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ABSTRACT 
Cumulating of mercury in plants increase to the phytotoxicity and impairs numerous metabolic 
processes, including nutrient uptake, water status, and photosynthesis. Contamination of mercury in 
soils has become a great concern because of its natural release and anthropogenic activities. This 
research understanding the speciation of mercury, transformation, and transportation and toxicology 
tolerant regulation in plants, and minimization strategy, introducing the sources of mercury 
contamination in soils. Mercury (Hg) exists in different forms, ionic mercury (Hg+2) is the predominant 
form in soils and readily absorbed by plants. Uptake, transport, and localization of mercury (Hg+2) in 
plants that induce phytotoxicity and damage considerable metabolic processes. Mechanisms of 
mercury-induced toxicology, molecular response and gene networks for regulating plant tolerance. 
Extremely advance has been made in profiling of transcriptome and more importantly, uncovering a 
group of small RNAs that potentially mediates plant tolerance to mercury (Hg+2). Recently  discovered 
several signaling molecules such as nitric oxide and carbon monoxide have described as the regulators 
of plant tolerance to mercury (Hg+2). Major importance to understand the extent of the toxicity in plants 
and animals and the consequences from the ingestion of contaminated food. Mercury (Hg+2) is easily 
modified into several oxidation states, and it can be spread in many ecosystems. Due to the recurrence 
of mercury (Hg+2) pollution and due to the lack of knowledge about the effects of this heavy metal in 
plants. The aim of this research is to provide a comprehensive review of the literature regarding mercury 
(Hg+2) phytotoxicity. 
 
Keywords: mercury, plant, nutrient uptake, water status, contamination, transformation, transportation, 

toxicology 

 
1. Introduction 

Pollution of heavy metals, as a global problem affecting the terrestrial and aquatic environments, as 
well as posts a potential threat to human health through the food chains. Meantime excessive 
concentrations of heavy metals in soils gradually resulted in yield reduction and poor quality of crop 
products. Suszcynsky and Shann (1995) stated  that mercury considers as  one of the most toxic heavy 
metals because of its easy bioaccumulation in living bodies, which can enter to the agricultural soil 
through various anthropogenic activities including fertilizers, pesticides, sludge, lime and manure 
Fig.(1).  
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              Fig. 1: Overview of sources of heavy metal pollution and its agro ecological consequences. 
                                                    After: Srivastava et al. (2017) 
 

Srivastava et al. (2017) stated that heavy metal (HM) contamination has become a prime concern 
for today’s society because of modern urbanization and industrialization. The impacts of heavy metals 
contamination particularly, on agriculture lands to the produce in our food basket should be considered. 
Heavy metals (HMs) and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, 
can result in significant toxic effects. Intensification of agricultural land use and changes in farming 
practices along with technological advancement have led to heavy metal pollution in soil. Metals 
/metalloids concentrations in the soil are increasing at alarming rate and affect plant growth, food safety, 
and soil microflora. The biological and geological reorganization of heavy metals depend chiefly on 
green plants and their metabolism. Metal toxicity has direct effects to flora that forms an integral 
component of ecosystems. Alternation of biochemical, physiological, and metabolic processes are 
found in plants growing in regions of high metal pollution. However, metals like Cu, Mn, Co, Zn, and 
Cr are required in trace amounts by plants for their metabolic activities. The present review aims to 
catalog major published works related to mercury contamination in modern day agriculture, and draw 
a possible road map toward future research in this domain. 

Mercury exists in nature in forms of ionic mercury, methyl mercury, and mercury sulfide and 
mercury hydroxide. Han et al. (2002), Heaton et al. (2005) reported that ionic mercury is the 
predominant toxic form. Toxic action of mercury is done on the roots, which take up mercury directly   
in an efficient manner Han et al. (2006). Mercury may bind to the water channel proteins of root cells 
and thus, causes physical obstruction to water flowing, consequently, affects the transpiration in plants 
when entering the root cells, Maggio and Joly (1995), Zhang and Tyer man (1999). 

Sapre et al. (2019) stated that the organic forms of mercury roughly affects plants, as they are 
more toxic than inorganic forms (Hg2+) Patra and Sharma (2000). Toxic effect of mercury on most of 
the crop species, beyond the tolerance limit. It tends to a mass in the roots; hence, the phytotoxic 
symptoms are also noticed in roots Chen et al. (2014). Plants, causing disorders and fail to many of the 
biological processes, including photosynthesis, respiration, transpiration and cell division, take up the 
excess of mercury in the soil. Fig. (2).  
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Fig. 2: Illustrates the effects of mercury toxicity on plants After: Sapre et al. (2019). 

The mechanism of mercury toxicity is its ability to react with the sulfhydryl (SH) groups of 
proteins and enzymes; similarly, it has high affinity for the phosphate groups of lipids, energy-rich 
molecules such as ATPs and nucleotides, it also substitutes the essential ions such as Mg2+ ion in 
chlorophyll Azevedo and Rodriguez (2012). Mercury also messes up with the aqua-porins (water 
channels), causing impaired transpiration and subsequent water uptake via vascular tissues Zhou et al. 
(2008). It carefully disrupts the plant antioxidant defense enzymes, especially, glutathione reductase 
(GR), superoxide dismutase (SOD), and catalase and ascorbate peroxidase (APX). Besides, it also 
affects the other antioxidant entities such as glutathione (GSH) and non-protein thiols Israr et al. (2006), 
Zhou et al. (2008). The plants can tolerate the effect of mercury toxicity to some extent by the interplay 
of various physiological and molecular mechanisms. First, when plants are exposed to mercury ions, 
they prohibit or reduce the uptake of mercury into the roots by either complexing them to cell wall or 
root exudates; when enters the root cell, the metal ion is restricted to the apoplasts. Nevertheless, if   
mercury ions gain entry into the plant cell, they are countered by detoxification through 
compartmentalization into vacuoles or complexation with amino acids, organic acids, chelation by 
phytochelatins (PC) and metallothioneins (MT). Furthermore, some of non-enzyme antioxidants such 
as a-tocopherol and GSH also aid in combating mercury toxicity Kalaivanan and Ganeshamurthy 
(2016).  Rascio and Navari-Izzo (2011) stated that such process mostly put a check on translocation of 
mercury ions to the leaf tissues and thereby, shielding the photosynthesis from detrimental effect of 
mercury.  Finally, plants resort the mercury toxicity by induction of the oxidative stress enzymes such 
as SOD, APX, catalase, glyoxalase and GR. They also trigger the stress-responsive proteins and 
hormones. Various signaling are stimulated by encountering heavy metal ions, namely calcium-
dependent signaling and mitogen-activated protein kinase (MAPK) signaling Tiwari and Lata (2018). 
Recently,   mercury toxicity activates the biosynthesis of aromatic amino acids (tryptophan and 
phenylalanine), calcium accumulation and stimulates mitogen-activated protein kinase (MAPK) in rice 
Chen et al. (2014).   

Mercury suppresses photosynthesis, chlorophyll synthesis, as well as uptake and transport of 
nutrients. Mercury is considered to inhabit the activity of the NADPH: protochlorophyllide 
oxidoreductase (POR) that plays important roles in photosynthesis, consequently, affects plant growth 
involving in biomass Lenti et al. (2002). Sahu et al. (2012) evaluated the oxidative damages response 
to mercury concentrations in wheat, represent lower and higher mercury concentration induced and 
repressed antioxidant enzymes activities separately, which supported the opinion that mercury can boost 
the formation of reactive oxygen species (ROS) and consequently, post more serious oxidative stress 
on plant cell. Mercury used primarily in gold mining, batteries, paints, pesticides, impregnation of wood 
and electrical products. Because of its enormous use, this metal is accumulated at various sites and 
reflected as a global pollutant Kabata-Pendias, (2011). Plants take up mercury directly depends on its 
quantities in the soil.  Mercury not only accumulated from the soil by plants, but also immersed in 
progressively released mercury (Hg2+) vapor from the soil Israr et al., (2006).  

High accumulation of mercury (Hg2+) in roots may inhibit plant uptake of K+. However,   lower 
volume of mercury (Hg2+) gradually stimulate K+ uptake. It is known that the toxicity of volatilized 
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elemental mercury (Hg2+) is the most serious for plants. McNear et al., (2012), reported that increasing 
the production of ethylene, mercury (Hg2+) vapor induces processes related to senescence, and   (Hg2+) 
is the most active toxicant  not  ionic form. More than developed plants, young plants are more sensitive 
to mercury (Hg2+) saturated air. Mercury has a strong affinity with multiple proteins and enzyme amino 
acids. Zhou et al., (2008) stated that binding nature of mercury to sulfhydryl groups is the key reaction 
to plant metabolism disruption with Se in soybean root molecules of high molecular weight. In addition, 
improved antioxidant enzyme activity is observed in some cases when mercury is applied to growth 
media.  

