neuhäuslová & Eltsova (2003); Ewald et al. (2011); cf. also Chytrý et al. (2013b). This fact indicates the increased possibility that field revision of the natural distribution Picea abies woodlands is needed also in European countries other than Slovakia (including Carpathian part of Moravia and Silesia; cf. subchapters Lophozio- Piceetum and Athyrio distentifolii-Piceetum). Although Blechnum, Calamagrostis arundinacea, Polygonatum verticillatum, Streptopus etc. undoubtedly belong to montane species (sensu lato) in acid habitats of Central European mittelgebirge mountain ranges, they may be typical of upper montane mixed Fagus woodlands (Carpino-Fageta) and, as a general rule, they also indicate their anthropogenic Picea variants (cf. Oberdorfer 1938; Schmid & Gaisberg 1936; Bartsch & Bartsch 1940) instead of being character-species for supramontane Picea woodlands (Vaccinio-Piceetea) in Central Europe (cf. Mikyška 1972; Dunzendorfer 1974; Petermann et al. 1979; Neuhäuslová & Sofron 2005; Ewald et al. 2011; Hédl in Boublík et al. 2013 [Calamagrostio villosae-Fagetum] vs. Chytrý et al. 2013b). Their distribution in true natural Norway spruce communities of Central European mittelgebirge mountain ranges within the alliance Piceion abietis is rather sporadic or, in selected cases, limited to special habitats (see above). In any case they should not be considered as Braun-Blanquetian character species of the alliance Piceion abietis (or the class Vaccinio-Piceetea). 201 P. K u č e r a 5. Nomenclatural and syntaxonomical supplement As indicated above, the phytocoenological application of the association Luzulo sylvaticae-Piceetum Wraber 1963 frequently differs from the floristical and ecological content of the original diagnosis of this unit. Therefore, following lectotypifications are proposed to consolidate the use of the respective syntaxa in accordance with their phytocoenotic content defined by the relevés of Wraber (1963): –Luzulo sylvaticae-Piceetum Wraber 1963 – nomenclatural type: Wraber (1963), tab. 1, rel. 18, lectotypus hoc loco. –Luzulo sylvaticae-Piceetum sphagnetosum capillifolii Wraber 1963 nom. corr. (Art. 44) (original name: Luzulo sylvaticae-Piceetum sphagnetosum acutifolii Wraber 1963 nom. inept.; Rec. 10C) – nomenclatural type: Wraber (1963), tab. 1, rel. 4,46 lectotypus hoc loco. Syntaxonomical and ecological relation to Soldanello montanae-Piceetum homogynetosum alpinae (Trautmann 1952) P. Kučera 2019 (order Sphagno palustris-Piceetalia) should be studied in more detail. –Luzulo sylvaticae-Piceetum rhytidiadelphetosum lorei Wraber 1963 (Art. 14b) – nomenclatural type: Wraber (1963), tab. 1, rel. 5,47 lectotypus hoc loco. – Luzulo sylvaticae-Piceetum typicum (≡ Luzulo sylvaticae-Piceetum typicum Wraber 1963) – nomenclatural type: Wraber (1963), tab. 1, rel. 18, automatical lectotype (Art. 5b). Regardless of the altitudes of the individual original stand, stands of this subassociation typically represent impoverished version of phytocoenoses of the Luzulo sylvaticae-Piceetum fagetosum (still preserved are Galeobdolon lutetum, Polygonatum verticillatum, Athyrium filix- femina, Phyteuma spicatum etc.), while secondary more abundant Picea supported expansion of Calamagrostis villosa and bryophytes’ occurrence in higher number (even presence of lichens); see also reclassification of Wraber’s original relevés by Zupančič (1999, tab. 6) to other subunits. –Luzulo sylvaticae-Piceetum avenelletosum flexuosae Wraber 1963 nom. corr. (Art. 44) (original name: Luzulo sylvaticae-Piceetum deschampsietosum flexuosae Wraber 1963 nom. inept.) – nomenclatural type: Wraber (1963), tab. 1, rel. 36, lectotypus hoc loco. This community represents probably a species-poor Luzulo-Fagetalia syntaxon. –Luzulo sylvaticae-Piceetum fagetosum sylvaticae Wraber 1963 – nomenclatural type: Wraber (1963), tab. 1, rel. 42, lectotypus hoc loco. –Luzulo sylvaticae-Piceetum calamagrostietosum arundinaceae Wraber 1963 – nomenclatural type: Wraber (1963), tab. 1, rel. 47, lectotypus hoc loco. As specified by Wraber (1963), this community is developed in a more steep habitat and probably represents a separate community, cf. Aceri-Fagetum calamagrostietosum arundinaceae as defined by Bartsch & Bartsch (1940). –Luzulo sylvaticae-Piceetum doronicetosum austriaci Wraber 1963 – nomenclatural type: Wraber (1963), tab. 1, rel. 54, lectotypus hoc loco; paralell to Aceri-Fagetum adenostyletosum alliariae as defined by Bartsch & Bartsch (1940)? 46 I.e. not from the Carex brizoides-variant of Wraber (1963: 112–114), cf. Luzulo sylvaticae-Piceetum caricetosum brizoidis of Zupančič (1999) where he included relevés of Wraber (1963) from subunits other than Luzulo sylvaticae- Piceetum sphagnetosum capillifolii Carex brizoides-variant. 47 I.e. not from the Vaccinium myrtillus-variant of Wraber (1963: 115–116, tab. 1). Relevés 8 and 9 might represent a degraded form of Luzulo sylvaticae-Piceetum calamagrostietosum arundinaceae. 202 Norway spruce woodlands in Slovakia and their syntaxonomical classification Willner & Zukrigl (1999) and Willner (2007: 239) proposed the name Homogyno alpinae- Piceetum Zukrigl 1973 for conservation against the older names Luzulo sylvaticaePiceetum Wraber 1963 and Homogyno alpinae-Piceetum Samek 1961 and explained the reason why the correct date of valid publication of other assumedly synonymous name Larici-Piceetum proposed by Ellenberg & Klötzli (1972) is, in fact, the year 1974. However, as explained above, the original diagnosis of the association Luzulo sylvaticae-Piceetum Wraber 1963 represents for the most part anthropogenic degraded Picea-Fagus phytocoenoses of the upper montane vegetation zone and the respective relevés should be classified within the class Carpino-Fagetea. Therefore, the names Homogyno alpinae-Piceetum Zukrigl 1973 and Luzulo sylvaticae-Piceetum Wraber 1963 should not be evaluated as syntaxonomical synonyms, as they belong to two different classes. The older homonym Homogyno alpinae-Piceetum Samek 1961 nom. superfl. (Art. 29c) was already mentioned by Zukrigl (1973: 118) and this author also correctly recognized that its original phytocoenological description does not fully correspond with natural supramontane Norway spruce wodlands. As it could be seen from the original diagnosis of the association – and especially of the subassociation typicum (Samek 1961: 77, Tab. III), the community is mostly based on upper montane secondary Picea phytocoenoses of the class Carpino-Fagetea (low altitudes, occurrence of Anemone nemorosa, Polygonatum verticillatum, Blechnum spicant). Moreover, Samek (1961: 75) (indirectly) published his name as nomen superfluum to Soldanello montanae-Piceetum Volk in Br.-Bl. et al. 1939, though Samek used the latter name in the sense of Oberdorfer (1957) (cf. Kučera 2019b, Suppl. 3, sect. II) instead of intended application of his name as parallel to Lophozio-Piceetum abietis Volk in Br.-Bl. et al. 1939 used by Trautmann (1952) which he neglected. One way or another, the original diagnosis of the association Homogyno alpinae-Piceetum Samek 1961 and the two theoretically (Art. 18b) possible candidates for a nomenclatural type of the association (from the typical variant) would not allow to evaluate the names Homogyno alpinae-Piceetum Samek 1961 and Homogyno alpinae-Piceetum Zukrigl 1973 as syntaxonomical synonyms. There also exists an earlier described homonymous name Homogyno alpinae-Piceetum Samek et al. 1957 (alternative name, Def. 6) which was not mentioned by Willner (2007). However, the subassociation typicum of Samek et al. (1957) represents for the most part historically degraded forests with anthropogenic absence of Abies alba and Fagus sylvatica. The subassociation athyrietosum alpestris belongs partly to Athyrio distentifolii-Piceetum abietis Hartmann ex Hartmann et Jahn 1967 nom. corr. and the habitat-specific subassociation sphagnetosum acutifolii is here described as new association Listero cordatae-Piceetum abietis (Samek et al. 1957) P. Kučera 2023. Therefore the name Homogyno alpinae-Piceetum Samek et al. 1957 should not be considered to be syntaxonomical synonym to Homogyno alpinae-Piceetum Zukrigl 1973. Finally, the most important syntaxonomical circumstance is the typification of the association Homogyno alpinae-Piceetum Zukrigl 1973 made by Willner & Zukrigl (1999: 150). The original diagnosis of the association, i.e. synoptic relevé table of Zukrigl (1973, tab. II) displays considerable phytocoenotic variation of the respective included subunits. However, the mentioned choice of lectotype relevé (indeed from typical stands of the unit, as proposed by Zukrigl [1973]) determined the application of the subassociation Homogyno alpinae-Piceetum typicum (≡ Homogyno alpinae-Piceetum myrtilletosum Zukrigl 1973 [Art. 13b, 14b]) as being 203 P. K u č e r a a corresponding name (Def. X) to species-poor association with the correct name LophozioPiceetum abietis Volk in Br.-Bl. et al. 1939 (= syntax. syn. Homogyno alpinae-Piceetum Zukrigl 1973). Therefore, the proposed conservation of the name Homogyno alpinae-Piceetum Zukrigl 1973 is redundant and floristically richer natural Norway spruce communities of the Alps, especially phytochorologically different communities including †Rhododendron ferrugineum etc. should be classified under different names than Homogyno alpinae-Piceetum Zukrigl 1973. Conclusions The second version and at the same time fourth part of the syntaxonomical revision of the communities traditionally classified within the class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 from the territory of the Slovak Western Carpathians is presented. It is dedicated to Norway spruce woodlands which are classified within the order Piceetalia abietis. The revision is based on careful data selection made in effort to separate the natural supramontane Norway spruce woodlands from the secondary Picea abies phytocoenoses, in which evident secondary succession of Fagus sylvatica is in progress and which belong to the class Carpino-Fagetea Jakucs ex Passarge 1968. The diversity of the Western Carpathian Norway spruce vegetation types found on non-carbonate rocks varying from the most extreme habitats in bouldery scree sites to relatively species-rich acid tall-forb phytocoenoses or moderately waterlogged woodland with partial presence of bog species allows the classification within seven associations arranged in the following scheme: Piceetalia abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. Piceion abietis Pawłowski ex Pawłowski et al. 1928 nom. corr. Lophozio-Piceetum abietis Volk in Br.-Bl. et al. 1939 nom. corr. Athyrio distentifolii-Piceetum abietis Hartmann ex Hartmann et Jahn 1967 nom. corr. Solidagini virgaureae-Piceetum abietis P. Kučera in P. Kučera et al. 2023 Parido quadrifoliae-Piceetum abietis P. Kučera in P. Kučera et al. 2023 Lycopodio annotini-Sorbetum aucupariae P. Kučera 2023 ass. nov. Listero cordatae-Piceetum abietis (Samek et al. 1957) P. Kučera 2023 ass. nov. Sphagno capillifolii-Piceetum abietis Zukrigl 1973 The most important observation resulting from combined efforts of the thorough field research and subsequent re-evaluation of previously published data and assessments emphasize the need of careful recognition and further field studies of anthropogenic, substitutional Picea forests and the elimination of their relevé records from syntaxa of natural Norway spruce woodlands. The example of previously assumed and recently revised data for the Western Carpathians represent an advantageous case study for whole Central Europe. Only such revisions would help to better understand the altitudinal as well as regional distribution of Vaccinio-Piceetea communities, their more accurate floristical and phytoconological delimitation and, ultimately, processes associated with the impact of climate change in upper montane and supramontane woodlands. For example, stands of associations Bazzanio trilobatae-Piceetum (Schmid et Gaisberg 1936) Br.-Bl. et Sissingh in Br.-Bl. et al. 1939 Calamagrostio villosae-Piceetum Schlüter 1966 or Luzulo sylvaticae-Piceetum Wraber 1963 as described by their original authors – usually supposed to be elements of Norway spruce zone – do not represent natural Norway spruce woodlands. Ecological and syntaxonomical differentiation between Central European supramontane Picea abies (and 204 Norway spruce woodlands in Slovakia and their syntaxonomical classification Pinus cembra) altitudinal vegetation zone and taiga woodland of northern East European to Siberian region with †Picea obovata and †Abies sibirica is required as well. Acknowledgements My sincere thanks belong to R. Boeuf for valuable help with various literature sources, further to R. Kanka as well as M. Chytrý and S. Pecháčková (original manuscript of J. Sofron [1976]). Significant help was kindly provided by librarians of the Slovak National Library (Martin) and librarians I. Pekárová, I. Gažiová (Institute of Botany SAS, Bratislava) and V. Macáková (Library of the Institute of Botany, CAS, Průhonice). I would also like to thank R. Šoltés for help with specification of Lophozia cf. incisa from his earlier published relevés as well as I. Hodálová and J. Kochjarová for consultations to genera Senecio and Soldanella, respectively. This study was funded by the Slovak grant agency VEGA, project No. 2/0119/19. References Aleinikov A.A., Smirnov N.S. & Smirnova O.V. (2016): Tall-herb boreal forests on North Ural. – Russ. J. Ecosyst. Ecol. 1(3): 1–13. doi: 10.21685/2500-0578-2016-3-3 Bardat J., Bioret F., Botineau M., Boullet V., Delpech R., Géhu J.-M., Haury J., Lacoste A., Rameau J.-C., Royer J.-M., Roux G. & Touffet J. (2004): Prodrome des végétations de France. – Paris: Muséum national d’Histoire naturelle. Bartsch J. & Bartsch M. (1940): Vegetationskunde des Schwarzwaldes. – Pflanzensoziologie 4: I–X, 1–234. Bergmeier E. (2020): Die Vegetation Deutschlands – eine vergleichende Übersicht der Klassen, Ordnungen und Verbände auf Grundlage der EuroVegChecklist. – Tuexenia 40: 19 –32. doi: 10.14471/2020.40.024 Biondi E., Blasi C., Allegrezza M., Anzellotti I., Azzella M.M., Carli E., Casavecchia S., Copiz R., Del Vico E., Facioni L., Galdenzi D., Gasparri R., Lasen C., Pesaresi S., Poldini L., Sburlino G., Taffetani F., Vagge I., Zitti S. & Zivkovic L. (2014): Plant communities of Italy: The Vegetation Prodrome. – Pl. Biosyst. 148(4): 728 – 814. Boeuf R., Simler N., Holveck P., Hum Ph., Cartier D. & Ritz F. (2014): Les végétations forestières d’Alsace. Vol. I. (Textes): Réferentiel des types forestiers du type générique au type élémentaire – Relations entre les stations forestières, les communautés forestières, les habitats et les espèces végétales patrimoniales. – Drulingen: Editions Scheurer. Borhidi A. (1971): Die Zönologie der Fichtenwälder von Ost- und Südkarpaten. – Acta Bot. Acad. Sci. Hung. 17(3–4): 282–319. Boublík K., Douda J., Hédl R. & Chytrý M. (2013): Mezofilní a vlhké Opadavé listnaté lesy (CarpinoFagetea). – In: Chytrý M. [ed.]: Vegetace České republiky. 4. Lesní a křovinná vegetace: 193–295. – Praha: Nakladatelství Academia. [In Czech] Braun-Blanquet J. (1930): Zentralalpen und Tatra, eine pflanzensoziologische Parallele. – Veröff. Geobot. Inst. Rübel Zürich. 6 (Ergebnisse der Internationalen Pflanzengeographischen Exkursion durch die Tschechoslowakei und Polen 1928, redig. E. Rübel): 81–123. Braun-Branquet J., Sissingh G. & Vlieger J. (1939): Prodromus der Pflanzengesellschaften. Prodrome des Groupements végétaux. Fasz. 6. Klasse der Vaccinio-Piceetea (Nadelholz- und VaccinienheidenVerbände der eurosibirisch-nordamerikanischen Region). – Montpellier: Comité International du Prodrome Phytosociologique. Brianskaia E., Schmieder K., Boecker R., Gyninova A. & Balsanova L. (2019): Syntaxonomy of forest vegetation of the central zone of the Lake Baikal eastern coast. – Tuexenia 39: 139 –160. doi: 10.14471/2019.39.003 205 P. K u č e r a Businský R. & Kirschner J.( 2006): Nomenclatural notes on the Pinus mugo complex in central Europe. – Phyton (Horn) 46(1): 129 –139. Available online: https://www.zobodat.at/ Businský R. & Kirschner J. (2010): Pinus mugo and P. uncinata as parents of hybrids. A taxonomic and nomenclatural survey. – Phyton (Horn) 50(1): 27–57. Available online: https://www.zobodat.at/ Celiński F. & Wojterski T. (1978): Zespoły leśne masivu Babiej Góry. – Prace Komis. Biol. 48: 1– 64, tab. apps. [In Polish] Chifu T. (2014): Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939. – In: Chifu T. & Irimia I. [eds]: Diversitatea fitosociologică a vegetaţiei României. III. Vegetaţia pădurilor şi tufişurilor: 462–510. – Iaşi: Institulul European. Chytrý M. (2012): Vegetation of the Czech Republic: diversity, ecology, history and dynamics. – Preslia 84(3): 427–504. Chytrý M. & Tichý L. (2003): Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic. – Folia Fac. Sci. Nat. Univ. Masarykianae Brunensis, Biol. 108: 1–232. Chytrý M., Tichý L., Holt J. & Botta-Dukát Z. (2002a): Determination of diagnostic species with statistical fidelity measures. – J. Veg. Sci. 13(1): 79 –90. doi: 10.1111/j.1654-1103.2002. tb02025.x Chytrý M., Exner A., Hrivnák R., Ujházy K., Valachovič M. & Willner W. (2002b): Contextdependence of diagnostic species: A case study of the central european spruce forests. – Folia Geobot. 37(4): 403 – 417. doi: 10.1007/BF02803255 Chytrý M. [ed.], Kočí M., Šumberová K., Sádlo J., Krahulec F., Hájková P., Hájek M., Hoffmann A., Blažková D., Kučera T., Novák J., Řezníčková M., Černý T., Härtel H., Simonová D. et al. (2007): Vegetace České republiky. 1. Travinná a keříčková vegetace. – Praha: Academia. [In Czech] Chytrý M. [ed.], Douda J., Roleček J., Sádlo J., Boublík K., Hédl R., Vítková M., Zelený D., Navrátilová J., Neuhäuslová Z., Petřík P., Kolbek J., Lososová Z., Šumberová K., Hrivnák, R. et al. (2013a): Vegetace České republiky. 4. Lesní a křovinná vegetace. – Praha: Nakladatelství Academia. [In Czech] Chytrý M., Zelený D., Navrátilová J. & Sádlo J. (2013b): Boreokontinentální jehličnaté lesy (Vaccinio-Piceetea). – In: Chytrý M. [ed.]: Vegetace České republiky. 4. Lesní a křovinná vegetace: 380– 432 (+ 372–379). – Praha: Nakladatelství Academia. [In Czech] Chytrý M., Tichý L., Hennekens S.M., Knollová I., Janssen J.A.M., Rodwell J.S., Peterka T., Marcenò C., Landucci F., Danihelka J., Hájek M., Dengler J., Novák P., Zukal D., Jiménez-Alfaro B., Mucina L., Abdulhak S., Aćić S., Agrillo E., Attorre F., Bergmeier E., Biurrun I., Boch S., Bölöni, J., Bonari G., Braslavskaya T., Bruelheide H., Campos J.A., Čarni A., Casella L., Ćuk M., Ćušterevska R., De Bie E., Delbosc P., Demina O., Didukh Ya., Dítě D., Dziuba T., Ewald J., Gavilán R.G., Gégout J.-C., Giusso del Galdo G.P., Golub V., Goncharova N., Goral F., Graf U., Indreica A., Isermann M., Jandt U., Jansen F., Jansen J., Jašková A., Jiroušek M., Kącki M., Kalníková V., Kavgacı A., Khanina L., Korolyuk A.Yu., Kozhevnikova M., Kuzemko A., Küzmič F., Kuznetsov O.L., Laiviņš M., Lavrinenko I., Lavrinenko O., Lebedeva M., Lososová Z., Lysenko T., Maciejewski L., Mardari C., Marinšek A., Napreenko M.G., Onyshchenko V., PérezHaase A., Pielech R., Prokhorov V., Rašomavičius V., Rodríguez Rojo M.P., Rūsiņa S., Schrautzer J., Šibík J., Šilc U., Škvorc Ž., Smagin V.A., Stančić Z., Stanisci A., Tikhonova E., Tonteri T., Uogintas D., Valachovič M., Vassilev K., Vynokurov D., Willner W., Yamalov S., Evans D., Palitzsch Lund M., Spyropoulou R., Tryfon E. & Schaminée J.H.J. (2020): EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. – Appl. Veg. Sci. 23(4): 648 –675, apps S1–S5. doi: 10.1111/avsc.12519 206 Norway spruce woodlands in Slovakia and their syntaxonomical classification Coldea Gh. (2015): Classe Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939. – In: Coldea Gh. [ed.], Indreica A. & Oprea A.: Les associations végétales de Roumanie. Tome 3. Les associations forestiéres et arbustives: 198–238. – Cluj-Napoca: Presa Universitară Clujeană, Accent. Černušáková D. (1994): The climax spruce stands from Osobitá. – Biologia (Bratislava) 49(1): 31– 40. Černušáková D. & Dobšovičová H. (2005): Comparison of fir-beech forests from natural reservations Osobitá and Šíp. – Acta Bot. Univ. Comen. 