Many studies showed that mercury (Hg2+) showed inhibition effects on growth Mishra and 
Choudhuri (1999), chlorophyll biosynthesis Singh et al. (2021), Matson et al. (1972), and activity of 
photosynthesis of plants and phytoplankton Deng et al. (2013), Matorin et al. (2009), Protopopov et al. 
(2021). Most studies investigated the adverse effects of mercury (Hg2+) on photosystem II (PSII) 
activities, located in the donor and/or the acceptor sides and the reaction center of PSII of plants Ahmad 
et al. (2022), Patra et al. (2004) Fig. (3). Wang et al. (2022) stated that mercury (Hg+2) poses high 
toxicity to organisms including algae. Studies showed that the growth and photosynthesis of green algae 
such as Chlorella are vulnerable to (Hg+2) stress. However, the differences between the activities and 
tolerance of photosystem I and II (PSI and PSII) of green microalgae under Hg exposure are still little 
known. Responses of quantum yields and electron transport rates (ETRs) of PSI and PSII 
of Chlorella pyrenoidosa to 0.05–1 mg/L (Hg+2) were simultaneously measured for the first time by 
using the Dual-PAM-100 system. The photosystems were isolated to analyze the characteristics of 
toxicity of Hg during the binding process. The inhibition of Hg2+ on growth and photosystems was 
found. (Hg+2) more seriously affected PSII than PSI. After (Hg+2) exposure, the photochemical quantum 
yield of PSII [Y (II)] decreased with the increase in non-photochemical fluorescence quenching [Y 
(NO) and Y (NPQ)]. The toxic effects of (Hg+2) on the photochemical quantum yield and ETR in PSI 
were lower than those of PSII. The stimulation of cyclic electron yield (CEF) was essential for the 
stability and protection of PSI under Hg stress and played an important role in the induction of non-
photochemical quenching (NPQ) The results showed a strong combination ability of (Hg+2) ions and 
photosystem particles. The number of the binding sites (n) of (Hg+2) on PSII was more than that of PSI, 
which may explain the different toxicity of (Hg+2) on PSII and PSI. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 3:  Illustrates the abinding ability of mercury (Hg+2) to photosystems, I and II explained the 
difference in toxicity After: Wang et al. (2022) 
 

Deng et al. (2013) reported that photosystem I (PSI) activity could be reduced under the stress of 
mercury (Hg2+). However, the effects of heavy metals on PSII and PSI are separately studied in most 
studies. Moreover, the differences between the activities and tolerance of PSII and PSI in intact algal 
cells under Hg exposure are also little known. Therefore, Klughammer, and Schreiber (2008) stated that 
a Dual-PAM-100 system was used to reflect the physiological status of PSII and PSI under mercury 
(Hg2+) toxicity, which showed its advantage in simultaneous measurements of chlorophyll a 
fluorescence and P700+ absorbance changes of intact cells. In addition, some heavy metals were 
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reported to stimulate the cyclic electron flow (CEF) around PSI Wang et al. (2013). These studies 
showed that the cyclic electron flow (CEF) played an important role in coping with abiotic stress and 
protecting PSI. However, whether the cyclic electron flow (CEF) was stimulated under mercury (Hg2+) 
stress, and the response and physiological function of the cyclic electron flow (CEF) around PSI under 
mercury (Hg2+) stress still need further studies. The toxic effects of inorganic mercury (Hg2+) on the 
activities of PSII and PSI of green microalga Chlorella pyrenoidosa were studied. The green 
microalgae, such as C.  pyrenoidosa used in the study, are the main primary producers and essential in 
food chains in aquatic ecosystems, and C. pyrenoidosa has often been used as a model microbial species 
for examining the effects of contaminants on photosynthesis Wang et al. (2013), Li et al. (2021). Cyclic 
electron flow (CEF) around PSI and non-photochemical fluorescence quenching, which provided 
protection to photosynthetic apparatus under stress, were also tested to show the effects of Hg2+ on the 
regulation of electron transport and energy usage or dissipation. Assuming that the toxicity of heavy 
metals in photosynthesis was related to their binding abilities to photosynthetic apparatus, so the binding 
features of mercury (Hg2+) ions and photosystem particles were detected to explain the different toxicity 
of mercury (Hg2+) on PSII and PSI. The mechanisms of mercury-induced toxicology, molecular 
response and gene networks for regulating plant tolerance will be discuses. 

 
2. Mercury speciation, transformation, and transportation 

WHO (2017) reported that mercury contaminated soils pose a risk to global public health, with 
Hg being listed as one of the ‘ten leading chemicals. In 2013, the United Nations (UN) introduced the 
‘Minamata Convention on Mercury’, which aims for a more global effort in managing the risk of Hg to 
human health and the environment. Signed by 128 countries UNEP, (2016), it entered into effect in 
2017, Selin et al., (2018). Obrist et al., (2018) stated that   global amount of Hg mass accumulated in 
soils is very large; assumed to be in the range of 250–1000 Gg. Although Hg occurs naturally in soils 
from geologic sources, through natural events such as forest fires and volcanic eruptions.  Ermolin et 
al., (2018) stated that significant proportion of that Hg is attributed to anthropogenic influences, with 
an estimated 86 Gg of anthropogenic, UNEP, (2009).  Wallschläger, (1996)   stated that mercury 
emissions gradually accumulated in surface soils.  

The chloralkali process has brought about anthropogenic mercury pollution, cement production, 
mining and smelting, artisanal small-scale gold mining, coal burning, and oil refining, which together 
emit huge quantities of Hg to the environment Science Communication Unit, (2013), on the order of 2 
Gg per year   UNEP, (2009).  Mercury contamination has become a global environment problem 
because millions tons of mercury have been released to ecosystems due to anthropogenic activities. 
Since 1500, approximate one million tons of metallic mercury has been extracted from cinnabar and 
other ores Hylander and Meili (2003). Han et al. (2002) reported that in 2000, the average mercury level 
in global arable lands was 39 kg km-2. However, mercury was released from the following sources, (a) 
applying as an amalgamation agent for extracting silver and gold and (b) red mercury mines were 
explored for producing cinnabar and pigment   Hylander and Meili (2003). Due to the industrialization 
(e.g. chlor-alkali industry and coal burning), global mercury release increases remarkably Sznopek and 
Goonan (2000), Kolker et al. (2006). Coal fired power plants, metal smelters and other industries 
contribute approximately a quarter of the world annual total Hg emissions to the atmosphere Larssen 
(2010); Wu et al. (2006).  

Our understanding of the critical processes driving global mercury (Hg) cycling, in particular 
those that affect large-scale exchange of Hg among major environmental compartments, has advanced 
substantially over the past decade. Major advances in three interconnected areas have driven progress: 
new data, new models, and new analytical tools and techniques. Summarizing the state of knowledge 
of the major global Hg reservoirs in the Earth system: the atmosphere, terrestrial ecosystems, and 
aquatic ecosystems, describing the constraints on processes that control Hg exchanges between these 
reservoirs, and the relative influences of policy, land use, climate change, and anthropogenic 
disturbances on Hg cycling Fig. (4).  
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Fig. 4: Illustrates the critical processes of global importance for Hg cycling, including fluxes between 
major environmental compartments. Perturbations of Hg processes and fluxes show anticipated 
impacts due to changes in emission, climate, and land use. After: Obris et al. (2018) 
 

Analyses of newly available data in the context of advances in modeling capabilities and novel 
analysis techniques have improved our understanding of fundamental processes relevant to Hg cycling. 
In the past decade, new data have become available from areas of the world where they previously were 
lacking, including Asia, the tropics, and the southern hemisphere. Environmental models are 
increasingly used for synthesizing global observations and describing the mechanisms driving Hg 
speciation, cycling, and bioavailability. Global three-dimensional (3D) models of Hg in the atmosphere   
Durnford et al. 2012; Bieser et al. (2017), Horowitz et al. (2017), terrestrial  ecosystems  Smith-Downey 
et al. (2010), and oceans  Zhang et al. (2014), (2015b); Semeniuk and Dastoor (2017) have improved 
our understanding of Hg processes.  

A major advance has been the development of a hierarchy of modeling tools that collapse the 
necessary detail from global simulations into more computationally feasible geochemical box models, 
enabling fully coupled simulations of the interactions among the land, atmosphere, and oceans over 
millennial time scales Amos et al. (2013), (2014), (2015). When combined with information on the 
cumulative history of human Hg release from antiquity to the present, this modeling approach has 
revealed a much greater contribution of human activity to the global Hg cycle than previously 
recognized Streets et al. (2011), (2017). The last 10 years has also seen rapid development in Hg stable 
isotope biogeochemistry, providing a valuable tool to quantify Hg sources and study transformation 
processes Sonke (2011), Sun et al. (2016a). These recent advances have proven particularly valuable 
for investigating the anticipated impacts of human and natural perturbations on global Hg cycling. 
Changes in anthropogenic emissions are ongoing and will continue into the future, including strong 
shifts in global source areas compared to current emission patterns Giang et al. (2015). Accelerating 
land use and climate change are expected to have significant effects on global, regional, and local Hg 
cycles, with unexpected feedbacks and nonlinear impacts on Hg exposure. Models have been applied 
to assess the impact of regulatory interventions, such as emission controls Selin et al. (2018), on specific 
outcomes and to evaluate policy efforts to mitigate Hg pollution Selin (2014). An increasing number of 
studies are now available documenting such changes.   

The atmospheric mercury (Hg), which undergoes oxidation reactions and deposits to the ground, 
increases the abundance of mercury (Hg) in soils and waters Lindberg et al. (2007). Additionally, 
considerable amounts of mercury introduced into agricultural soils in the forms of mercury-containing 
compounds such as fertilizers, pesticides, lime, manures, and soil amendments contribute a great deal 
to mercury contamination Han et al. (2002), Heaton et al. (2005); Han et al. (2006), Huang et al. (2011). 