42: 17–27. Červenka J., Bače R., Brůna J., Wild J., Svoboda M. & Heurich M. (2019): Mapping of mountain temperate forest recovery after natural disturbance: a large permanent plot established on CzechGerman border. – Silva Gabreta 25: 31– 41. Dengler J., Koska I., Timmermann T., Berg C., Clausnitzer U., Iserman M., Linke C., Päzolt J., Polte T. & Spangenberg A. (2004): New descriptions and typifications of syntaxa within the project ‘Plant communities of Mecklenburg-Vorpommern and their vulnerability’ – Part II. – Feddes Repert. 115(3 – 4): 343 –392. doi: 10.1002/fedr.200411043 Dierssen B. & Dierssen K. (1984): Vegetation und Flora der Schwarzwaldmoore. – Beih. Veröff. Naturschutz Landschaftspflege Bad. Württ. 39: 1–512, tab. apps. Dierssen K. & Dierssen B. (1996): Vegetation Nordeuropas. – Stuttgart: Eugen Ulmer. Dostálek J. sen., Dostálek J. jr., Mucina L. & Ho-Dzun H. (1988): On taxonomy, phytosociology, and ecology of some Korean Rhododendron species. – Flora 181(1–2): 29 – 44. doi: 10.1016/ S0367-2530(17)30348-1 Dubyna D.V., Dziuba T.P., Iemelianova S.M., Bagrikova N.O., Borysova O.V., Borsukevych L.M., Vynokurov D.S., Gapon S.V.,Gapon Yu.V., Davydov D.A., Dvoretskyi T., Didukh Ya.P., Zhmud O.I., Kozyr M.S., Konishchuk V.V., Kuzemok A.A., Pashkevich N.A., Ryff L.E., Solomakha V.A., Felbaba-Klushyna L.M., Fitsailo T.V., Chorna G.A., Chorney I.I., Shelyag-Sosonko Yu.R. & Iakushenko D.M. (2019): Prodromus roslynnosti Ukrajiny [Prodrome of the vegetation of Ukraine]. – Kyjiv: Naukova Dumka. [In Ukrainian] Dunzendorfer W. (1974): Pflanzensoziologie der Wälder und Moore des oberösterreichischen Böhmerwaldes: mit 25 Abbildungen, 10 Tabellen im Text und 6 Vegetationstabellen im Anhang. – Natur- und Landschaftsschutz Oberösterreich b3: 1–110, suppls. Available online: https:// www.zobodat.at/publikation_volumes.php?id=32513 Dzubinová Ľ., Fajmonová E., Lakatosová A., Pitoniak P., Šimeková J., Šoltés R. & Véghová E. (1971): Syntaxonomická charakteristika niektorých lesných spoločenstiev s prihliadnutím k výskytu druhu Sorbus aucuparia L. na Slovensku. – Bratislava: [s. n.], msc., depon. in Botanická záhrada UK, Bratislava. [In Slovak] Ellenberg H. (1996): Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. [5th ed.] – Stuttgart: Eugen Ulmer. Ellenberg H. & Klötzli F. 1972 [recte 1974]: Waldgesellschaften und Waldstandorte der Schweiz. – Mitt. Schweiz. Anst. Forstl. Versuchswesen 48: 587–930, tab. apps. Ermakov N.B. (2012): Prodromus vysshikh edinits rastitel‘nosti Rossii. – In: Mirkin B.M. & Naumova L.G. [eds]: Sovremennoe sostoyanie osnovnykh kontseptsiy nauki o rastitel‘nosti: 377– 483. – Ufa: ANRB, Gilem. [In Russian] Ermakov N.B. (2013): Sintaksony temnokhvoino-taezhnykh lesov s kherbta Kuznetskiy Alatau (juzhnaia Sibir). – Vestn. Novosibir. Gosud. Univ., Biol., Klinich. Med. 11(1): 83 –91. [In Russian] Ermakov N.B. (2014): Associacii gorno-taezhnoi rastitel‘nosti basseina reki Bol‘shoi On (Zapadnyi Saian. – Rastitel‘nyi mir Aziatskoi Rossii 2014(2): 56 – 64. Available at: <http://www.izdatgeo.ru/index. php?action=journal&id=9&lang_num=1> [In Russian] Ermakov N. & Makhatkov I. (2011): Classification and ordination of north boreal light-coniferous forests of the West Siberian Plain. – Ann. Bot. (Roma) 1: 29 –36. doi: 10.4462/annbotrm-9121 207 P. K u č e r a Ermakov N., Cherosov M. & Gogoleva P. (2002): Classification of ultracontinental boreal forests in central Yakutia. – Folia Geobot. 37(4): 419 – 440. doi: 10.1007/BF02803256 Ewald J., Jehl H., Braun L. & Lohberger E. (2011): Die Vegetation des Nationalparks Bayerischer Wald als Ausdruck von Standort und Walddynamik. – Tuexenia 31: 9 –38, tab. apps. https:// www.tuexenia.de/en/publications/tuexenia-2/tuexenia-volumes-pdf/ Exner A. (2007): Piceetalia Pawł. 1928. Eurosibirische Fichten- und Fichten-Tannenwälder. – In: Willner W., Grabherr G. [eds], Drescher A., Eichberger C., Exner A., Franz W.R., Grabner S., Heiselmayer P., Karner P., Starlinger F., Sauberer N. & Steiner G.M.: Die Wälder und Gebüsche Österreichs: Ein Bestimmungswerk mit Tabellen. 1 Textband: 184 –208. – München: Elsevier. Exner A. & Willner W. (2007): Rhamno-Prunetea Rivas Goday & Borja Carbonell ex Tx. 1962. Gebüsche und Vorwälder auf nicht-extremen Böden. – In: Willner W., Grabherr G. [eds], Drescher A., Eichberger C., Exner A., Franz W.R., Grabner S., Heiselmayer P., Karner P., Starlinger F., Sauberer N. & Steiner G.M.: Die Wälder und Gebüsche Österreichs: Ein Bestimmungswerk mit Tabellen. 1 Textband: 62– 83. – München: Elsevier. Exner A., Willner W. & Grabherr G. (2002): Picea abies and Abies alba forests of the Austrian Alps: Numerical classification and ordination. – Folia Geobot. 37(4): 365 –382. doi: 10.1007/ BF02803254 Fabijanowski J. (1962): Lasy tatrzańskie. – In: Szafer W. [ed.]: Tatrański park narodowy. [2nd ed.]: 240 –304. – Kraków: Zakład ochrony przyrody PAN. Fajmonová E. (1978): K syntaxonómii spoločenstiev radu Athyrio-Piceetalia Hadač 62 v Západných Karpatoch. – Biológia (Bratislava) 33(7): 551–563. [In Slovak] Fajmonová E. (1980): Poznámky k druhovej diferenciácii fytocenóz zväzu Vaccinio-Piceion Br.-Bl. 39. – Biológia (Bratislava) 35(1): 59 – 67. [In Slovak] Flatberg K.I. (1992): The European taxa in the Sphagnum recurvum complex. 1. Sphagnum isoviitae sp. nov. – J. Bryol. 17(1): 1–13. doi: 10.1179/jbr.1992.17.1.1 Franz W.R. & Willner W. (2007): Alnetea glutinosae Br.-Bl. & Tx. 1943. Laubbaumreiche Bruchwälder, Bruchwälder i.e.S. – In: Willner W., Grabherr G. [eds], Drescher A., Eichberger C., Exner A., Franz W.R., Grabner S., Heiselmayer P., Karner P., Starlinger F., Sauberer N. & Steiner G.M.: Die Wälder und Gebüsche Österreichs: Ein Bestimmungswerk mit Tabellen. 1 Textband: 89 –93. – München: Elsevier. GBIF Secretariat (2021): GBIF Backbone Taxonomy. – Checklist dataset. doi: 10.15468/39omei Grebenščikov O., Michalko J., Hlavaček A., Zahradníková K. & Brillová D. (1956): Geobotanický a floristický náčrt Kubínskej Hole. – Biol. Práce 2(5): 1–92, tab. app. [In Slovak] Guinochet M. (1982): Notes de phytosociologie sigmatiste prises en Siberie meridionale. – Doc. Phytosoc. 6: 295 –301. Hadač E. (1962): Übersicht der höheren Vegetationseinheiten des Tatragebirges. – Vegetatio 11(1–2): 46 –54. Hadač E. (1987): Plant ecological notes from Belianske Tatry Mts. – Biol. Práce 33(3): 1–96. Hadač E. & Sofron J. (1980): Notes on syntaxonomy of cultural forest communities. – Folia Geobot. Phytotax. 15(3): 245 –258. doi: 10.1007/BF02851808 Hadač E., Březina P., Ježek V., Kubička J., Hadačová V., Vondráček M. et al. (1969): Die Pflanzengesellschaften des Tales ‘Dolina Siedmich prameňov’ in der Belaer Tatra. – Bratislava: Vydavateľstvo Slovenskej akadémie vied. Series Vegetácia ČSSR. Vol. B2. Hartmann F.K. (1953): Waldgesellschaften der deutschen Mittelgebirge und des Hügellandes: Nach ihren wichtigsten soziologischen und standörtlichen Merkmalen in einer vorläufigen Übersicht zusammengestellt. – Umschaudienst Forschungsausschusses Landschaftspflege Landschaftsgestalt. Akad. Raumforsch. Landesplan. 4 – 6: 139–182, overviews A–H, apps. I–XIV, fig. apps. 208 Norway spruce woodlands in Slovakia and their syntaxonomical classification Hartmann F.K. (1959): Q. Naturnahe Waldgesellschaften Deutschlands in regionaler und standortökologischer Anordnung (mit Ausnahme des Alpengebietes). – In: Müller R. [Hrsg.]: Grundlagen der Forstwirtschaft: 765 –790. – Hannover: M. & H. Schaper. Hartmann F. & Jahn G. (1967): Ökologie der Wälder und Landschaften. Band 1. Waldgesellschaften des mitteleuropäischen Gebirgsraumes nördlich der Alpen: Tabellen, Grundlagen und Erläuterungen. – Stuttgart: Gustav Fischer. Hájek M. & Háberová I. (2001): Scheuchzerio-Caricetea fuscae R.Tx. 1937. – In: Valachovič M. [ed.], Háberová I., Hájek M., Hrivnák R., Jarolímek I., Oťaheľová H., Šoltés R. & Zaliberová M.: Rastlinné spoločenstvá Slovenska. 3. Vegetácia mokradí: 185 –273. – Bratislava: Veda, vydavateľstvo Slovenskej akadémie vied. [In Slovak] Hájková P., Navrátilová J. & Hájek M. (2011): Vegetace vrchovišť (Oxycocco-Sphagnetea). – In: Chytrý M. [ed.], Šumberová K., Hájková P., Hájek M., Hroudová Z., Navrátilová J., Čtvrtlíková M., Sádlo J., Lososová Z., Hrivnák R., Rydlo J., Oťaheľová H., Bauer P., Hanáková P., Ekrt L., Ekrtová E., Michalcová D., Žáková K., Danihelka J., Králová Š., Karimová K., Tichý L., Hájek O. & Kočí M.: Vegetace České republiky. 3. Vodní a mokřadní vegetace: 705 –736. – Praha: Nakladatelství Academia. [In Czech] Heinken T. (2008): Synopsis der Pflanzengesellschaften Deutschands. Heft 10. Vaccinio-Picetea (H7), Beerstrauch-Nadelwälder. Teil 1: Dicrano-Pinion. – Göttingen: Floristisch-soziologische Arbeitsgemeinschaft e.V. Hennekens S.M. (1998–2020): Turboveg for Windows. International single user version [disk]. Ver. 2.149a. – Wageningen: S.M. Hennekens ©1998 –2020. – Comprehensive database management system designed for the storage, selection, and export of vegetation data (relevés). http://www. synbiosys.alterra.nl/turboveg/ Hennekens S.M. & Schaminée J.H.J. (2001): Turboveg, a comprehensive database management system for vegetation data. – J. Veg. Sci. 12(4): 589 –591. doi: 10.2307/3237010 Heurich M. (2001): Waldentwicklung im montanen Fichtenwald nach großflächigem Buchdruckerbefall im Nationalpark Bayerischer Wald. – In: Waldentwicklung im Bergwald nach Windwurf und Borkenkäferbefall [Nationalpark Bayerischer Wald, Wissenschaftliche Reihe – Heft 14]: 99 –177. – Grafenau: Nationalparkverwaltung Bayerischer Wald. Historická ortofotomapa Slovenska [online] (s.d.): – Zvolen: Centrum excelentnosti pre podporu rozhodovania v lese a krajine, TU Zvolen [cit. 2021-02-22]. Historická ortofotomapa © GEODIS SLOVAKIA, s.r.o., Historické LMS © Topografický ústav Banská Bystrica. http://mapy.tuzvo. sk/HOFM/ Hodálová I. (1999): Taxonomy of the Senecio nemorensis group (Compositae) in the Carpathians. – Biologia (Bratislava) 54(4): 395 – 404. Hołub-Pacewiczowa Z. (1931): Osadnictwo pasterskie i wędrówki w Tatrach i na Podtatrzu – Prace Komis. Geogr. 1: I–XX, 1–508, fig. mp. apps. [In Polish] Horák J. (1971): Westliche Tatra – Geobiozönosen der oberen Wald- und Krummholzgrenze. – Přir. Práce Ústavú Českoslov. Akad. Věd Brné 5(5): 1– 48, fig. tab. app. Hölzel N., Fischer A. & Seibert P. (1996): Synopsis der Pflanzengesellschaften Deutschands. Heft 1. Erico-Pinetea (H6), Alpisch-Dinarische Karbonat-Kiefernwälder. – Göttingen: Floristischsoziologische Arbeitsgemeinschaft e.V. Hueck K. (1939): Botanische Wanderungen im Riesengebirge. – Pflanzensoziologie 3: I–VIII, 1–116, map. Iakushenko D.M., Miskevych U.D., Solomakha V.A., Budzhak V., Chorney I.I., Solomakha I., Tokaryuk A.I., Solomakha T.D., Chernyavsky M.V., Mayor R.V. & Kramarets Yu.V. (2006): Roslynnist Prirodnogo zapovidnikha ‘Horhany’. – In: Klimuk Yu.V., Miskevych U.D., Iakushenko D.M. et al. [eds]: Pryrodnyy zapovidnik ‘Gorgany’: 237–312. – Kyiv: Fitosotsiotsentr. 209 P. K u č e r a Issler E. (1942): Vegetationskunde der Vogesen. – Pflanzensoziologie 5: I–VIII, 1–192. Jahn G. (1977): Die Fichtenwaldgesellschaften in Europa. – In: Schmidt-Vogt H., Jahn. G. & Vogellehner D. [eds]: Die Fichte. Band I: Taxonomie, Verbreitung, Morphologie, Ökologie, Waldgesellschaften: 468 –560, 616 – 629. – Hamburg, Berlin: Paul Parey. Jahn G. (1985): Chorological phenomena in spruce and beech communities. – Vegetatio 59(1–3): 21–37. Jančovičová S., Mišíková K., Guttová A. & Blanár D. (2011): The ecological knowledge on Crepidotus kubickae – a case study from central Slovakia. – Czech Mycol. 63(2): 215 –241. Janda P., Trotsiuk V., Mikoláš M., Bače R., Nagel Th.A., Seidl R., Seedre M., Morrissey R.C., Kucbel S., Jaloviar P., Jasík M., Vysoký J., Šamonil P., Čada V., Mrhalová H., Lábusová J., Nováková M.H., Rydval M., Matějů L. & Svoboda M. (2017): The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. – Forest Ecol. Managem. 388: 67–78, el. app. doi: 10.1016/j.foreco.2016.08.014 Jarolímek I., Šibík J., Hegedüšová K., Janišová M., Kliment J., Kučera P., Májeková J., Michálková D., Sadloňová J., Šibíková I., Škodová I., Uhlířová J., Ujházy K., Ujházyová M., Valachovič M. & Zaliberová M. (2008a): A list of vegetation units of Slovakia. – In: Jarolímek I., Šibík J. [eds], Hegedüšová K., Janišová M., Kliment J., Kučera P., Májeková J., Michálková D., Sadloňová J., Šibíková I., Škodová I., Tichý L., Uhlířová J., Ujházy K., Ujházyová M., Valachovič M. & Zaliberová M.: Diagnostic, constant and dominant species of the higher vegetation units of Slovakia: 295 –329. – Bratislava: Veda. Jarolímek I., Šibík J., Tichý L. & Kliment J. (2008b): Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. – In: Jarolímek I., Šibík J. [eds], Hegedüšová K., Janišová M., Kliment J., Kučera P., Májeková J., Michálková D., Sadloňová J., Šibíková I., Škodová I., Tichý L., Uhlířová J., Ujházy K., Ujházyová M., Valachovič M. & Zaliberová M.: Diagnostic, constant and dominant species of the higher vegetation units of Slovakia: 9 –294. – Bratislava: Veda. Jasík M. & Dítě D. (2016): Súčasné poznatky o rozšírení linnéovky severskej (Linnaea borealis L.) na Slovensku. – Acta Carp. Occid. 7: 9 –14. [In Slovak] Jasík M., Dítě D. & Eliáš P. jun. (2014): Linnaea borealis (linnéovka severná) na Slovensku. – Bull. Slov. Bot. Spoločn. 36(1): 49 –56. [In Slovak] Jirásek J. (1996): Společenstva přirozených smrčin České republiky. – Preslia 67(3/4): 225 –259. [In Czech] Jirásek J. (2002): Třída: Vaccinio-Piceetea Br.-Bl. in Braun-Blanquet, Sissingh et Vlieger 1939. – In: Husová M., Jirásek J. & Moravec J. [eds]: Přehled vegetace České republiky. Svazek 3. Jehličnaté lesy: 18 – 86. – Praha: Academia. [In Czech] Jirásek J. & Moravec J. (2002): Svaz: Sphagno-Betulion pubescentis Doing ex Passarge et Hofmann 1968. – In Husová M., Jirásek J. & Moravec J. [eds]: Přehled vegetace České republiky. Svazek 3. Jehličnaté lesy: 66 – 69. – Praha: Academia. [In Czech] Juvan N., Košir P., Marinšek A., Paušič A. & Čarni A. (2013): Differentiation of the Piceetalia and Athyrio-Piceetalia forests in Slovenia. – Tuexenia 33: 25 – 48, el. app. Kanka R. (2008): Lesy Belianskych Tatier. – Bratislava: Veda, vydavateľstvo Slovenskej akadémie vied. [In Slovak] Kaplan J.O., Krumhardt K.M. & Zimmermann N. (2009): The prehistoric and preindustrial deforestation of Europe. – Quatern. Sci. Rev. 28(27–28): 3016 –3034. doi: 10.1016/j. quascirev.2009.09.028 Kaplan J.O., Pfeiffer M., Kolen J.C.A. & Davis B.A.S. (2016): Large scale anthropogenic reduction of forest cover in last glacial maximum Europe. – PLoS ONE 11(11): e0166726. doi:10.1371/ journal.pone.0166726 210 Norway spruce woodlands in Slovakia and their syntaxonomical classification Kasprowicz M. (1996): Zróżnicowanie i przekształcenia roślinności pięter reglowych masywu Babiej Góry (Karpaty Zachodnie). – Idee Ekol., Ser. Zeszyty 9(3): 1–216, tab. app. [In Polish] Kawecki W. (1939): Lasy Żywiecczyzny, ich teraźniejszość i przeszłość. (Zarys monograficzny). – Prace Rolniczo-Leśn. 35: 1–171, fig. mp. tab. apps. Keller W., Wohlgemuth T., Kuhn N., Schütz M. & Wildi O. (1998): Waldgesellschaften der Schweiz auf floristischer Grundlage: Statistisch überarbeitete Fassung der ‘Waldgesellschaften und Waldstandorte der Schweiz’ von Heinz Ellenberg und Frank Klötzli (1972). – Mitt. Eidgenöss. Forschungsanst. Wald, Schnee & Landschaft 73: 91–358. Kielland-Lund J. (1981): Die Waldgesellschaften SO-Norwegens. – Phytocoenologia 9(1–2): 53 –250. Kielland-Lund J. (1994): Syntaxonomy of Norwegian forest vegetation 1993. – Phytocoenologia 24: 299 –310. Klika J. (1926): Poznámky ke geobotanickému výzkumu Velké Fatry. – Sborn. Přírodověd. Společn. v M. Ostravě 3(1924 –25): 38 –85, fig. app. [In Czech] Klika J. (1927): Příspěvek ke geobotanickému výzkumu Velké Fatry. – Preslia 5: 6 –35. [In Czech] Klika J. (1929): Lesní typy v rámci našeho lesního geobotanického prozkumu a jejich vztah k lesnictví. – Sborn. Českoslov. Akad. Zeměd. 4: 229 –284. [In Czech] Klika J. (1936): Das Klimax-Gebiet der Buchenwälder in den Westkarpathen. – Beih. Bot. Centralbl., Abt. B 55: 373 – 418. Klika J. (1941): Přehled společenstev, svazů, řádů a tříd středoevropského jevnosnubného rostlinstva. – In: Klika J. & Novák V. [eds]: Praktikum rostlinné sociologie, půdoznalství, klimatologie a ekologie: 53 –71. – Praha: Melantrich. [In Czech] Klika J. (1944): B. Společenstva jevnosnubných rostlin. – In: Klika J. & Hadač E. [eds]: Rostlinná společenstva střední Evropy. – Příroda 36(8): 257–259; 36(9): 281–295. [In Czech] Klika J. (1949): Lesy Veľkej Fatry. – Prírodov. Sborn. 4: 7–36. [In Slovak] Kliment J. & Ujházy K. (2014): Nardetea strictae Rivas Goday in Rivas Goday et Rivas Mart. 1963. – In: Hegedüšová Vantarová K., Škodová I. [eds], Dítě D., Dúbravková D., Eliáš P. jun., Hájek M., Hájková P., Janišová M., Kliment J., Melečková Z., Řezníčková M., Tichý L., Uhliarová E., Ujházy K., Valachovič M. & Zaliberová M.: Rastlinné spoločenstvá Slovenska. 5. Travinno-bylinna vegetácia: 383 – 444. – Bratislava: Veda, vydavateľstvo Slovenskej akadémie vied. [In Slovak] Kliment J., Valachovič M. [eds], Bernátová D., Dúbravcová Z., Jarolímek I., Petrík A., Šibík J. & Uhlířová J. (2007): Rastlinné spoločenstvá Slovenska. 4. Vysokohorská vegetácia. – Bratislava: Veda, vydavateľstvo Slovenskej akadémie vied. Kobzáková D. (1987): Fytocenologicko-ekologické pomery klimaxových smrečín pravých svahov Tichej doliny v Západných Tatrách. – Bratislava: [s. n.]. Master’s thesis, msc., depon. in Prírodovedecká fakulta Univerzity Komenského, Bratislava. [In Slovak] Kočický D. & Ivanič B. (2011): Geomorfologické členenie Slovenska [online]. Bratislava: Štátny geologický ústav Dionýza Štúra [cit. 2021-02-22]. http://apl.geology.sk/temapy/ [In Slovak] Kolář J., Kuneš P., Szabó P., Hajnalová M., Svitavská Svobodová H., Macek M. & Tkáč P. (2018): Population and forest dynamics during the Central European Eneolithic (4500 –2000 BC). – Archaeol. Anthropol. Sci. 10(5): 1153 –1164. doi: 10.1007/s12520-016-0446-5 Kontriš J., Kontrišová O., Kováčová M. & Schieber B. (1997): Geobotanická charakteristika smrekových lesov Prednej Poľany. – In: Midriak R. [ed.]: Biosférické rezervácie na Slovensku: Zborník referátov z konferencie konanej pri príležitosti 5. výročia založenia Fakulty ekológie a enviromentalistiky: 123 –128. – Zvolen: Technická univerzita vo Zvolene. [In Slovak] Körner Ch. (2012): Alpine treelines: Functional ecology of the global high elevation tree limits. – Basel: Springer. doi: 10.1007/978-3-0348-0396-0 211 P. K u č e r a Krajina V. (1933): Die Pflanzengesellschaften des Mlynica-Tales in den Vysoké Tatry (Hohe Tatra): Mit besonderer Berücksichtigung der ökologischen Verhältnisse. II. Teil. – Beih. Bot. Centralbl., Abt. II 51(1): 1–224, tabs I–IV. Krajčí J. (2008): Smrečiny severovýchodnej časti Nízkych Tatier – okolie Veľkého Boku. – Phytopedon 7(1–2): 94 –103. [In Slovak] Krajčí J. (2009): Lesné spoločenstvá okolia Veľkého Boku. – Bratislava: [s. n.]. PhD thesis, msc., depon. in Ústav krajinnej ekológie SAV, Bratislava. [In Slovak] Krajčí J. & Barančok P. (2009): Lesné spoločenstvá okolia Veľkého Boku. – In: Turis P. & Vidlička Ľ. [eds]: Príroda Nízkych Tatier, 2 [Zborník referátov z konferencie usporiadanej pri príležitosti 30. výročia vyhlásenia Národného parku Nízke Tatry]: 77– 85. – Banská Bystrica: Správa národného parku Nízke Tatry. [In Slovak] Kubinská A. & Janovicová K. (1998): Machorasty [Bryophytes]. – In: Marhold K. & Hindák F. [eds]: Zoznam nižších a vyšších rastlín Slovenska [Checklist of non-vascular and vascular plants of Slovakia]: 297–331. – Bratislava: VEDA, vydavateľstvo Slovenskej akadémie vied. Kubíček F. & Jurko A. (1975): Waldgesellschaften des östlichen Orava-Gebietes. – Biol. Práce 21(3): 83 –128, tab. app. Kubíček F. & Šomšák L. (1993): Ecological analysis of the herb and moss layer in several fir and spruce forests (Vysoké Tatry Mountains). – Ekológia (Bratislava) 12(1): 45 –59. Kubíček F., Šimonovič V. & Szabo J. (1989): Biomass of the herb and moss layer in several forest ecosystems influenced by air pollution, The Beskydy Mountains (part Kysuce). – Ekológia (ČSSR) 8(1): 23 –34. Kubíček F., Šomšák L., Šimonovič V. & Szabo J. (1992): Produkčno-ekologická a fytocenologická charakteristika bylinnej vrstvy lesných ekosystémov troch tatranských dolín (Furkotská, Siedmich prameňov, Zadné Meďodoly). – Zborn. Prác Tatransk. Nár. Parku 32: 273 –305. [In Slovak] Kučera P. (2005): Vrchoviská a kľukva na Lúčanských Veterných holiach. – Bull. Slov. Bot. Spoločn. 