  Chemical forms of mercury (Hg) in soils can include elemental Hg(0), Hg in sulfide minerals (e.g., 
metacinnabar, β-HgS), Hg chlorides (e.g., calomel, Hg2Cl2), inorganic Hg(II) adsorbed to surfaces of 
clay minerals, iron (oxyhydr)oxides, or soil organic matter (collectively referred to as “matrix-bound 
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Hg(II)”, and methylated Hg species (MeHg). Of particular importance are the presence and quantities 
of Hg (0) and MeHg. The presence of Hg (0) could lead to elevated gaseous Hg emissions to the 
surrounding atmosphere Obrist et al. (2014), especially during soil remediation works, and to losses of 
Hg during the sampling and sample preparation for soil analyses Schwab et al. (2002). In general, Hg 
in soils and sediments is controlled by inorganic and organic interactions, since it has an affinity to Cl−, 
OH−, S2

−, and S-containing functional thiol groups in organic ligands Gabriel and Williamson (2004), 
Skyllberg (2011). Organic matter can mobilize and immobilize Hg, depending on the prevailing soil 
pH and redox potential Poulin et al. (2016), Yin et al. (1997). In addition, in well-oxygenated soils, Hg 
can be mobilized by the presence of high concentrations of Cl− ions Kim et al. (2004) that act as a 
complexing agent, and conditions potentially found in areas with high usage of road deicing salts 
Charlet et al. (2017). Furthermore, soil water is often dominated by Ca+2 ions, especially in carbonate-
bearing and other circum-neutral soils. The Ca+2  concentration can influence Hg mobility either by 
competing for sorption sites with Hg (II), or by promoting the aggregation of Hg-bearing colloids, that 
reducing Hg mobility Ravichandran et al. (1999). In soils with variable redox conditions, sulfide can 
compete with thiol groups of organic matter and precipitate Nanoparticulate HgS in the form of 
metacinnabar (β-HgS) Gerbig et al. (2011), particularly in contaminated soils Barnett et al. (1995), 
Barnett et al. (1997). Generally, HgS is stable and has a low solubility Drott et al. (2013), though a 
number of different parameters can affect this. The nanoparticles formed in situ in soils can be stabilized 
by organic matter Deonarine and Hsu-Kim (2009), but will be structurally disordered when formed in 
low sulfidic environments Poulin et al. (2017), and may be more bioavailable for Hg methylation the 
most toxic form of mercury Graham et al. (2012), Zhang et al. (2012), Clarkson and Magos (2006). 
Under reducing conditions, the formation of MeHg is predominantly a biotic process, formed by both 
sulfate-reducing and iron-reducing bacteria Barkay and Wagner-Dobler (2005). While MeHg is not a 
major species in predominantly aerated soils, its extreme toxicity is highly relevant for risk assessment. 
Unfortunately, the study of solid-phase Hg speciation in soils is not a straightforward task. Various 
extraction-based techniques have been developed to divide Hg-species into “operationally-defined” 
pools, but they can be prone to artifacts Bloom et al. (2003), Reis et al. (2016). More direct information 
about the dominating Hg species in soils can be obtained by synchrotron X-ray absorption spectroscopy 
(XAS) with linear combination fitting analysis based on known reference compounds; however, this 
technique requires high Hg concentrations and has its limitations. Another technique is thermal 
desorption analysis (also known as pyrolysis with Hg detection), which is very effective in detecting 
the presence of elemental Hg(0) in soils or sediments, but other relevant species that are common in 
soils are difficult to discriminate from each other, due to overlapping Hg release curves Reis, et al. 
(2015). MeHg analyses require special extraction procedures and analysis by high-performance liquid 
chromatography (HPLC) or gas chromatography (GC) coupled to inductively coupled plasma mass 
spectrometry (ICPMS). Thus, characterization of the chemical speciation of Hg in soils and sediments 
requires a combination of multiple methods. 

 
3. Immobilization processes of Hg in soil 

Immobilization of Hg in soil through  HgS complex formation, the anoxic conditions or highly 
oxidizing conditions of rhizospheres enhance microbial activity, decrease pH, and promote the release 
of carbon-rich root exudates that can facilitate the formation of sulfides (S2−) Jia et al. (2015).   Mercury 
(Hg2+) ion is a class B metal ion with a strong affinity for ligands with soft donor atoms Rayner-Canham 
and Overton (2010). Mercury (Hg2+) tends to form stable complexes with OH−, Cl−, and S containing 
functional groups of organic ligands Powell et al. (2004), Fig. (5). Ping, (2016), reported that mercury 
(Hg) is a global contaminant of ecosystems and human health risk, with complicated biogeochemical 
processes. Mercury sulfide (HgS) dissolution has been suggested as a key process in Hg cycling, as it 
could potentially increase the pool of inorganic Hg (i Hg) for the production of methyl mercury (MeHg).   
Considering the lack of feasible techniques to differentiate dissolution and re-adsorption processes, 
under such condition, tracer technique was used (isotope dilution techniques) in order to investigate the 
re-adsorption of released Hg during HgS dissolution. The HgS dissolution rate with consideration of 
re-adsorption was two times the rate calculated from detecting Hg alone in the presence of O2, indicating 
the importance of Hg re-adsorption during HgS dissolution. Furthermore, examine the role of Hg-ligand 
complexation in HgS dissolution and Hg(II) re-adsorption using the thermodynamic adsorption method, 
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selecting L-cysteine (Cys) as a model compound for low molecular weight ligands and fulvic acid (FA) 
for natural dissolved organic matter (DOM).  

  
 
 
 
 
 
 
 
 
 
 
             
                             
 
 
 
 
 
 

Fig. 5: Illustrates the biogeochemical cycling of mercury in the environment.  
                                                   After: Ping, (2016).     
 

The  presence of Cys  may  enhanced the  dissolution of  HgS through decreasing the  re-
adsorption of Hg-Cys complex, however,  FA inhibited HgS dissolution, due to the adsorption of FA 
on HgS surface that covered dissolution sites. The geochemical modeling method to study the Hg 
speciation and the relation of inorganic mercury (i Hg) speciation to MeHg, aiming to provide a 
methodological example for potentially evaluating the implications of Hg species distribution during 
HgS dissolution on MeHg production. Modeling results suggest that sulfide and DOM govern inorganic 
mercury (iHg) speciation, and the Hg-sulfide and Hg-DOM species are related to MeHg in environment, 
suggesting the importance of inorganic mercury (iHg) speciation in MeHg production and the 
complexity of Hg bioaccumulation. Barnett et al. (1997) noticed that mercury can form HgS upon 
binding with – SH groups of organic matter that exists at a higher redox potential than S2−. The affinity 
of Hg2+ for S2− results in the formation of mercuric sulfide precipitation (HgS) low solubility complex, 
as follows: Hg2+ + S2− → HgS Boszke et al. (2006), Jonsson et al. (2012).  

Mercury immobilized in soil through forming HgSe inert complex formation. Selenium often 
occurs as an isomorphous substituent of sulfur (S) in sulfide crystal lattices. In addition, S and Se have 
the same atomic structure, the same charge (S2− and Se2−), and similar atomic radii and ionic radii (S: 
0.184 nm, Se: 0.191 nm); thus, Se can easily be incorporated into the crystalline lattices of S Zhang, 
(2014b). Therefore, S2− can be replaced by Se2− to form inert mercuric selenide (HgSe) precipitates or 
an isomorphous series of HgS–HgSe (in cinnabar ore), because the binding affinity of Se2− with Hg 
(logK 1045) is one million times greater than that of S with Hg (logK 1039) Syversen and Kaur (2012), 
Zhang et al. (2014). Moreover, the solubility product constants of HgSe precipitates (Ksp∼10−58–10−65) 
are drastically lower than those of HgS precipitates (Ksp ∼10−52) Björnberg et al. (1988). When Se and 
Hg coexist in soil under appropriate conditions, Hg can first thermodynamically react with Se to form 
an inert, highly stable HgSe precipitate Fig. (6). Se may thermodynamically react with Hg2+/Hg0 to 
form an insoluble HgSe complex in the rhizosphere Yang et al. (2008); McNear et al. (2012), as 
presented in the following chemical equations: Hg0 + Se0 → HgSe and/or Hg2+ + Se2− → HgSe.  

Mercury immobilized in soil through forming organo-HgSe complex processes. In addition, inert 
HgSe complex, organic HgSe complexes are also found in paddy soil,  with Se, Se may displace S in 
the R-SH, R-SSH, and R-SS-R groups to form more stable chemicals, such as R-SeH, R-Se SeH, and 
R-Se Se-R Khan and Wang (2009). 
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Fig. 6: Illustrates the mechanisms underlying Hg detoxification in soil–plant systems after Se 
application. After: Tran et al. (2021)  
 

Simultaneously, Hg binds to non-R-SH, R-SSH, and R-SS-R and may be released and reabsorbed 
by strong Se functional groups Laurier et al. (2003); Shoham-Frider et al. (2007), thereby forming 
strong complexes with Se-organic ligands, which are more inert and stable and less available to 
microbes and plants. Xu et al. (2019). Further suggested that HgSe in soil might contain HgSe, 
CH3HgSe−, and (CH3Hg)2 Se, as well as HgSeR, RSHgSeR, CH3Hg-SeR, and CH3Hg-SeSR, which play 
dominant roles in soil Hg levels. However, this finding needs to be verified further. Promotion of Hg 
immobilization in soil Wang et al. (2016b) demonstrated that Se2− could react with Hg2+ under anoxic 
and suboxic conditions and form HgSe complexes, despite sulfate input in paddy soil. They also found 
by transmission electron microscopy and energy dispersive X-ray spectroscopy that the molar ratios of 
Hg: Se and Hg: S were 1 in nanoparticles. However, another study showed that Hg LIII-edge 
synchrotron radiation X-ray absorption near-edge structure (XANES) spectrum exhibited that the 
typical spectral feature was HgSe instead of α-HgS Wang et al. (2016a).   Zhang et al. (2012) found 
that Se contents were positively correlated (P < 0.01) with Hg contents in flooded soil due to the 
formation of HgSe complexes in the rhizosphere. Other studies reported that application of SeO3

– 2
, or 

SeO4
-2

 to dry land soil promoted the formation of HgSe precipitate in the rhizospheres of radish 
(Raphanus sativus L.) Shanker et al. (1996b), tomato (Solanum lycopersicum L.)  Shanker et al. (1996a), 
or pak choi (Brassica Rapa L. var. Chinensis) Tran et al. (2018a). In addition, HgSe compounds may 
react further with dissolved organic matter in the rhizosphere to form high molecular weight HgSe 
complexes Plant et al. (2003); Chiasson-Gould et al. (2014).   