27: 63 – 66. [In Slovak] Kučera P. (2007): Západokarpatské smrečiny: Komentovaný literárny prehľad. – Thesis, msc., depon. in Botanický ústav, Slovenská akadémia vied, Bratislava. [In Slovak] Kučera P. (2008): Remarks on higher-ranked syntaxa with Abies alba in Central Europe: their concepts and nomenclature. – Hacquetia 7(2): 161–172. Kučera P. (2009a): Some remarks on Slovak syntaxa of Galio-Abietenion and Vaccinio-Abietenion. – Acta Bot. Univ. Comen. 44: 21–32. Kučera P. (2009b): Buk v Doline Siedmich prameňov. – Štúd. Tatransk. Nár. Parku 9(42): 171–182. [In Slovak] Kučera P. (2010a): Nomenclatural types of Picea abies syntaxa reported from Slovakia. – Biologia (Bratislava) 65(5): 832– 836. doi: 10.2478/s11756-010-0103-x Kučera P. (2010b): Smrečiny Veľkej Fatry a priľahlých pohorí. – PhD. thesis, msc., depon. in Botanický ústav, Slovenská akadémia vied, Bratislava.]. [In Slovak] Kučera P. (2011a): Use of descriptive statistics in phytosociology. – Acta Bot. Univ. Comen. 46: 63 –74. Kučera P. (2011b): O pôvodnosti smrečín Poľany. – Bull. Slov. Bot. Spoločn. 33(2): 199 –219. [In Slovak] Kučera P. (2012a): Vegetačný stupeň smrečín v Západných Karpatoch – rozšírenie a spoločenstvá: Spis so zvláštnym zreteľom na pohorie Veľká Fatra. – Blatnica: Botanická záhrada UK v Bratislave, pracovisko Blatnica. [In Slovak] Kučera P. (2012b): Remarks on the intramontane continentality of the Western Carpathians defined by the absence of Fagus sylvatica. –Thaiszia J. Bot. 22(1): 65 – 82. Kučera P. (2013a): Horské bukové lesy v Západných Karpatoch. [2.2] Veterné hole, skupina Hornej lúky. – Nat. Carpatica 54: 17–34. [In Slovak] 212 Norway spruce woodlands in Slovakia and their syntaxonomical classification Kučera P. (2013b): Two notes to syntaxa names stemmed from Polish geobotanical studies. – Hacquetia 12(1): 133 –140. doi: 10.2478/HACQ-2013-0004 Kučera P. (2014): Horské bukové lesy v Západných Karpatoch. 2.1 Veterné hole, masív Veľkej lúky. – Nat. Carpatica 55: 39 – 68. [In Slovak] Kučera P. (2015): Errata k článkom o horských bukových lesoch v Západných Karpatoch [Errata to papers on Montane beech forests in the Western Carpathians]. – Nat. Carpatica 56: 109 –114. [In Slovak] Kučera P. (2017): Two groups of Pinus cembra forest communities in the Tatras. – Acta Bot. Hung. 59(3 – 4): 389–425. doi: 10.1556/034.59.2017.3-4.7 Kučera P. (2019a): Pinus cembra communities in the Tatras – comments to the study of Zięba et al. – Tuexenia 39: 161–180. doi: 10.14471/2019.39.013 Kučera P. (2019b): Syntaxonomical classification of wet woodlands with Picea abies in Slovakia. – Ukrain. Bot. J. 76(4): 316 –343, el. app. doi: 10.15407/ukrbotj76.04.316 Kučera P. (2021): Abies alba, Alnus glutinosa, Betula carpatica, B. pendula, Galanthus nivalis, Nardus stricta, Polypodium interjectum, Populus tremula, Ribes nigrum, Salix aurita, S. caprea, Sambucus racemosa, Senecio hercynicus, S. ovatus, Sparganium erectum, Vaccinium vitis-idaea. – In: Eliáš P. ml. [ed.]: Zaujímavejšie floristické nálezy. – Bull. Slov. Bot. Spoločn. 43(2): 317–319. Kučera P. (2022): Natural calcareous Norway spruce woodlands in Slovakia and their syntaxonomical classification. – Hacquetia 21(1): 107–151. doi: 10.2478/hacq-2021-0024 Kučera P. (2023): On the pseudonymous syntaxonomical application of the order Athyrio-Piceetalia Hadač 1962. – Acta Bot. Univ. Comen. 61. In press. Kučera P. (in red.): Prehľad spoločenstiev triedy Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 na Slovensku. – Msc., in red. [In Slovak] Kučera P. & Barančok P. (2021): Contribution to knowledge on the variability of Arolla pine woodlands of the north-eastern Tatra mountains. – Contr. Bot. 56: 29 – 43. doi: 10.24193/Contrib.Bot.56.3 Kučera P. & Kliment J. (2011): On the nomenclature and syntaxonomy of the phytosociological survey ‘Die Wälder und Gebüsche Österreichs’: examples of the class Piceetea excelsae Klika 1948. – Thaiszia J. Bot. 21(2): 85 –92. Kučera P., Bernátová D. & Kliment J. (2013): Notes to reconstruction of precultural vegetation of the Kremnické vrchy Mts (central Slovakia). – Thaiszia J. Bot. 23(1): 31– 42. Kučera P., Vidličková, Ľ., Elchison E. & Rajcová K (2023): Two new natural acid Norway spruce communities in the high mountains of the Western Carpathians. – Acta Bot. Hung. In press. Kukla J., Kontriš J. & Kontrišová O. (1995): Pedogenic and phytocenological charakteristics of forest ecosystems in the State Nature Reserve Zadná Poľana. – Ekológia (Bratislava) 14(4): 399 – 411. Kuoch R. (1954): Wälder der Schweizer Alpen im Verbreitungsgebiet der Weißtanne. – Mitt. Schweiz. Anst. Forstl. Versuchswesen 30: 133 –260, tab. apps. doi: 10.3929/ethz-a-000087756 Lakatosová A. (1971): Fytocenologické pomery asociácie Adenostylo-Piceetum (Sill. 33) comb. nova v centrálnokarpatskej oblasti. – In: Dzubinová Ľ., Fajmonová E., Lakatosová A., Pitoniak P., Šimeková J., Šoltés R. & Véghová E. [eds]: Syntaxonomická charakteristika niektorých lesných spoločenstiev s prihliadnutím k výskytu druhu Sorbus aucuparia L. na Slovensku. – Bratislava: [s. n.], msc., depon. in Botanická záhrada Univerzity Komenského, Bratislava]. Lashchinsky N.N. & Pisarenko O.Yu. (2016): Temnokhvoinye lesa Zapadno-Sibirskoi ravniny na juzhnom predele rasprostraneniya. – Rastitel‘n. Rossii [Veg. Russia] 28: 89 –107. doi: 10.31111/ vegrus/2016.28.89 Lepš J., Prach K. & Slavíková J. (1985): Vegetation analysis along the elevation gradient in the Nízké Tatry Mountains (Central Slovakia). – Preslia 57(4): 299 –312. Ložek V. (1973): Příroda ve čtvrtohorách. – Praha: Academia, nakladatelství Československé akademie věd. [In Czech] 213 P. K u č e r a Ložek V. (2007): Zrcadlo minulosti: Česká a slovenská krajina v kvartéru. – Praha: Dokořán. [In Czech] Luquet A. (1926): Essai sur la géographie botanique de l’Auvergne: Les associations végétales du Massif des Monts-Dores. – Paris: Les Presses universitaires de France. Magic D. & Májovský J. (1974): Vegetationsgrundriss der Kohút-Stolica-Berggruppe (Slowakisches Erzgebirge). – Acta Fac. Rerum Nat. Univ. Comen., Bot. 22: 27–91, 2 maps. Majzlanová E. (1982): Phytozönologische und Produktions-Charakteristik der Assoziation Vaccinio myrtilli-Piceetum (Szaf., Pawl., Kulcz. 23) Šoltés 76 im Gebirge Skorušinské vrchy. – Acta Fac. Rerum Nat. Univ. Comen., Bot. 29: 103 –112. Majzlanová E. (1993): Syntetické spracovanie lesných spoločenstiev Skorušinských vrchov. – Zborník Oravského Múzea 1993: 4 –16. Marhold K. [ed.], Goliašová K., Hegedüšová Z., Hodálová I., Jurkovičová V., Kmeťová E., Letz R., Michalková E., Mráz P., Peniašteková M., Šípošová H., Ťavoda O. et al. (1998): Papraďorasty a semenné rastliny [Ferns and Flowering Plants]. – In: Marhold K. & Hindák F. [eds]: Zoznam nižších a vyšších rastlín Slovenska [Checklist of non-vascular and vascular plants of Slovakia]: 333 – 687. – Bratislava: VEDA, vydavateľstvo Slovenskej akadémie vied. Martynenko V.B, Shirokikh P.S. & Muldashev A.A. (2008): Sintaksonomiya lesnoi rastitel‘nosti. – In: Mirkin B.M. [ed.]: Flora i rastitel‘nost‘ Yuzhno-Ural‘skogo gosudarstvennogo zapovednika: 124 –239. – Ufa: Gilem. [In Russian] Matuszkiewicz W. & Matuszkiewicz A. (1960): Pflanzensoziologische Untersuchungen der Waldgesellschaften des Riesengebirges. – Acta Soc. Bot. Poloniae 19(3): 499 –530, tab. apps. Matuszkiewicz J. (1977): Przegląd fitosocjologiczny zbiorowisk leśnych Polski. Cz. 4. Bory świerkowe i jodłowe. – Phytocoenosis 6: 151–226, tab. apps. Matuszkiewicz J.M. (2002): Zespoły leśne Polski. [1st ed., reprint] – Warszawa: Wydawnictwo Naukowe PWN. Mayer H. & Hofmann A. (1969): Tannenreiche Wälder am Südabfall der mittleren Ostalpen: Aufbau und waldbauliche Bedeutung der wichtigsten Waldgesellschaften in Südtirol und in den Tridentiner/ Venetianer Alpen. Mit einem Waldvegetationsprofil durch die mittleren Ostalpen. – München: BLV Verlagsgesellschaft. Máliš F., Fábry R. & Vodálová A. (2015): Vývoj vegetácie smrekových lesov s rôznym manažmentom po vetrovej kalamite. – Štúd. Tatransk. Nár. Parku 11: 207–217. [In Slovak] Medwecka-Kornaś A. (1955): Zespoły leśne Gorców. – Ochr. Przyr. 23: 1–111. [In Polish] Meyer P. (1949): Das Mastigobryeto-Piceetum abietetosum in schweizerischen Mittelland und seine forstlich-waldbauliche Bedeutung. – Vegetatio 1(4 –5): 203 –216. doi: 10.1007/BF00184533 Miadok D. (1969): Klimaxová smrečina Klenovského Vepra. – Biológia (Bratislava) 24(4): 319 –328. [In Slovak] Miadok D. (1988): Smrečiny skupiny Fabovej hole. – Preslia 60(3): 253 –270. [In Slovak] Miadok D. (1995): Vegetácia ŠPR Ďumbier. – Bratislava: Univerzita Komenského v Bratislave. [In Slovak] Mikyška R. (1934a): Sociologické rozbory přirozených lesních porostů a typů na Ptáčníku ve Slovenském středohoří. – Věstn. Českoslov. Akad. Zeměd. 10(6–7): 435 – 439. [In Czech] Mikyška R. (1934b): Sociologické rozbory lesních společenstev na Polaně nad Dětvou. – Věstn. Českoslov. Akad. Zeměd. 10(10): 727–732. [In Czech] Mikyška R. (1936a): Studie o bučinách na Ptáčníku: Příspevek k sociologii přirozených porostů lesních ve Slovenském Středohoří. – Bratislava, Časopis pro výzkum Slovenska a Podkarpatské Rusi 10: 1–24, fig. tab. app. [In Czech] Mikyška R. (1936b): Smrčina na Poľaně Detvanské a návrh na její ochranu. – Krása našeho domova, 28: 27–30; Publikace dendrol. ústavu Vysoké školy zeměd. lesn. inž. v Praze, 1936(6): 4 p., separatum. [In Czech] 214 Norway spruce woodlands in Slovakia and their syntaxonomical classification Mikyška R. (1939): Studien über die natürlichen Waldbestände im Slowakischen Mittelgebirge (Slovenské stredohorie): Ein Beitrag zur Soziologie der Karpatenwälder. – Beih. Bot. Centralbl., Abt. B1 59: 169 –244. Mikyška R. (1972): Die Wälder der böhmischen mittleren Sudeten und ihrer Vorberge: (Pflanzensoziologische Studie). – Rozpravy Českoslov. Akad. Věd, Řada Mat. Přír. Věd. 82(3): 1–164, fig. app. Moravčíková Ľ. (1987): Fytocenologicko-ekologická charakteristika lesných spoločestiev Krížnej doliny v Západných Tatrách. – Master’s thesis, msc., depon. in. Prírodovedecká fakulta Univerzity Komenského, Bratislava. Morozova O.V., Zaugol‘nova L.B. , Isayeva L.G. & Kostina V.A. (2008): Klassifikaciya boreal‘nykh lesov severa Evropeyskoy Rossii. I. Oligotrofnye khvoynye lesa. – Rastitel‘n. Rossii [Veg. Russia] 13: 16 –36. doi: 10.31111/vegrus/2008.13.61 [In Russian] Morozova O.V., Semenishchenkov Yu.A., Tikhonova E.V., Belyaeva N.G. , Kozhevnikova M.V. & Chernenkova T.V. (2017): Nemoral‘notravnyye yel‘niki Evropeyskoy Rossii. – Rastitel‘n. Rossii [Veg. Russia] 31: 33 –58. doi: 10.31111/vegrus/2017.31.33 [In Russian] Mráz K. (1956): Smilkové pastviny Martinských holí jako vývojová stadia lesních společenstev – Biológia (Bratislava) 11(1): 3 –11. [In Czech] Mucina L., Maglocký Š. [eds], Balátová-Tuláčková E., Banásová V., Berta J., Dúbravcová Z., Fajmonová E., Hadač E., Hejný S., Jarolímek I., Kontriš J., Krahulec F., Krippelová T., Michalko J., Michalko M., Neuhäusl R., Oťaheľová H., Paclová L., Petrík A., Rybníček K, Ščepka A., Šomšák L., Špániková A, Uhlířová J. & Zaliberová M. (1985): A list of vegetation units of Slovakia. – Doc. Phytosociol. Nova Ser. 9: 175 –220. Mucina L., Bültmann H., Dierssen K. et al. (2016): Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. – Appl. Veg. Sci. 19(Suppl. 