 
4. Interactions of mercury (Hg) and soil 

Obrist et al., (2018) reported that pedosphere is deemed a net sink of Hg, primarily due to Hg 
taken in by plants being deposited on soils. Current global Hg models suggest that land surfaces receive 
3200 Mg yr−1 through atmospheric deposition and re-emit 1700 to 2800 Mg yr−1, illustrating the dual 
role of soils in global Hg cycling as sink and source for atmospheric  mercury (Hg). After long-range 
transport, atmospheric Hg (0) is oxidized and deposited directly onto soils with precipitation or 
indirectly via plant surfaces with through fall. Gaseous Hg (0) is also can be  taken up plants  through  
stomata, which  oxidized in the plants, and deposited onto soils through  litter fall, or directly deposited 
from the atmosphere to terrestrial surfaces as dry deposition. In soils, Hg (II) may be methylated or 
reduced to volatile Hg (0) which is eventually re-emitted back to the atmosphere Fig (7)  
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Fig. 7: Illustrates the conceptual model of the terrestrial Hg cycle: Major input and output pathways. 
Atmospheric Hg is mainly deposited as oxidized Hg (II) via precipitation and through fall or taken up 
by plant stomata and deposited with litter fall. In soils, different pathways can reduce Hg (II): (1) 
photochemical, (2) microbial, or (3) nonphotochemical abiotic reduction by natural organic matter 
(NOM), followed by re-emission back to the atmosphere. All Hg forms are subjected to leaching from 
soils with surface or subsurface runoff into aquatic ecosystems. After: Jiskra et al. (2015). 

 
Jiskra et al. (2015) stated that soils comprise the largest terrestrial mercury (Hg) pool in exchange 

with the atmosphere. To predict how anthropogenic emissions affect global mercury cycling and 
eventually human mercury exposure, it is crucial to understand Hg deposition and re-emission of legacy 
mercury from soils.   Results showed that mercury in the soils was dominantly derived from deposition 
of litter (∼90% on average). However, remaining fraction was attributed to precipitation-derived 
mercury, which showed increasing contributions in older, deeper soil horizons (up to 27%) indicative 
of an accumulation over decades. We provide evidence for significant mercury re-emission from 
organic soil horizons most likely caused by nonphotochemical abiotic reduction by natural organic 
matter, a process previously not observed unambiguously in nature, suggesting  histosols (peat soils), 
which exhibit at least seasonally water-saturated conditions, have re-emitted up to one third of 
previously deposited mercury back to the atmosphere. Re-emission of legacy mercury following 
reduction by natural organic matter may therefore, be an important pathway to be considered in global 
models, further supporting the need for a process-based assessment of land/atmosphere Hg exchange. 

             
4.1. Adsorption of mercury to soil   

Mercury (Hg) is known to be relatively immobile, as compared to many other metals in soil, as it 
can bind strongly with soil constituents. A number of studies have been carried out examining the 
competitive sorption and selectivity sequences of various heavy metals by various soils. Seo et al. 
(2008) explored the sorption potential of Hg and six other metals to a wetland soil. In batch mono-metal 
experiments (at pH=6), the seven metals were ordered by adsorptive capacity (mg/g) as follows: Pb 
(25.4) ≫Hg (6.4) > Cr (4.9) > Cd (2.9) ⩾ Cu (2.6) ⩾ Zn (2.4) ≫As (0.8). Based on multi metal 
adsorption they were ordered as Hg (3.0) > Cr (1.1) > Cu (0.6) ⩾ Cd (0.4) ≈Pb (0.4) ≫As (0.02) ≈Zn 
(0.02). Ignatavičius et al. (2022) stated that mercury is released into the environment in a variety of 
chemical forms by both geogenic and human activities, affecting the environmental conditions such as 
pH, redox potential, light and temperature-all of which determine its final chemical form-reactivity and 
toxicity. Methyl mercury is considered as one of the most poisonous forms, considering the 
methodologies of the studies carried out, illustrated   the best technique for preserving methyl mercury 
in soil and sediment samples is to freeze it immediately after collection. Organically rich soils are related 
to higher total mercury levels.   Solid-phase selenium causes faster demethylation and slower  

methylation of mercury. Methyl mercury can increase by climate change and thawing; arctic 
permafrost is a potential source of Hg Fig. (8).  
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Fig. 8:  Illustrates mercury sources, sinks, and phases in soil  

                                  After:  Diederick (2013), Leopold et al. (2010) and Ignatavičius et al. (2022).        
 

This research aims to communicate sampling methods, use and storage; it also focuses on mercury 
forms, mobilization and analysis in soil and sediment. The findings of this study are listed below: 

              
- In the sampling method, different approaches depend on the chosen area, such as two-stage, cluster, 
judgmental, random, stratified random, systematic grid, and search and transect. Tools made of 
polymer, glass, stainless steel, or aluminum are required during the collecting, pre-treatment, and 
storage phases of environmental samples. The best technique for preserving MeHg is to freeze soil and 
sediment samples immediately after collection, followed by freeze-drying, grinding, homogenization, 
and storing the dry material in cold, dark conditions until analysis.    
- Clay soils can absorb mercury and lead the creation of HgS.  
- Organically rich soils, such as forest soils, peaty soils, or rice paddy fields are typically connected to 
higher THg concentrations. 
- Mercury binding to humic substrates is the major process in mercury sorption.  
- Plants can play an important role in mercury transport and accumulation. MeHg concentrations in 
biomass were found to be higher in Solanum nigrum (BR3) and Cynodon dactylon (BR2).  
- It appeared that the adsorptive capacity of Hg is higher than Cr, Cd, Cu, and Zn and As but lower than 
Pb.  
- Mercury can be affected by most of the conditions in the environment, such as pH, redox potential, 
and light.   
- The soil profile, production of volatile mercury species, physical movement of Hg species, and 
physical and chemical sorption of mercury vapor all influence the depth of the soil layers that contribute 
to evaporation, as compared to unplanted regions, applying sulfur to the soil and growing a plant cover 
reduces mercury flow by around 70% to 80%.  
- Shewanella one idensis MR-1 and Geobacter spp are two bacteria that can mediate the biotic reduction 
of mercury (Hg2+) to HgO.  
- The most common organic and toxic form of mercury in the environment is accepted as MeHg. Soil 
moisture highly affects MeHg, through sulfate and iron-reducing bacteria.  
- A laboratory incubation analysis of surface lake sediments revealed that higher levels of solid-phase 
Se resulted in rapid demethylation and slower methylation of mercury and that the pH impact was varied 
owing to Hg availability and microbial activity.  
- Climate change and permafrost thawing have the potential to increase MeHg production. Arctic 
permafrost represents an important source of mercury in case warming will not decrease in the future.  
- In 2018, a simple and quick approach for analyzing MeHg utilizing chemical vapor generation 
inductively coupled plasma mass spectrometry was introduced. When compared to HCl, HNO3 has 
proven to be the most effective for selective extraction of MeHg from soils. Ultrasonic agitation helped 
to produce rapid MeHg extraction. 

 



Middle East J. Appl. Sci., 13(3): 319-402, 2023 
EISSN: 2706 -7947    ISSN: 2077- 4613                                        DOI: 10.36632/mejas/2023.13.3.26 

330 

The adsorption capacity for mercury remained strong in the presence of the other metals, whereas 
that for Pb was significantly lowered, Seo et al., (2008). Antoniadis et al. (2017b) showed that mercury 
sorption was not related to the presence of any other potentially toxic elements at a highly contaminated 
former mining area in Germany. Liao et al. (2009) considered the adsorption of mercury in different 
types of soils, with Sharkey clay having greater mercury sorption capacity than Olivier loam soil, that 
was itself greater than Windsor sand. It was also revealed that mercury sorption in each case was rapid 
and strongly irreversible, with freely available mercury typically being<1%. The binding of mercury in 
soils is due to its tendency to bind with soil organic matter or soil matrix surfaces. Mercury can be 
regarded as an immobile metal in most soils due to highly stable complex formation Liao et al., (2009), 
US EPA, (1997). 

 
4.1.1. Adsorption of mercury to organic matter 

Lehmann and Kleber, (2015), reported that soil organic matter is a system of progressively 
decomposing organic compounds being byproducts of the biogeochemical degradation of plants and 
animals. Organic matter consists of different types of substances such as high molecular-weight 
hydrophobic compounds, hydrophobic neutral organic matter, and low molecular weight compounds 
that are more hydrophilic Stevenson, (1994) Fig. (9).  

 
 
 
 
 
 
 
 
 
                                           
 
 
 
 
 
 
 
 
 

Fig. 9:  Illustrates the characterization of organic matter. 
 

Beckers and Rinklebe, (2017) reported that soil organic matter has a   high affinity for mercury 
(Hg2+), total mercury  is often associated with organic rich soils, such as forest soils, peaty soils, or rice 
paddy fields. Mercury can bind to organic matter through   functional groups, such as hydroxyl, 
carboxylic, aromatic and S-containing ligands may facilitate cationic Hg2+ binding Sysalova et al., 
(2017) Fig. (10). Mercury in soil is particularly inclined to form covalent bonds with any available 
reduced S active sites Reis et al., (2015b). Mousavi (2015) ascribed the reason for this to the 
phenomenon of polarizability. The hard and soft acids and bases rule predicts that soft acids and soft 
bases will have strong interactions. Because S containing thiol functional groups act as a soft base and 
Hg2+ is a polarizable soft acid, the binding is strong. Oxygen containing alcohol and carboxylic acid 
functional groups and N containing amine groups act as hard bases and, therefore, do not bind with Hg 
as strongly Fig. (10).  
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Fig. 10:  Illustrates  the functional group contains a carboxyl groupp- a carbon double-bonded to the 
highly electronegative oxigen atom ,in each case the carbon bears a partial positive charge and the 
oxygen bears a partial.  

 
However, S bearing functional groups of humic acids can quickly become saturated with Hg, 

therefore, most Hg2+ bound organic matter is found to be associated with O or N containing functional 
groups Gismera et al., (2007). Because of such binding, the amount and type organic matter content in 
soil can significantly affect the solubility of mercury, mobility and, toxicity in soil Sysalova et al., 
(2017). Chai et al. (2012) reported stable interactions between soil humic acids and mercury attributed 
to the abundance of O containing ligands. Humic acids have high complex stability potential, thereby, 
causing a decrease in the mobility of mercury   Aijun et al., (2006), whereas, mercury bound to fulvic 
acids increased a more labile form Wallschläger et al. (1998).  

Liang et al. (2019) reported that kinetics of mercuric ion (Hg2+) binding with heterogeneous naturally 
dissolved organic matter (DOM) has been hypothesized to result from competitive interactions among 
different organic ligands and functional groups of DOM for mercury (Hg2+). However, an experimental 
protocol is lacking to determine mercury (Hg2+) binding with various competitive ligands and DOM, 
their binding strengths, and their dynamic exchange reactions. In this study, a stepwise reduction 
approach using ascorbic acid (AA) and stannous tin [Sn (II)] was devised to differentiate Hg(II) species 
in the presence of two major functional groups in DOM: the carboxylate-bound Hg(II) is reducible by 
both AA and Sn (II), whereas the thiolate-bound Hg(II) is reducible only by Sn (II) Fig.(11). 

 
 
 
 
 
 
 
 
 
                            
 
                      
              
 
 
 
 
 
 

Fig. 11:  Illustrates, a stepwise reduction approach using ascorbic acid (AA) and stannous tin [Sn (II)] 
was devised to differentiate Hg(II) species in the presence of two major functional groups in DOM. 
After: Liang et al. (2019). 
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Using this operational approach, the relative binding strength of mercury (Hg2+) with selected 
organic ligands was found in the order dimer captopropane sulfonate (DMPS) > glutathione (GSH) > 
penicillamine (PEN) > cysteine (CYS) > ethylene diamine tetra acetate > citrate, acetate, and glycine 
at the ligand-to-Hg molar ratio < 2. Dynamic, competitive ligand exchanges for Hg2+ from weak 
carboxylate to strong thiolate functional groups were observed among these ligands and within DOM. 
This reaction depended on the relative binding strength and abundance of thiols and carboxylates, as 
well as reaction time. These results provide additional insights into dynamic exchange reactions of Hg2+ 
within multi compositional DOM in controlling the transformation and bioavailability of Hg (II) in 
natural aquatic environments. 

The effect of soil organic matter on mercury sorption can also be influenced by human practices. 
Dai et al. (2013) considered mercury distribution of arable and natural unfarmed soils in the historic 
mercury mining area of Wanshan in Guizhou, China. It was stated that mercury was introduced to the 
study area via contaminated irrigation water, with mercury bound to particulate matter Fig. (12)  

                       

                 
Fig. 12: Represents the main forms of Hg and environmental factors affecting Hg presence 

                                                          in different media. After: Guney et al. (2020). 
  
 

 Guney et al. (2020) stated that mercury is generally immobile in soils because of its extremely high 
affinity to organic matter and sulfur ligands O’Connor et al. (2019). Hence, elevated but immobile Hg 
concentrations are usually associated with soils with high organic content. However, Hg can be released 
into the atmosphere at high-temperature conditions Fig. (12)  Neculita et al. (2005). It was also 
suggested that mostly immobile mercury fraction bonds to coarse-grain-sized soil particles, which only 
becomes mobile during the flooding period Eckle et al. (2020). Under anaerobic conditions, the 
microbial reduction of sulfates might take place in soils resulting in the formation of Hg sulfide (HgS, 
known as cinnabar), which is a chemically stable and highly insoluble form of Hg. Mercury adsorption 
also differs in soil types, and the highest sorption of low-mobility Hg is attributed to the finest size 
fraction, e.g., in clay, loams, and sands O’Connor et al. (2019). Mercury sorption is also attributed to 
the elevated specific surface area and cation exchange capacity in clays Guney et al. (2019). Water-
soluble and highly mobile Hg fraction is significantly correlated with total organic carbon content in 
the soil, assuming that total organic carbon binds the mobile forms of mercury O’Connor et al. (2019). 
Farming cultivation practices generally decrease soil organic matter and increases air exposure. In the 
case of rice paddy soils, farming practices minimize exposure to air, and may reduce the fraction of 
large soil aggregates and increase soil organic matter content. Therefore, concentrations of mercury in 
rice paddy soils can significantly increase during long-term rice cultivation particularly, under a source 
of mercury Yin et al., (2016). 
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4.1.2. Adsorption of mercury to soil matric  
Reis et al. (2016) stated that adsorption of mercury on a soil matrix observed   in two ways, either 

by non-specific or specific sorption. Cation exchange drives non-specific adsorption, resulting in outer-
sphere complexes. The cation exchange process occurs rapidly and is considered reversible. In the case 
of specific adsorption, stable complexes are formed in which Hg diffuses inward to form inner-sphere 
complexes, considering slow non-reversible processes Bradl, (2004).  Dissolution mechanism may 
cause mercury bound to soil matrices to become available. Dissolution may be brought about by the 
presence of complexing or chelating agents present in organic matter, for instance, produced by plant 
roots (exudates) or mycorrhiza. It is possible that dissolution will also occur due to reductive dissolution 
of Fe oxides. The effect of organic ligands on adsorption of mercury by mineral colloids in soils, in 
terms of the precise mechanisms and adsorption kinetics, remains somewhat unclear. Recently, Yang 
and Ok (2017) explored mercury adsorption by non-crystalline Al hydroxides under different pH 
conditions in the presence of selected organic ligands such as S containing cysteine, glycine, and citric 
acid. It was determined that mercury (Hg2+) sorption by the control sample, cysteine and glycine 
systems was mediated by specific surface complexation, whereas, ligand exchange in the citric acid 
system was predominant. The mercury adsorption was observed to be initially rapid, and the amount of 
sorption decreased with increasing pH, except in the presence of higher concentrations of cysteine. Soil 
clay content has an important role in soil-Hg binding Biester et al., (2002b), Boszke et al., (2008). Rice 
paddy soils, which are characterized by their clayey as well as organic content, are susceptible to high 
Hg levels Yin et al., (2016) Fig. (13).    

                    
Fig. 13: Illustrates effects of soil prositiess on production and bioaccumulation of methylmercury  

                                                           in rice paddies at a mercury mining area  
 

Adsorption capacity of clay to mercury can reach ~1000 mg for each 1cmol.kg-1 soil Antoniadis et 
al.  (2017a), furthermore, increasing levels of mercury sorption on clay are associated with more clayey 
content in soil. Coufalík et al. (2012) noticed that high adsorption of  mercury   was correlated with  the 
finest sized fraction and  attributed to  high specific surface area of clay fraction  Coufalík et al., (2012) 
and consequently,  high cation exchange capacity (CEC)  Fig. (14). Antoniadis et al. (2017a) stated that   
2:1 clay   such as illite have greater capacity to sorb   Coufalík et al. (2012).  The expandable clay 
minerals including smectites have greater capacity still Antoniadis et al., (2017a  
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                    Fig. 14: Illustrates the potential bioavailability of mercury in humus- coated clay minerals. 

 
Suggesting that adsorption of mercury (Hg) increased in clayey soils may also relate to binding with 

organic matter. Thermo desorption of Portuguese soils revealed a major peak at 125–250 °C ascribed 
to either HgCl2, mercury bound to Fe oxides, or to humic substances Reis et al., (2015a) and (2015b). 
This implies that the Hg in the sample may have been sorbed to the matrix mineral surfaces, or to 
organic matter. The precise species could not be distinguished by this technique. In fact, mercury (Hg) 
organic matter complexes can themselves be sorbed to soils matrix mineral surfaces - forming organ 
mineral Hg complexes   thus simultaneously existing as different forms. In this case, it was reported 
that Fe oxides represented a large fraction of the soil (~10%), whereas, the organic matter content was 
low (~0.5%), and there were no suspected sources of chloride. Therefore, it was assumed that mercury 
(Hg) would likely be associated with Fe oxides. Thermo desorption analysis of weathered Amazonian 
soils by Do Valle et al. (2006) revealed peaks attributed to HgO release at ~150 °C and peaks at higher 
temperatures attributed to various mercuric salts. Biester and Scholz, (1997)   mercury   is released 
between 150 and 250 °C, the non-specific term  matrix-bound Hg  is often used. This is because 
desorption of Hg by mineral surfaces (e.g. Fe oxides). 

 
5. Uptake, transport, and localization of Hg in plants 
5.1. Absorption of mercury by plants 

Plants can take up mercury through the roots architecture and accumulated in roots. Sierra et al. 
(2009) stated that some of mercury (Hg) absorbed remained in roots and then    translocate to the 
aboveground and detected in leaves, flowers and other development tissues Fig. (15). 

 
Fig. 15: Illustrates mercury uptake, accumulation and translocation in roots of forest,                                            
After: Yuan et al. (2022). 
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Yuan et al. (2022) stated that plant roots are responsible for transporting large quantities of nutrients 
in forest ecosystems and yet are frequently overlooked in global assessments of mercury (Hg) cycling 
budgets. We systematically determined the distribution of total mercury (Hg) mass and its stable 
isotopic signatures in a subtropical evergreen forest to elucidate sources of mercury Hg in plant root 
tissues and the associated translocation mechanisms. Mercury (Hg) stored in roots and its isotopic 
signatures showed significant correlations to those found in surrounding soil at various soil depths. The 
odd mass-independent fractionation (MIF) of root mercury (Hg) at a shallow soil depth displays a 
−0.10‰ to −0.50‰ negative transition compared to the values in aboveground woody biomass. The 
evidence suggests that root mercury (Hg) is predominantly derived from surrounding soil, rather than 
translocation of atmospheric uptake via aboveground tissues. The cortex has a more negative mass-
dependent fractionation (MDF) of −0.10‰ to −1.20‰ compared to the soil samples, indicating a 
preferential uptake of lighter isotopes by roots. The similar MDF and odd-MIF signals found in root 
components imply limited Hg transport in roots. This work highlights that mercury (Hg) stored in plant 
roots is not a significant sink of atmospheric mercury (Hg). The heterogeneous distribution of mercury 
(Hg) mass in roots of various sizes represents a significant uncertainty of current estimates of mercury 
(Hg) pool size in forest ecosystems. 