1): 3 –264. doi: 10.1111/avsc.12257 Murmann-Kristen L. (1987): Das Vegetationsmosaik im Nordschwarzwälder Waldgebiet. – Diss. Bot. 104: I–X, 1–290, Anhang I–XXVI, tab. apps. Myczkowski S. & Grabski S. (1962): Zbiorowiska leśne Doliny Czarnej Wody w Beskidzie Sądeckim. – Rocz. Nauk Roln., Ser. D. 96: 149 –191. [In Polish] Myczkowski S. & Lesiński J. (1974): Rozsiedlenie rodzimych gatunków drzew tatrzańskich. – Stud. Osrod. Dokument. Fizjogr. 3: 13 –70. [In Polish] Naďová E. (1987): Fytocenologicko-ekologické pomery klimaxových smrečín ľavých svahov Tichej doliny (Západné Tatry). – Bratislava: [s. n.]. Master’s thesis, msc., depon. in Prírodovedecká fakulta Univerzity Komenského, Bratislava. Neuhäuslová Z. & Eltsova V. (2003): Climax spruce forests in the Bohemian Forest. – Silva Gabreta 9: 81–104. Neuhäuslová Z. & Sofron J. (2005): Montane Fichten-(Tannen)-Buchenwälder (Calamagrostio villosaeFagetum) im Böhmerwald. – Folia Musei Rerum Nat. Bohem. Occid., Bot. 42: 1–18. Nič J. (1981): Prírodné podmienky, štruktúra a produkcia lesov Štátnej prírodnej lesnej rezervácie ‘Kotlina pod Babou horou’. – Sborn. Věd. Prac. Vysokej. Školy Lesn. Drev. Zvolene 23: 97–103. Nováková M.H. & Edwards-Jonášová M. (2015): Restoration of Central-European mountain Norway spruce forest 15 years after natural and anthropogenic disturbance. – Forest Ecol. Managem. 344: 120 –130. doi: 10.1016/j.foreco.2015.02.010 Oberdorfer E. (1938): Ein Beitrag zur Vegetationskunde des Nordschwarzwaldes: Erläuterung zur vegetationskundlichen Karte Bühlertal-Herrenwies (Bad. Meßtischbl. 73). – Beitr. Naturk. Forsch. Südwestdeutschl. 3(2): 149 –270, fig. mp. apps. Oberdorfer E. (1957): Süddeutsche Pflanzengesellschaften. – Pflanzensoziologie 10: I–XVIII, 1–564. Oberdorfer E. (1973): Die Gliederung der Epilobietea angustifolii-Gesellschaften am Beispiel süddeutscher Vegetationsaufnahmen. – Acta Bot. Acad. Sci. Hung. 19: 235 –255. 215 P. K u č e r a Oberdorfer E. (1978): Klasse: Epilobietea angustifolii Tx. et Prsg. in Tx. 50. – In: Oberdorfer E. [ed.], Korneck D. & Müller Th.: Süddeutsche Pflanzengesellschaften. Teil II [2nd ed.]: 299 –328. – Jena: VEB Gustav Fischer Verlag. Oberdorfer E. (1979): Systematische Übersicht der Vegetationseinheiten (Assoziationen und höhere Einheiten). – In: Oberdorfer E. & Müller T. [eds]: Pflanzensoziologische Exkursionsflora. [4th ed.]: 25 – 49. – Stuttgart: Verlag Eugen Ulmer. Oberdorfer E., Görs S., Korneck D., Lohmeyer W., Müller Th., Philippi G. & Seibert P. (1967): Systematische Übersicht der westdeutschen Phanerogamen- und GefäßkryptogamenGesellschaften. Ein Diskussionsentwurf. – Schriftenreihe Vegetationsk. 2: 7– 62. Obuch J., Kocian Ľ., Žiak D. & Miklós P. (2008): Vývoj fauny cicavcov (Mammalia) od posledného glaciálu po súčasnosť. – In: Stloukal E., Hensel K., Holec P., Illyová M., Jandzík D., Jedlička L., Joniak P., Juráni B., Kocian Ľ., Košel V., Krno I., Kúdela M., Miklós P., Mikulíček P., Obuch J., Schmitt T., Stankoviansky M., Stloukalová V., Varga Z.S. & Žiak D. [eds]: Vývoj prírody Slovenska: 211–249. – Bratislava: Katedra zoológie, Prírodovedecká fakulta, Univerzita Komenského Bratislave. [In Slovak] Obuch J. (2021): Temporal changes in proportions of small mammals in the diet of the mammalian and avian predators in Slovakia. – Lynx Nova Ser. (Praha) 52(1): 87–104. doi: 10.37520/ lynx.2021.007 Ociepa A.M., Zięba A. & Kauzal P. (2020): Kwaśne buczyny w Tatrzańskim Parku Narodowym. – Parki Nar. Rez. Przyr. 39(4): 33 – 49. [In Polish] Pancer-Kotejowa E. (1965): Zbiorowiska leśne Wzniesenia Gubałowskiego. – Fragm. Florist. Geobot. 11(2): 239 –305, tab. app. [In Polish] Passarge H. (1968): Neue Vorschläge zur Systematik nordmitteleuropäischer Waldgesellschaften. – Feddes Repert. 77(1): 75 –103. Passarge H. (1971): Zur soziologischen Gliederung mitteleuropäischer Fichtenwälder. – Feddes Repert. 81(8–9): 577– 604. Passarge H. (1978): Übersicht über mitteleuropäische Gefäßpflanzengesellschaften. – Feddes Repert. 89(2–3): 133 –195. Passarge H. & Hofmann G. (1968): Pflanzengesellschaften des nordostdeutschen Flachlandes II. – Jena: VEB Gustav Fischer. Pawłowski B. (1925): Geobotaniczne stosunki Sądeczyzny. – Prace Monogr. Komis. Fizjogr. 1: 1–336, fig. app. [In Polish] Pawłowski B. (1928): Guide des excursions en Pologne. I. Partie. Guide de l’excursion botanique dans les Monts Tatras (Environs du lac ‘Morskie Oko’ et du massif des ‘Czerwone Wierchy): Accompagné de le caractéristique géobotanique générale des Tatras. – Kraków: Orbis. Pawłowski B. & Walas J. (1949): Les associations des plantes vasculaires des Monts de Czywczyn. – Bull. Acad. Polon. Sci. Lett., Cl. Sci. Math. Nat., Sér. B., Sci. Nat. I (1948): 117–184, fig. mp. apps. Pawłowski B., Sokołowski M. & Wallisch K. (1928): Zespoły roślin w Tatrach. Część VII. Zespoły roślinne i flora doliny Morskiego Oka. – Die Pflanzenassoziationen des Tatra-Gebirges. VII. Teil. Die Pflanzenassoziationen und die Flora des Morskie Oko-Tales. – Bull. Int. Acad. Polon. Sci., Cl. Math., Sér. B., Sci. Nat. 1928, Suppl. II (1927): 205 –272, tab. fig. mp. apps. [In Polish] Petermann R., Seibert P., Kaule G. & Thiele K. (1979): Die Pflanzengesellschaften des Nationalparks Bayerischer Wald mit einer farbigen Vegetationskarte. – [s. l.]: Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forste. Serie Nationalpark Bayerischer Wald, Heft 4. Pielech R., Różański W., Zięba A., Zwijacz-Kozica T., Kauzal P. Foremnik K., Bodziarczyk J. & Szwagrzyk J. (2021): Forest communities of the Tatra Mountains: A classification based on a permanent plot inventory in the Tatra National Park (Poland). – Tuexenia 41: 11–36. doi: 10.14471/2021.41.008 216 Norway spruce woodlands in Slovakia and their syntaxonomical classification Pieta K. (2010): Die Keltische Besiedlung der Slowakei. Jüngere Latènezeit. – Nitra: Archeologický ústav SAV. Series Archaeologica Slovaca Monographiae, Studia, Tomus XII. Pignatti E. & Pignatti S. (2014): Plant life of the Dolomites: Vegetation structure and ecology. – Heidelberg: Springer & Bozen: Naturmuseum Südtirol. Publication of the Museum of Nature South Tyrol Nr. 8. doi 10.1007/978-3-642-31043-0 Pignatti S. (1998): La foresta boreale di conifere. – In: Pignatti S., Bartoli A., Blasi C., Bolognini G., Clauser F., Codogno M., De Lillis M., Dowgiallo G., Lapresa A., Nimis P.L., Piersanti S., Pignatti G. & Rombolà P. [eds]: I boschi d‘Italia: Sinecologia e biodiversità: 125 –169. – Torino: UTET. Pišút I. [ed.], Guttová A., Lackovičová A. & Lisická E. (1998): Lichenizované huby (lišajníky) [Lichen-forming Fungi (Lichens)]. – In Marhold K. & Hindák F. [eds]: Zoznam nižších a vyšších rastlín Slovenska [Checklist of non-vascular and vascular plants of Slovakia]: 229 –295. – Bratislava: VEDA, vydavateľstvo Slovenskej akadémie vied. Plesník P. (1971): Horná hranica lesa vo Vysokých a Belanských Tatrách (die obere Waldgrenze in der Hohen und Belauer Tatra). – Bratislava: Vydevatel’stvo SAV. Podani J. (2001a): SYNTAX 2000 [CD]. – Budapest: J. Podani, 2001. Multivariate Data Analysis Package. © J. Podani. Information on software at: http://ramet.elte.hu/~podani/subindex.html. Podani J. (2001b): SYN-TAX 2000: Computer Program for Data Analysis in Ecology and Systematics. User’s Manual. – Budapest: Scientia Publishing, April 2001. Preislerová Z., Jiménez-Alfaro B., Mucina L., Berg C., Bonari G., Kuzemko A., Landucci F., Marcenò C., Monteiro-Henriques T., Novák P., Vynokurov D., Bergmeier E., Dengler J., Apostolova I., Bioret F., Biurrun I., Campos J. A., Capelo J., Čarni A., Çoban, S., Csiky J., Ćuk M., Ćušterevska R., Daniëls F.J.A., De Sanctis M., Didukh Ya., Dítě D., Fanelli G., Golovanov Ya., Golub V., Guarino R., Hájek M., Iakushenko D., Indreica A., Jansen F., Jašková A., Jiroušek M., Kalníková V., Kavgacı A., Kucherov I., Küzmič F., Lebedeva M., Loidi J., Lososová Z., Lysenko T., Milanović Đ., Onyshchenko V., Perrin G., Peterka T., Rašomavičius V., Rodríguez-Rojo M.P., Rodwell J.S., Rūsiņa S., Sánchez-Mata D., Schaminée J.H.J., Semenishchenkov Yu., Shevchenko N., Šibík J., Škvorc Ž., Smagin V., Stešević D., Stupar V., Šumberová K., Theurillat J.-P., Tikhonova E., Tzonev R., Valachovič M., Vassilev K., Willner W., Yamalov S., Večeřa M. & Chytrý M. (2022): Distribution maps of vegetation alliances in Europe. – Appl. Veg. Sci. 25(1): e12642. doi: 10.1111/avsc.12642 Pott R. (1992): Die Pflanzengesellschaften Deutschlands. – Stuttgart: Eugen Ulmer. QGIS.org (2021): QGIS Geographic Information System. – QGIS Association. http://www.qgis.org Rajcová K. (1987): Fytocenologicko-ekologická charakteristika lesných spoločenstiev Kôprovej doliny vo Vysokých Tatrách. – Master’s thesis, msc., depon. in Prírodovedecká fakulta Univerzity Komenského, Bratislava. Rameau J.-C. (1997): Réflexions syntaxonomiques et synsystématiques au sein des complexes sylvatiques français. – Nancy: École national du génie rural, des eaux et des forêts. Ralski E. (1930): Hale i łaki Pilska w Beskidzie Zachodnim. – Prace Roln.-Leśne 1: 1–158, fig. apps. [In Polish] Rastlinné spoločenstvá Slovenska [Plant communities of Slovakia] (1995–2022): – Bratislava: Veda, vydavateľstvo Slovenskej akadémie vied. [In Slovak] Renaux B. (2015): Les tourbières boisées du Massif central. – In: Actes des secondes rencontres végétales du Massif central – Limoges: 27–54. – Chananiac-Lafayette: Conservatoire botanique national du Massif central. Rivas-Martínez S. & Costa M. (1998): Datos sobre la vegetación y el bioclima del Valle de Arán. – Acta Bot. Barcinon. 