In white lupin, there is a short and long-term transport system for mercury (Hg+2) uptake and 
translocation Esteban et al. (2008), suggesting there are transport systems for Hg influx to plant cells. 
Mercury (Hg+2) import into root cells is possibly through Fe, Cu, or Zn transporters/channels Patra and 
Sharma (2000), Esteban et al. (2008). These transport systems usually have broad substrates Clemens 
(2006). Mercury (Hg+2) uptake by plants is also affected by other factors in soils. For instance, the 
presence of arsenate significantly promoted the accumulation of mercury (Hg+2) in the root of rice Du 
et al. (2005). Jing-Hua et al. (2014) reported that mercury (Hg+2) uptake by seedlings of rice (Oryza 
sativa L.) grown in solution and interactions between Hg and arsenate uptake. The results showed that 
increasing (Hg+2) concentrations in the nutrient solution decreased both root and shoot biomass. (Hg+2) 
at 1.0 and 2.5 mg.L-1 caused 50% reduction in root biomass. A 50% reduction in shoot biomass 
occurred at (Hg+2) concentrations of around 0.5 mg L−1. Nevertheless, 0.5 mg As L−1 has no significant 
effect on plant yield. Hg accumulated in rice roots, and the Hg concentration factor in roots reached 
nearly 1900 at 2.5 mg .L-1. The addition of arsenic (As) slightly increased the Hg concentration in the 
roots. However, arsenic (As) concentrations in the roots decreased significantly with increasing Hg 
concentration in the growth solution to 1.0 or 2.5 mg Hg L−1. Shoot As concentrations decreased with 
increasing mercury (Hg+2) concentrations in the growth solution, but increased again with further 
increase in Hg concentration to 2.5 mg L−1. Possible mechanisms of (Hg+2) uptake and interactions 
between mercury (Hg+2) and arsenic (As) in the uptake process are discussed Fig. (16). 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 16:  Illustrates the interaction effects of mercury and arsenic on their uptake, association  

and toxicity in rice seedling, After: Jing-Hua et al. (2014) 
 

    Absorption and accumulation of Hg in rice plants   has been conducted to study the IHg and MeHg 
accumulations in rice plant tissues during growth  Zhang et al., (2010); Meng et al., (2012), (2014). 
While the rice plants were growing, the IHg concentration and accumulation both steadily increased in 
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the aboveground rice plant parts (e.g., leaves and stems) and increased considerably when the rice plants 
were exposed to high Hg vapor concentrations in the Hg mining areas, which may be related to the 
atmospheric Hg uptake pathway of the rice plants. Because atmospheric Hg is predominantly Hg0 
(>95%)  Schroeder and Munthes, (1998), the rice plant stomata is the potential pathway for atmospheric 
Hg0 to enter the aboveground rice plant parts (e.g., leaves and stems) through atmospheric exchange  
Assad et al., (2016); Meng et al., (2012). In addition, the atmospheric Hg0 vapor can be deposited on 
and adhere to the plant surface and subsequently be oxidized to Hg2+  Seigneur et al., (1999), which 
then dissolves through the epidermis, passes into the subcutaneous cuticle, and eventually diffuses into 
the epidermal cells  Moeckel et al., (2008). Clearly, once the atmospheric IHg accumulates and fixes in 
the rice plant leaf and stem tissues, it usually cannot be re-emitted into the atmosphere or transferred to 
other rice plant tissue parts (e.g., seeds, husks, and roots)  Meng et al., (2012). However, the mechanism 
by which the atmospheric Hg speciation influences the IHg accumulation in the aboveground rice plant 
parts remains unclear. In contrast, the mechanism of Hg uptake in rice plant roots is clearer. The iron-
containing gel film formed on rice plant root surface may be a barrier against IHg uptake and 
accumulation because the film effectively chelates IHg, thereby, blocking the Hg transfer pathway 
through the rice plant roots to the shoots  Zhang et al., (2010); Meng et al., (2012). In addition, Hg–
phytochelatin complexes form and effectively trap IHg in the rice plant roots but do not transfer the Hg 
to the aboveground tissues Krupp et al., (2009). The plant availability and toxicity of the Hg both 
predominantly depend on the Hg chemical form. Meng et al. (2014) used X-ray absorption near-edge-
structure spectroscopy (XANES) to study the Hg chemical forms in rice grains and found that the IHg 
was mainly bound to cysteine and phytochelatin, which may explain why most of the Hg was on the 
surface rather than the center of the grains (Rothenberg et al., (2011). In fact, the immobilization of IHg 
in different rice plant tissues and accumulation of chelated IHg in the rice grains are the self-
detoxification or -protection mechanisms of rice plants exposed to Hg pollution (Rothenberg et al., 
(2011), (2012); Meng et al., (2014). In rice plants, the MeHg accumulation process and mechanism are 
different from the IHg accumulation counterparts (Meng et al., (2012), (2014). The MeHg 
bioaccumulation and transfer from the rice plant roots to the aboveground parts are believed to be 
dynamic. Rice plant roots can take up MeHg very efficiently from the soil media, indicating that at the 
plant–soil interface, MeHg is biosorbed more readily than IHg Krupp et al., (2009), which may be 
related to the differences between the MeHg and IHg complexation. In rice plants, phytochelatins 
sequester IHg (e.g., Hg2+) but not MeHg Krupp et al., (2009). In addition, MeHg is believed to pass 
through the “iron plaque” physical barrier on the rice plant root surface, suggesting that MeHg acts as 
a mobile plant contaminant that can be more easily transferred to the aboveground plant tissues  Zhang 
et al., (2010) Fig.(17),(18).  

Therefore, during the rice-growing season, the MeHg content is very limited in the rice plant roots. 
An additional study found that during rice plant growth, most of the MeHg was mainly stored in the 
leaves and stems of the early-maturing plants and that by harvest time, the MeHg temporarily stored in 
the leaves and stems was further transported to and accumulated in the mature rice grains Meng et al., 
(2012). A relevant work wherein XANES was combined with high-performance liquid chromatography 
and inductively coupled plasma mass spectrometry (HPLC–ICP–MS) revealed that in the mature rice 
grains, the MeHg existed exclusively as MeHg–S compounds (e.g., MeHg–cysteine), which are mainly 
stored in grain protein and can thus effectively transfer across biological membranes following the 
migration of grain protein during rice growth (Meng et al., (2014). Thus, free methylmercury–cysteine 
is a mobile complex that acts like free cysteine or amino acids and binds to the grain proteins. In the 
rice plant tissues, the dynamically changing MeHg chemical forms somewhat explain the mechanisms 
through which MeHg transfers and accumulates in rice (Meng et al., (2014). 
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Fig. 17: Radial oxygen loss and iron geochemistry at the root–soil interface at the end of light incubated 
cycles: (A) Rice roots covered in iron plaque. (B) Radial oxygen concentrations surrounding root tips 
35 DAT (DAT = days after transfer), a-b indicates a transect where O2 and Fe(II) were measured and 
Fe(II) oxidation kinetics were calculated. (C) Transect a-b: representative concentrations of O2, Fe(II) 
and calculated homogeneous Fe(II) oxidation rate along transect. After: Maisch et al. (2020)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
         
 
 
 
 
 

Fig. 18: Microbial Fe(III) iron plaque reduction. (A–E): Roots covered with iron plaque minerals 
incubated in rhizotron with a Fe(III)-reducing enrichment culture. Iron plaque minerals change in color 
over time A, t0: day 0–E, t10: day 10. (F): Voltammetric measurements along transect a-b in setup of 
figure, after 10 days of incubation, detect Fe(II) remobilized from root iron plaque is closely associated 
with roots. Error bars represent standard deviation from triplicate voltammograms. After: Maisch et al. 
(2020)  



Middle East J. Appl. Sci., 13(3): 319-402, 2023 
EISSN: 2706 -7947    ISSN: 2077- 4613                                        DOI: 10.36632/mejas/2023.13.3.26 

338 

The absorption of arsenate increase the negative charge on root surface, enhance the adsorption of 
mercury Hg+2 on the root surface. Most of accumulated Hg+2in plants remains in roots and only a small 
proportion can be translocate to shoots Wang (2004).  Mercury Hg+2 trapped in roots, approximate 80 
% of it is bound to cell wall wang and Greger (2004). This may be due to  (a)  Hg+2   ion is easy to 
interact with anionic compounds  such as   carbonate, sulfate, and phosphate forming the insoluble form 
through  precipitates one , which limit symplastic mobility of Hg+2 and  (b) Hg+2  ion bound to root cell 
walls has high cationic exchange capacity Chen et al. (2009b). For long distance transport of Hg+2 from 
roots to shoots, xylem-uploading process is indispensible. Some metal transports are active, whereas 
others are positive. Ever-increasing population places great importance on the availability of sufficient 
food sources, resulting in an increased demand for global food production to fulfill the needs of the 
growing population, leading to various facades of environmental pollution. Of the various pollutants 
contributing to the damage to the environment, heavy metals are well recognized, particularly, due to 
their persistence in the environment, toxicity, and bio-accumulative nature, leading to unfavorable 
repercussions on human health and the ecosystem.   Furthermore, heavy metals   originate from 
weathering of metal-bearing rocks, volcanic eruptions, and atmospheric depositions, anthropogenic 
activities including mining, leakage and emissions from industries, use of agrochemicals including 
fertilizers, and application of sewage sludge to croplands are the key sources of heavy metal 
accumulation in soil and water ecosystems. Heavy metal accumulation can further be defined as an 
amalgamation of heavy metal elements to the ecosystem, particularly to the aquatic ecosystem. Rice 
and an array of aquatic plants such as water chestnut (Trapa spp.), water spinach (Ipomoea aquatica), 
watercress (Nasturtium officinale), taro (Colocasia esculenta), and lotus (Nelumbo nucifera) are 
important sources of food, particularly, in many Asian countries as well as in west and central African 
regions. These plants accumulate heavy metals causing various issues to human health, the 
environment, and ecosystems Fig. (19). 

 
 
 
 
       
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 19: Illustrates the pathway of heavy metal transfer from original sources to humans. Some common 
aquatic plants used for human food is inset in the image. After: Mohammad et al. (2021) 

 
Mohammad et al (2021), found that aquatic ecosystems are contaminated with heavy metals by 

natural and anthropogenic sources. Whilst some heavy metals are necessary for plants as micronutrients, 
others can be toxic to plants and humans even in trace concentrations. Among heavy metals, cadmium 
(Cd), arsenic (As), chromium (Cr), lead (Pb), and mercury (Hg) cause significant damage to aquatic 
ecosystems and can invariably affect human health. Rice, a staple diet of many nations, and other 
aquatic plants used as vegetables in many countries, can bioaccumulation heavy metals when they grow 
in contaminated aquatic environments. These metals can enter the human body through food chains, 
and the presence of heavy metals in food can lead to numerous human health consequences. Heavy 
metals in aquatic plants can affect plant physicochemical functions, growth, and crop yield. Various 
mitigation strategies are being continuously explored to avoid heavy metals entering aquatic 
ecosystems.  They also reported that with their origin in various natural and anthropogenic sources, 
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heavy metals might contaminate aquatic ecosystems. Use of contaminated water for irrigation of crops 
can allow direct transport of heavy metals into plants.  Aquatic plants can absorb heavy metals through 
the root systems that transport the metals to edible plant parts, such as leaves, flowers, corms, stems, 
seeds, etc., with subsequent introduction into the food chain, as confirmed by various reports. Direct 
ingestion of heavy metal-contaminated aquatic plants and their bioaccumulation in food chains are the 
main sources of human exposure to toxic heavy metals from aquatic food plants. This exposure can lead 
to various chronic and acute diseases and health consequences, such as kidney damage. Whilst plants 
use many heavy metals as micronutrients in low concentrations to fulfill their nutritional and 
physiological needs, some heavy metals can be phytotoxic, leading to disruptions of developmental and 
metabolic processes, including the plant’s physiology, photosynthesis, morphology, cell structure, and 
nutrient balance. These disruptions can lead to decreased growth and yield of food crops as well as 
ecological imbalance.   Progress has been made in phytoremediation of contaminated water bodies, 
Nano technological advances for the removal of heavy metals, and genetic modification of plants to 
tolerate higher levels of accumulated heavy metals  

In addition to Hg uptake from roots, the aerial part of plants, particularly, leaf is another important 
way for accumulation of Hg Ericksen and Gustin (2004); Ericksen et al. (2003); Millhollen et al. 
(2006a); Fay and Gustin (2007), due to the industrial emission of Hg to the air and microorganism-
mediated Hg emission from soils  Lindberg et al. (2007). In a field study, the above ground tissues of 
maize and wheat were exposed to an open top chamber filled with Hg contaminated air for an entire 
growing season; Hg concentrations in foliage’s were closely correlated to the air but not related to the 
soil Hg concentrations, indicating that the air Hg was the major source of Hg accumulated in crop 
foliage’s Niu et al. (2011). Linear correlations (R2 = 0.64–0.98) between foliar Hg concentrations and 
air Hg concentrations have been established in ryegrass and leafy vegetables De Temmerman et al. 
(2007), De Temmerman et al. (2009). 

 Zhou et al. (2021) reported that mercury (Hg) contamination from urban and industrial, mining or 
smelting sites, natural Hg enrichments exist on the global mercuriferous belts found along Earth plate 
margins, leading to large-scale Hg mineralization zones: Circum-Pacific, Mediterranean, Central Asia 
and Mid-Atlantic ridges, with many Hg mines distributed along these zones Liu et al. (2020). When 
exposed to high soil and atmospheric Hg levels, plant growth can be decreased due to Hg toxicity Anjum 
et al. (2015), Pogrzeba et al. (2019). However, most plants grow normally under lightly to moderately 
polluted areas, but will show substantial Hg enrichments in their tissues.  

In comparison with remote, non-enriched sites, median Hg concentrations of vegetation from Hg-
enriched areas in our database show significantly higher Hg concentrations (P<0.01) by factors of 1.2–
5.7 across all tissues. Specific tissue responses are dependent on the type of exposure, with soil Hg 
contamination resulting largely in elevated root Hg concentrations, while not significantly affecting 
aboveground tissue concentrations. In turn, atmospheric Hg contamination significantly elevates Hg 
levels in aboveground Hg concentrations (P<0.01) but did not affect belowground tissues. The potential 
use of plant Hg uptake has received interest as an alternative method for traditional physico-chemical 
methods of remediation of Hg-enriched sites, termed phytoremediation. In summary, there are three 
main approaches of Hg phytoremediation: phytostabilization, phytovolatilization and phytoextraction. 
Phytostabilization immobilizes Hg in soil through biochemical processes, either via Hg accumulation 
in roots or chelating Hg in the root zone. Candidate plants used for phytostabilization have extensive 
root systems, are tolerant to Hg toxicity and are adaptive to site-specific environments Anjum et al. 
(2015 Pogrzeba, M. et al. (2019) Phytovolatilization refers to the uptake of elements by plant roots, 
translocation through the xylem and subsequent emission to the atmosphere Wang et al. (2012). 
Phytovolatilization is unique to Hg owing to its relatively high volatility; however, there are few studies 
on phytovolatilization of Hg via vegetation, in part, because of its inefficiency (<0.98% remediation) 
Moreno et al. (2005), difficulties in monitoring volatilization fluxes and possibly related to concern 
over secondary contamination by emitting Hg to the atmosphere. 

Instead, most studies on phytoremediation have focused on phytoextraction, whereby Hg is removed 
from soil by harvesting vegetation that has taken up Hg from soils. No plant has been identified as a Hg 
hyperaccumulator, which are plants that are capable of growing under high contamination and take up 
metals via roots and bio concentrate them in their shoots Rascio, and Navari-Izzo, (2011). Vegetation 
known to show a potential to bio accumulate Hg have been shown to remove less than 0.2% of the Hg 
in Hg-enriched soils, even when chemically assisted Wang et al. (2011),(2018). Hence, in contrast to 
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some other toxic trace metals where phytoextraction is highly efficient (such as 32.4–84.5% removal 
of soil cadmium by Sedum plum bizincicola) Fan et al. (2019), phytoextraction is considered of low 
efficiency for Hg. Adsorption  processes Arnold  et al. (2018), Chiarantini  et al.(2016) Across the bark, 
Hg concentrations markedly decrease from the outermost to the innermost layers (including the phloem) 
Zhou et al. (2016)  indicating little transport through the bark. Potential pathways for Hg in bole wood 
include root uptake and translocation through the xylem, foliage uptake and translocation by phloem 
transport, and transfer from the bark Fig. (20). However, Hg uptake to bole wood, which is the tissue 
showing by far the lowest Hg concentrations is considered to be dominated by translocation of foliage 
Hg to tree rings through phloem transport, whereas transport through translocation from roots and bark 
is likely negligible Arnold et al. (2018), Greger et al. (2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20: Illustrates the pathways of plant Hg uptake. Plants uptake atmospheric mercury (Hg) through 
their foliage via stomatal and cuticular uptake, and transport Hg through leaf tissues and translocate Hg 
via phloem transport to woody tissues. Plants also uptake Hg from the soil through their roots, with 
little transport of Hg through root tissues into xylem. Finally, there is passive uptake of atmospheric Hg 
to bark. After: Vorholt (2012) and Zhou et al. (2021) 

 
Notably, this transport could enable the use of tree ring Hg to track historic, local, regional and 

global Hg exposures Arnold, et al. (2018), Peckham et al. (2019), Zhou et al. (2016), Hojdova   et al. 
(2011). Below ground, plant roots and excretions (chelators) can induce pH variations and redox 
reactions in soils, which, subsequently, lead to cation exchange of divalent Hg and solubilization of Hg 
from nearly insoluble soil Hg precipitates Tangahu et al. (2011), Farella et al. (2006). Mercury then 
likely penetrates into root cells as a hitchhiker using transporters for other elements Clemens (2006), 
Clemens, and Ma (2016) as Hg is a non-essential element. Absorbed Hg is largely restricted to the cell 
walls of the outer layers of the root cortical cylinder, as well as to the central cylinder and parenchyma 
cell nuclei Cavallini et al. (1999). Accumulation in root cells can reduce the movement of Hg from the 
root into the xylem, and transport of Hg–phytochelatin complexes into vacuoles can restrict phloem 
mobility Clemens (2006), Clemens and Ma (2016). Low Hg translocation from soils to aboveground 
tissues has been attributed to effective Hg retention in roots Wang   et al. (2012). However, no specific 
transport molecules involved in Hg uptake by roots and translocation in roots are known.  

Root Hg concentrations have been shown to linearly correlate with soil concentrations Niu et al. 
(2011), Niu  et al.(2013), Zhou et al. (2015) and show low sensitivity to air Hg concentrations14, 
leading to the view that Hg in roots is derived primarily from soil uptake. However, exceptions have 
been reported in quaking aspen Frescholtz et al. (2003) and wheat Niu et al. (2011), Millhollen et al. 
(2006) under very high atmospheric Hg exposures (20–40 times ambient air concentrations). Moreover, 
stable Hg isotope studies have pointed to contrasting Hg origins in roots. For example, rice plants grown 
in contaminated soils showed root Hg with the same isotopic signature as the surrounding Soil Yin et 
al. (2013), indicating root uptake. In contrast, substantial foliage-to-root Hg transport was observed in 
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a forest, where atmospheric Hg (0) uptake via foliage accounted for 44–83% of Hg in tree roots Wang 
et al. (2020). In the latter study, large roots showed somewhat higher proportions of atmospheric Hg 
(0) compared with small roots (59% versus 64%) Wang   et al. (2020), possibly related to lower surface 
areas and reduced absorptive potential of large roots Wang   et al. (2012), Rewald et al. (2011). The 
role of atmospheric uptake in root Hg merits further detailed investigations, as this phenomenon would 
substantially increase estimates of plant Hg uptake from the atmosphere due to high turnover rates of 
roots, which could equal that of leaf litter fall Wang   et al. (2012). 