45: 473 – 499. 217 P. K u č e r a Rivas-Martínez S., Fernández-González F., Loidi J., Lousã M. & Penas A. (2001): Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. – Itin. Geobot. 14: 5 –341. Rivas-Martínez S., Asensi A., Díez-Garretas B. et al. (2011): Mapa de series, geoseries y geopermaseries de vegetación de España [Memoria del mapa de vegetación potencial de España, 2011]. Parte II. – Itin. Geobot. 18: sine pag. + 5 – 800. Samek V. (1961): Lesní společenstva rezervace Boubín. – Ochr. Přír. (Praha) 16: 74 –78. [In Czech] Samek V., Jančařík V., Kriesl A. & Materna J. (1957): Lesní společenstva severního úbočí Vysokých Tater (Část I. Javorová dolina). – Lesn. Čas. 3(1): 3 –38, tab. app. [In Czech] Sautter R. (2003): Waldgesellschaften in Bayern: Vegetationskundliche und forstgeschichtliche Darstellung der natürlichen und naturnahen Waldgesellschaften. – Landsberg: ecomed. Sádlo J., Chytrý M., Vítková M., Petřík P., Kolbek J. & Neuhäuslová Z. (2013): Mezofilní a suché křoviny a akátiny (Rhamno-Prunetea). – In: Chytrý M. [ed.], Douda J., Roleček J., Sádlo J., Boublík K., Hédl R., Vítková M., Zelený D., Navrátilová J., Neuhäuslová Z., Petřík P., Kolbek J., Lososová Z., Šumberová K., Hrivnák R., Michalcová D., Žáková K., Danihelka J., Tichý L., Zouhar V., Hájek O. & Kočí M.: Vegetace České republiky. 4. Lesní a křovinná vegetace: 73 –156. – Praha: Nakladatelství Academia. Schlüter H. (1966): Abgrenzung der natürlichen Fichtenwälder gegen anthropogene Fichtenforste und die Ausweitung des Fichtenwaldareals im Zusammenhang mit dem Tannenrückgang im Thüringer Wald. – In: Tüxen R. [ed.]: Anthropogene Vegetation. Bericht über das internationale Symposium in Stolzenau/Weser 1961 der Internationalen Vereinigung für Vegetationskunde: 263 –274. – Den Haag: Junk Publ. doi: 10.1007/978-94-010-3559-0_28 Schlüter H. (1969): Das Calamagrostio villosae-Piceetum des Thüringer Waldes im Vergleich zu anderen Mittelgebirgen. – Vegetatio 17(1– 6): doi: 10.1007/BF01965906 Schmid H. & Gaisberg E. v. (1936): Untersuchungen über Standort und Ertragsleistung der Fichte in württembergischen Waldgebieten. – Mitt. Württemberg. Forstl. Versuchsanst. 1936(1): 1–129, tab. app. Sedláčková M. (1978): Lesní společenstva radhošťské skupiny Moravskoslezských Beskyd (Západní Karpaty). – Preslia 50(1): 26 –47. [In Czech] Seibert P. (1992): Klasse: Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 39. – In: Müller Th., Oberdorfer E. & Seibert P. [eds]: Süddeutsche Pflanzengesellschaften. Teil IV. Wälder und Gebüsche. A. Textband: 53 – 80. – Jena: Gustav Fischer. Shennan S.J. (1993): Settlement and social change in central Europe, 3500–1500 BC. – J. World Prehist. 7(2): 121–161. doi: 10.1007/BF00975449 Shelyag-Sosonko Yu.R., Kuzemko A.A., Didukh Ya.P., Dubyna D.V. & Tymoshenko P.A. (2006): Roslynnist Ukrainy. Klasy: Vaccinio-Piceetea, Erico-Pinetea, Pulsatillo-Pinetea sylvestris. – Kyiv: Fitosotsiotsentr. Shevchenko N.E. & Smirnova O.V. (2017): Refugiumy floristicheskogo raznoobraziya temnokhvoinykh lesov Severnogo Urala kak markery prirodnoi rastitel‘nosti vostochnoevropeiskoi taigi. – Ekologiya 3: 171–177. doi: 10.7868/80367059717030180 [see also doi: 10.1134/S1067413617030183] Sillinger P. (1933): Monografická studie o vegetaci Nízkých Tater. – Praha: Sbor pro výzkum Slovenska a Podkarpatské Rusi. Series Knihovna Sboru pro výskum Slovenska a Podkarpatské Rusi, vol. 3. [In Czech] Slezák M., Hrivnák R. & Petrášová A. (2014): Numerical classification of alder carr and riparian alder forests in Slovakia. – Phytocoenologia 44(3 – 4): 283 –308. doi: 10.1127/0340-269X/2014/00440588 Slezák M., Hrivnák R., Ujházy K., Ujházyová M, Máliš F. & Petrášová A. (2016): Syntaxonomy and ecology of acidophilous beech forest vegetation in Slovakia. – Phytocoenologia 46(1): 69 – 87. doi: 10.1127/phyto/2016/0047 218 Norway spruce woodlands in Slovakia and their syntaxonomical classification Slezák M., Valachovič M., Blanár D., Máliš F., Senko D. & Žarnovičan H. (2020): Vegetation classification of acidophilous oak forests in Slovakia. – Tuexenia 40: 33 –52. doi: 10.14471/2020.40.010 Societas pedologica Slovaca (2014): Morfogenetický klasifikačný systém pôd Slovenska. Bazálna referenčná taxonómia. [2nd ed.] – Bratislava: NPPC –Výskumný ústav pôdoznalectva a ochrany pôdy. Sofron J. (1976): Příspěvek k poznání spoločenstev přirozených smrčin Vysokých Tater. – Report, msc., depon. in Západočeské muzeum v Plzni, oddělení botaniky. [In Czech] Sofron J. (1981): Přirozené smrčiny západních a jihozápadních Čech. – Stud. Českoslov. Akad. Věd 7: 1–128. [In Czech] Solomakha V.A. (2008): Syntaksonomiia roslynnosti Ukrainy. Tretie nablizhennia. Monografiia. – Kyiv: Fitosociocentr. Solomakha V.A., Yakushenko D.M., Kramaretz V.O., Mylkyna L.I. & Vorontsov D.P. (2004): Nacional'nyj prirodnyy park ‘Skolivski Beskydy’. Roslynnyy svit. – Kyiv: Fitosotsiotsentr. [In Ukrainian] Somora J. (1969): Die theoretische Problematik der Waldgrenze (Diskussion). – Zborn. Prác Tatransk. Nár. Parku 11: 139 –176. Somora J. (1976): O zvyšovaní hornej hranice lesa a kosodreviny zalesňovaním v Tatranskom národ-nom parku. – Zborn. Prác Tatransk. Nár. Parku 18: 5 –27. [In Slovak] Somora J. (1977): O zvyšovaní hornej hranice lesa a kosodreviny zalesňovaním v Tatranskom národ-nom parku, II. časť. – Zborn. Prác Tatransk. Nár. Parku 19: 5 –74. Somora J. & Humlová M. (1971): Príspevok k zalesňovaniu borovicou limbou (Pinus cembra L.) v Tatranskom národnom parku. – Zborn. Prác Tatransk. Nár. Parku 13: 79 –107. Soó R. (1930): Vergleichende Vegetationsstudien – Zentralalpen-Karpathen-Ungarn – nebst kritischen Bemerkungen zur Flora der Westkarpathen. – Veröff. Geobot. Inst. Rübel Zürich 6 [Ergebnisse der Internationalen Pflanzengeographischen Exkursion durch die Tschechoslowakei und Polen 1928, redig. E. Rübel]: 237–322. Stöcker G. (1967): Der Karpatenbirken-Fichtenwald des Hochharzes: Eine vegetationskundlich-ökologische Studie. – Pflanzensoziologie 15: 1–124. Stöcker G. (1968): Das Anastrepto-Piceetum im Harz und Riesengebirge (Krkonoše). – Opera Concortica 5: 135 –155. Stuchlik L. (1968): Zbiorowiska leśne i zaroślowe pasma Policy w Karpatach Zachodnich. – Fragm. Florist. Geobot. 14(4): 441– 483. [In Polish] Svoboda P. (1939): Lesy Liptovských Tater: Studie o dřevinách a lesních společenstvech se zvláštním zřetelem k vlivům antropozoickým. – Opera Bot. Čechica 1: 1–164, mp. fig. tab. app. [In Czech] Sýkora T. (1971): Lesní rostlinná společenstva Jizerských hor. – Knižnice Jizer. Hor 11: 1– 60, fig. mp. app. Szafer W., Pawłowski B. & Kulczyński S. (1923): Die Pflanzenassoziationen des Tatra-Gebirges I. Teil: Die Pflanzenassoziationen des Chochołowska-Tales. – Bull. Int. Acad. Polon. Sci., Cl. Math., Sér. B., Sci. Nat., Supplémentaire: 1– 65, fig. mp. tab. apps. Szafer W., Kulczyński S., Pawłowski B., Stecki K. & Sokołowski M. (1927a): Pflanzenassoziationen des Tatra-Gebirges: III, IV und V Teil, (Tafeln 1–12). – Bull. Int. Acad. Polon. Sci., Cl. Math., Sér. B., Sci. Nat., Supplémentaire II (1926): 1–144, fig. mp. tab. apps. Szafer W., Pawłowski B. & Kulczyński S. (1927b): Zespoły roślin w Tatrach. Część III: Zespoły roślin w dolinie Kościeliskiej. – Die Pflanzenassoziationen des Tatra-Gebirges. III. Teil: Die Pflanzenassoziationen des Kościeliska-Tales. (Planches 1–3). – Bull. Int. Acad. Polon. Sci., Cl. Math., Sér. B., Sci. Nat., Supplémentaire II (1926): 13 –78, tab. apps. Šály R. (1986): Pôdne pomery. – In: Vestenický K., Vološčuk I. et al.: Veľká Fatra: Chránená krajinná oblasť: 56–68. – Bratislava: Príroda. [In Slovak] 219 P. K u č e r a Šibík J. (2007): Fyziognómia a štruktúra ako dôležitý faktor pri vytváraní univerzálneho fytocenologického systému. – Bull. Slov. Bot. Spoločn. 29: 147–157. [In Slovak] Šibík J. (2012): Slovak Vegetation Database. – In: Dengler J., Oldeland J., Jansen F., Chytrý M., Ewald J., Finckh M., Glöckler F., Lopez-Gonzalez G., Peet R.K. & Schaminée J.H.J. [eds]: Vegetation databases for the 21st century. – Biodivers. & Ecol. 4: 429 [Short Database Report]. doi: 10.7809/b-e.00216 Šibík J., Kliment J., Jarolímek I., Dúbravcová Z., Bělohlávková R. & Paclová L. (2007): To the validation of some syntaxa of the Loiseleurio-Vaccinietea from western Carpathians. – Hacquetia 2006 5/1: 37–71 & Hacquetia 6(1): 103 –104. doi: 10.2478/v10028-007-0005-9 Šibík J., Šibíková I. & Kliment J. (2010): The subalpine Pinus mugo-communities of the Carpathians with a European perspective. – Phytocoenologia 40(2–3): 155 –188. doi: 10.1127/0340269X/2010/0040-0436 Šilc U. & Čarni A. (2012): Conspectus of vegetation syntaxa in Slovenia. – Hacquetia 11(1): 113 –164. Školek J. (1995a): Rastlinné spoločenstvá v ŠPR Demänovská dolina v Nízkych Tatrách. – Nat. Tutela 3: 77–100. [In Slovak] Školek J. (1995b): Rastlinstvo Prírodnej pamiatky Vrbické pleso. – Nat. Tutela 3: 275 –284. Školek J. (2003): Vegetácia Národnej prírodnej rezervácie Ďumbier v Nízkych Tatrách. – Nat. Tutela 7: 17–29. [In Slovak] Šmarda J. (1950): Květena Hrubého Jesenníku. – Čas. Mor. Mus. 35(1): 78 –156. [In Czech] Šmarda J. et al. (1971): K ekologii rostlinných společenstev Doliny Sedmi pramenů v Belanských Tatrách. – Práce Stúd. Českoslov. Ochr. Prír., Sér. III 4: 1–208, mp. app. [In Czech] Šoltés R. (1969): Sorbus aucuparia L. vo Vysokých Tatrách. – Bratislava: [s. n.]. Master’s thesis, msc., depon. in Prírodovedecká fakulta Univerzity Komenského, Katedra botaniky, Bratislava. Šoltés R. (1976): Phytozönotische Analyse des Verbandes Vaccinio-Piceion Br.-Bl. 1938 in den Westkarpaten. – Acta Fac. Rerum Nat. Univ. Comen., Bot. 24: 139 –167, tab. app. Šoltés R., Hájek M. & Valachovič M. (2001): Oxycocco-Sphagnetea Br.-Bl. et R. Tx. ex Westhoff et al. 1946. – In: Valachovič M. [ed.], Háberová I., Hájek M., Hrivnák R., Jarolímek I., Oťaheľová H., Šoltés R. & Zaliberová M.: Rastlinné spoločenstvá Slovenska. 3. Vegetácia mokradí: 275 –296. – Bratislava: Veda, vydavateľstvo Slovenskej akadémie vied. Šomšák L. (1973): Vegetationsverhältnisse des Zipser Teils des Slowakischen Erzgebirges – Slovenské rudohorie III. (Verbreitetste Waldgesellschaften). – Acta Fac. Rerum Nat. Univ. Comen., Bot. 21: 1–29. Šomšák L. (1979): Torfwälder fluvioglazialen Ablagerungen der Hohen Tatra. – Acta Fac. Rerum Nat. Univ. Comen., Bot. 27: 1–38. Šomšák L. (1983): Spruce forests and fir-spruce communities of the western part of the Slovenské Beskydy and Oravská Magura Mountains. – Folia Geobot. Phytotax. 18(2): 137–160. doi: 10.1007/ BF02857450 Šomšák L., Kubíček F., Háberová I. & Majzlanová E. (1979): The influence of tourism upon the vegetation of the High Tatras. – Biológia (Bratislava) 34(7): 571–582. Šomšák L., Kubíček F., Jurko A., Háberová I., Šimonovič V., Majzlanová E., Šoltésová A., Šoltés R. & Rybárska V. (1981): Vplyv zošľapovania na vegetáciu okolia Skalnatého plesa a Hrebienka vo Vysokých Tatrách. – Zborn. Prác Tatransk. Nár. Parku 22: 145–292. [In Slovak] Šomšák L., Viceníková A., Marková Ľ. & Šoltés R. (1993): Vegetačná mapa lesov Podtatranskej kotliny (časť I). – Zborn. Prác Tatransk. Nár. Parku 33: 179 –192, mp. app. [In Slovak] Thébaud G. (2008): Associations végétales récemment décrites dans le Massif central oriental français: typification et validation nomenclaturale. – Rev. Sci. Nat. Auvergne 70 (2006): 75 –95. Thébaud G. & Bernard C.-E. (2018): Contribution au prodrome des végétations de France: les forêts de conifères circumboréales ou montagnardes sur sols acides des classes des Vaccinio – Piceetea 220 Norway spruce woodlands in Slovakia and their syntaxonomical classification Braun-Blanq. in Braun-Blanq. et al. 1939 des Junipero sabinae – Pinetea ibericae Rivas-Mart. 1965 et des Roso pendulinae – Pinetea mugo Theurillat in Theurillat et al. 1995. – Doc. Phytosoc., Sér. 3 7: 284 – 421. Theurillat J.-P., Aeschimann D., Küpfer Ph. & Spichiger R. (1995): The higher vegetation units of the Alps. – Colloq. Phytosoc. 23: 189 –239. Theurillat J.-P., Willner W., Fernández-González F., Bültmann H., Čarni A., Gigante D., Mucina L. & Weber H. (2021): International Code of Phytosociological Nomenclature. [4th ed.] – Appl. Veg. Sci. 24(1): e1249. doi: 10.1111/avsc.12491 [first published online: 5 December 2020] Tichý L. (1998–2020): JUICE [disk]. Ver. 7.1.25. – Brno: L. Tichý. Program for analysis and classification of phytosociological tables and other quantitative ecological data sets. http://www.sci.muni.cz/ botany/juice/ Tichý L. (2002): JUICE, software for vegetation classification. – J. Veg. Sci. 13(3): 451– 453. doi: 10.1111/j.1654-1103.2002.tb02069.x Tichý L. & Chytrý M. (2006): Statistical determination of diagnostic species for site groups of unequal size. – J. Veg. Sci. 17(6): 809 –818. doi: 10.1111/j.1654-1103.2006.tb02504.x Trautmann W. (1952): Pflanzensoziologische Untersuchungen der Fichtenwälder des Bayerischen Waldes. – Forstwiss. Centralbl. 71(9/10): 289 –313. Tüxen R. (1937): Die Pflanzengesellschaften Nordwestdeutschlands. – Mitt. Florist.-Soziol. Arbeitsgem. Niedersachsen 3: 1–170. Tüxen R. (1955): Das System der nordwestdeutschen Pflanzengesellschaften. – Mitt. Florist.-Soziol. Arbeitsgem. 5: 155 –176. Ujházyová M., Ujházy K., Máliš F., Slezák M. & Hrivnák R. (2021): Syntaxonomical revision of the order Fagetalia sylvaticae Pawłowski ex Pawłowski et al. 1928 in Slovakia. – Biologia (Bratislava) 76(7): 1 929 –1 968, 2 el. apps. doi: 10.2478/s11756-020-00661-1 Unar J., Unarová M. & Šmarda J. (1984): Vegetační poměry Tomanovy doliny a Žlebu spod Diery v Západních Tatrách. Část 1. Fytocenologické tabulky. – Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Biol. 25(10): 1–104. [In Czech] Valachovič M. & Hegedüšová K. (2020): Piceo abietis-Sorbetum aucupariae Oberdorfer 1973 – nové spoločenstvo pre Slovensko. – Bull. Slov. Bot. Spoločn. 42(1): 71–74. [In Slovak] Valachovič M. & Jarolímek I. (1988): Príspevok k poznaniu vegetácie ŠPR Úplazíky v Západných Tatrách. – Bull. Slov. Bot. Spoločn. 10(1): 13 –18. [In Slovak] Valachovič M., Štubňová E., Senko D., Kochjarová J. & Coldea Gh. (2019): Ecology and species distribution pattern of Soldanella sect. Soldanella (Primulaceae) within vegetation types in the Carpathians and the adjacent mountains. – Biologia (Bratislava) 74(7): 733 –750. doi: 10.2478/ s11756-019-00200-7 Valachovič M., Kliment J., Hegedüšová Vantarová K. [eds], Bernátová D., Hrivnák R., Jarolímek I., Kanka R., Kollár J., Máliš F., Roleček J., Slezák M., Šibík J., Šibíková M., Uhlířová J., Ujházy K., Ujházyová M. & Žarnovičan H. (2022): Rastlinné spoločenstvá Slovenska. 6. Lesná a krovinová vegetácia. – Bratislava: VEDA, vydavateľstvo Slovenskej akadémie vied, Bratislava. The year of publication is given incorrectly as 2021. [In Slovak] Voško M., Kukla J., Klubica D. & Bublinec E. (1990): Analýza ekologických faktorov a štruktúry lesných ekosystémov monitorovacích plôch. – Zborn. Prác Tatransk. Nár. Parku 30: 227–275. [In Slovak] Walas J. (1933): Roślinność Babiej Góry. – Monogr. Nauk. 2: 1– 68, tab. map app. [In Polish] Wallnöfer S. (1993): Vaccinio-Piceetea. – In: Mucina L., Grabher G., Wallnöfer S. [eds], Geisselbrecht L., Grass V., Gutermann W., Justin C. & Wirth J.M.: Die Pflanzengesellschaften Österreichs. Teil III. Wälder und Gebüsche: 283 –337. – Jena: Gustav Fischer. 221 P. K u č e r a Weber H.E., Moravec J. & Theurillat J.-P. (2000): International Code of Phytosociological Nomenclature. [3rd ed.] – J. Veg. Sci. 11(5): 739 –768. doi: 10.2307/3236580 Willner W. (2007): Nomenklatorischer Anhang. – In: Willner W., Grabherr G. [eds], Drescher A., Eichberger C., Exner A., Franz W.R., Grabner S., Heiselmayer P., Karner P., Starlinger F., Sauberer N. & Steiner G.M.: Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. 1 Textband: 219 –245. – München: Elsevier. Willner W., Grabherr G. [eds], Drescher A., Eichberger C., Exner A., Franz W.R., Grabner S., Heiselmayer P., Karner P., Starlinger F., Sauberer N. & Steiner G.M. (2007): Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. 2 Tabellen-band. – München: Elsevier. Willner W., Solomeshch A., Čarni A., Bergmeier E., Ermakov N. & Mucina L. (2016): Description and validation of some European forest syntaxa – a supplement to the EuroVegChecklist. – Hacquetia 15(1): 15 –25. doi: 10.1515/hacq-2016-0005 Willner W. & Steiner G.M. (2007): Vaccinio uliginosi-Pinetea Pass. & Hoff. 1968. Nasse Föhrenwälder, Föhren-Moorwälder. – In: Willner W., Grabherr G. [eds], Drescher A., Eichberger C., Exner A., Franz W.R., Grabner S., Heiselmayer P., Karner P., Starlinger F., Sauberer N. & Steiner G.M.: Die Wälder und Gebüsche Österreichs. Ein Bestimmungswerk mit Tabellen. 1 Textband: 181–183. – München: Elsevier. Willner W., Theurillat J.-P., Pallas J. & Mucina L. (2015): On the nomenclature of some highrank syntaxa of European forest vegetation. – Phytocoenologia 45(1–2): 175 –181. doi: 10.1127/ phyto/2015/0036 Willner W. & Zukrigl K. (1999): Nomenklatorische Typisierung und Validisierung einiger aus Österreich beschriebener Waldgesellschaften. – Verh. Zool.-Bot. Ges. Österreich 136: 149 –180. Wraber M. (1953) [recte 1954]: Tipološka podoba vegetacije višjich predelov Pohorja: (Predhodno poročilo). – Biol. Vestn. 2: 89 –109. [In Slovenian] Wraber M. (1954): Splošna ekološka in vegetacijska oznaka višjih predelov Pohorja. – Gospod. Vestn. 12(6/7): 161–178. [In Slovenian] Wraber M. (1955): O problemu vegetacijskega klimaxa na Pohorju. – Biol. Vestn. 4: 7–22. [In Slovenian] Wraber M. (1956): Fitosociološka in ekološka analiza razširjenosti dendroflore na Pohorju. – Biol. Vestn. 5: 39 –70. [In Slovenian] Wraber M. (1960): Fitosociološka razčlenitev gozdne vegetacije v Sloveniji. – In: Lazar J. [ed.]: Zbornik ob 150-letnici Botaničnega vrta v Ljubljani: 49 –96. – Ljubljana: Tiskarna Toneta Tomšiča. [In Slovenian] Wraber M. (1963): Gozdna združba smreke in gozdne bekice v slovenskih Vzhodnih Alpah: (Luzulo silvaticae – Piceetum Wraber, 1953). – Razpr. Slov. Akad. Znan. Umetn., Razr. Prir. Med. Vede, Oddel. Prir. Vede 7: 75 –175, tab. app. [In Slovenian] Zahradníková-Rošetzká K. (1957): Príspevok ku kvetene Demänovskej doliny. – Biol. Práce 3(4): 1–60. [In Slovak] Zaugolnova L.B., Smirnova O.V., Braslavskaja T.Yu., Degteva S.V., Prokasina T.S. & Lugovaja D.L. (2009): Tall herb boreal forests of eastern part of European Russia. – Rastitel'n. Rossii [Veg. Russia] 15: 3 –26. doi: 10.31111/vegrus/2009.15.3 Zeidler H (1953): Waldgesellschaften des Frankenwaldes. – Mitt. Florist.-Soziol. Arbeitsgem. 4: 88 –109. Zięba A., Różański W. & Szwagrzyk J. (2018): Syntaxononomy of relic Swiss stone pine (Pinus cembra) forests in the Tatra Mountains. – Tuexenia 38: 155 –176. doi: 10.14471/2018.38.004 Zlatník A. (1935): Studie o státních lesích na Podkarpatské Rusi. Díl třetí. Vývoj a složení přirozených lesů na Podkarpatské Rusi a jejich vztah ke stanovišti. – Sborn. Výzk. Ústavů Zeměd. ČSR. 1935, Sv. 127: 67–153. 222 Norway spruce woodlands in Slovakia and their syntaxonomical classification Zlatník A. (1959): Přehled slovenských lesů podle skupin lesních typů. Spisy Věd. Lab. Biogeocenol. Typol. Lesa Lesn. Fak. Vysoké Školy Zeměd. v Brně 3: 1–92, tab. mp. app. [In Czech] Zlatník A. (1970): Ekologicko-synekologický, cenologický a fytogeografický výskum na trvalých výskumných plochách. – Zborn. Prác Tatransk. Nár. Parku 12: 79 –152, tab. app. [In Slovak] Zlatník A. (1975): Ekologie krajiny a geobiocenologie jako vědecký podklad ochranu přírody a krajiny. – s. n.: TIS – Svaz pro ochranu přírody a krajiny; Vysoká škola zemědělská v Brně. Zukrigl K. (1973): Montane und subalpine Waldgesellschaften am Alpenostrand: unter mitteleuropäischem, pannonischem und illyrischem Einfluß. – Mitt. Forstl. Bundes-Versuchsanst. Wien 101: 1–387, tab. app. Zupančič M. (1969): Vergleich der Bergahorn-Buchengesellschaften (Aceri-Fagetum) im alpinen und dinarischen Raume. – Mitt. Ostalpin-Dinar. Pflanzensoziol. Arbeitsgem. 9: 119 –131. Zupančič M. (1999): Smrekovi gozdovi Slovenije. – Ljubljana: Slovenska akademija znanosti in umetnosti. Series Slovenska akademija znanosti in umetnosti, Razred za naravoslovne vede [Classis IV. Historia naturalis], Dela 36. [In Slovenian] Address of the author: Peter Kučera Belá-Dulice 187 038 11 Belá-Dulice, Slovakia E-mail: peter.kucera@uniba.sk ORCID: 0000-0002-8508-616X 223