Non-vascular vegetation, including lichens and mosses (slow-growing cryptogamic organisms 
without root systems or thick waxy cuticles), generally, show much higher Hg concentrations compared 
with vascular plants. Mercury bioaccumulation in mosses and lichens is controlled by numerous biotic 
and abiotic factors, including: species, whereby different moss and lichen species show large 
differences in Hg concentrations under the same exposures Balabanova et al. (2017), Solberg and  
Selmerolsen (1978); substrate and local soil Stankovic  et al. (2018), Salemaa et al. (2004); growth rate 
and surface area Lodenius (1998), Bargagli (2016); exposure to pollution source49; temporal variation 
Zechmeister et al. (2003); and chemical composition of wet and dry deposition Wolterbeek and  Bode 
(1995), Wolterbeek et al. (2003). Metals accumulate in mosses and lichens through intracellular and 
extracellular processes, as a lack of thick waxy cuticles in lichens and mosses allows cations to diffuse 
readily through cell walls Dolegowska and Migaszewski (2015). In the extracellular process, metals are 
intercepted and adsorbed and/or absorbed by exchange sites outside of cell walls and plasma membrane 
surface. In the intracellular process, Hg is subsequently trapped as particles on the cell surface layer or 
translocated inside the cell Stankovic et al. (2018), Tyler (1990), Wang et al. (2019). In addition to 
surface deposition of oxidized atmospheric Hg (reactive gaseous Hg and particulate-bound Hg), Hg(0) 
assimilation could contribute to trapping and sequestering Hg in moss and lichen tissue, but the specific 
methods of uptake, binding and accumulation from the atmosphere are unknown. After uptake, Hg (0) 
is oxidized to Hg (II) and subsequently immobilized in moss and lichens for 4–5 weeks Lodenius et al. 
(2003), Bargagli (2016), Vannini et al. (2014). Lichens show significantly higher Hg concentrations 
(78 μg kg−1 [10–180 μg kg−1]) than mosses (51μgkg−1 [2–165μgkg−1]) in our data set (P<0.05). This 
difference is likely related to the different morpho-physiological properties and abilities to intercept 
airborne particles of lichens and mosses Bargagli (2016), as lichens often accumulate higher contents 
of atmosphile elements (derived from atmospheric sources), whereas mosses have shown higher 
contents of lithophile elements, such as dust, Adamo   et al. (2008), Bargagli (1995). Staple isotope 
analyses indicate that atmospheric Hg (0) accounts for 76% and 86% in ground and tree mosses, with 
the remaining 24% and 14% originating from Hg (II) contribution Wang et al (2020). Hence, where 
lichens and mosses represent a significant component of plant communities, such as in the Arctic tundra, 
their high tissue concentrations are responsible for high atmospheric deposition loads via uptake of 
atmospheric Hg exceeding Hg deposition by vascular plants Obrist   et al (2017), Olson et al. (2019). 
Furthermore, Hg concentrations in mosses and lichens can maintain a state of dynamic equilibrium with 
atmospheric Hg concentrations Nieboer and Richardson (1979), Walther et al.(1990), and lichens and 
mosses increase Hg(0) uptake from the atmosphere when exposure is high Pradhan   et al. (2017). 
Passive Biomonitoring using lichens and mosses for atmospheric Hg could, hence, be cost-effective 
and benefit from abundant distribution, structural simplicity, rapid growth rate and ease of sampling 
Dolegowska and Migaszewski (2015), Wang et al. (2019), Garty (2001), but this application has shown 
limited success. For example, there were weak correlations between atmospheric Hg deposition and Hg 
accumulation in moss and soils across large south-to-north gradients in Norway Nickel   et al. (2017). 
In contrast, there was a lack of correlation between modelled atmospheric Hg deposition and moss 
concentrations across a large network of sites in Europe, and moss collected in Norway showed no 
distinct north-to-south patterns, in spite of expected gradients in atmospheric Hg pollution Harmens,   
et al. (2010). Bargagli et al. (2016), Dolegowska and Migaszewski (2015), concluded that Hg 
concentrations in lichens and mosses are impacted by many environmental variables, which complicates 
its use as a biomonitor for atmospheric Hg concentrations and deposition. High concentrations of Hg in 
bottom leaves of Rudbeckia hirta were attributed to the Hg emission from soils Millhollen et al. (2006a, 
b). Hg exchange between foliar and surrounding air is a dynamic process. The net deposition rates of 
Hg on leaves increased with the atmospheric Hg concentrations Ericksen and Gustin (2004). The 
mechanisms of how Hg enters into leaves remains elusive, but stomata may be responsible for the 
uptake of atmosphere Hg by leaves through gas exchange. 
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6. Mercury concentration in plant 
 Vegetation affects environmental factors at the ground surface by reducing solar radiation, 

temperature, and wind velocity and serves as a surface for Hg uptake Zhu et al. (2016). Many studies 
have recognized the essential role of terrestrial plants in the biogeochemical cycling of Hg Gustin et al. 
(2004); Fantozzi et al. (2013); Mazur et al. (2014) Fig. (21). Bishop et al. (2020) reported that recent 
advances in terrestrial mercury cycling, terrestrial mercury (Hg) research has matured in some areas, 
and is developing rapidly in others. Summarizing the state of the science circa 2010 as a starting point, 
and then present the advances during the last decade in three areas: land use, sulfate deposition, and 
climate change. The advances are presented in the framework of three Hg “gateways” to the terrestrial 
environment: inputs from the atmosphere, uptake in food, and run off with surface water. Among the 
most notable advances: (a) the Arctic has emerged as a hotbed of Hg cycling, with high stream fluxes 
and large stores of Hg poised for release from permafrost with rapid high-latitude warming. (b) the bi-
directional exchange of Hg between the atmosphere and terrestrial surfaces is better understood, thanks 
largely to interpretation from Hg isotopes; the latest estimates place land surface Hg re-emission lower 
than previously thought. (c) artisanal gold mining is now thought responsible for over half the global 
stream flux of Hg. (d) there is evidence that decreasing inputs of Hg to ecosystems may bring recovery 
sooner than expected, despite large ecosystem stores of legacy Hg. 

 
Fig. 21: Typical values for stocks and annual fluxes for THg in the northern temperate/boreal forest 
and wetland landscapes, and the Arctic landscape. The intent is to show relative magnitudes; actual 
values and even net flux directions may vary widely among ecosystems, and have high uncertainty. 
Belowground Hg stocks may consider different depths. Values are specific to that land cover or 
process. In the case of fire, the value is for a one-time release (not per year); the value is high because 
it is specific to burned area. Forest and Wetland panels are modified from Shanley and Bishop (2012). 
Arctic panel values are calculated from data of Schuster et al. (2002), Schuster et al. (2018), Obrist et 
al. (2017), Sonke et al. (2018), and Bishop et al. (2020) 

 
Approximately 80% of total Hg accumulated in the aboveground biomass was found in the leaves, 

and approximately 1% of that Hg is methylated. The concentrations of Hg in aspen tissue grown in 
high-Hg soil increases in the following order: Stems<branches<petioles<roots<leaves Ericksen et al. 
(2003). Research conducted by Leonard et al.  (1998) in Nevada (USA) in an area with high levels of 
Hg contamination revealed that for the plant species Lepidium latifolium, 70% of the Hg taken up by 
the roots during the growing season was emitted to the atmosphere. The main source of Hg in leaves 
comes from air pollution with Hg0 and not from soil contamination Gustin et al. (2004), Frescholtz et 
al. (2003), Assad et al. (2016). The studies by Fleck et al. (1999) of Pinus resinosa have shown that 
neither woody tissue Hg nor any amount of Hg in the soil or forest floor were closely related to foliar 
levels, while for some relationships, the opposite was true. The authors interpret these data as indicating 
that Hg in plant tissues is derived directly from the atmosphere and not from the soil. It is estimated that 
in highly contaminated soils, generally, less than 2% of the Hg present is available for plants Dago et 
al. (2014). Total leaf concentrations of Hg varied among species and were most closely correlated with 
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the number of stomates per sample, thus, supporting the hypothesis that stomatal uptake of atmospheric 
Hg (most likely Hg0) is a potential uptake pathway Laacouri et al. (2013). Research by Arnold et al. 
(2018) also indicated the importance of the nonstomatal pathway for the uptake of total gaseous Hg 
(TGM). Plants growing beyond the influence of high Hg emissions contained less than 100 ng g−1 .T 
Hg. Plants growing approximately factories are large emitters of Hg, such as those around Hg mining 
sites Moreno-Jiménez et al. (2006), Qian et al. (2018) and chlor-alkali mining sites De Temmerman 
etal. (2009). Au mining sites Egler et al. (2006), Svoboda et al. (2006) may also contain extremely high 
Hg contents. Mushrooms have been identified as organisms that accumulate more Hg than other plants 
Falandysz et al. (2018). A synthesis of published vegetation Hg data from the western United States 
showed that aboveground biomass concentrations followed the order: Leaves (26μg.kg−1 )~branches 
(26 μg.kg−1 )>bark (16 μg. kg−1 )>bole wood (1 μg. kg−1) Obrist et al. (2016) . Mercury concentrations 
in leaves were monitored from the emergence to senescence and showed a strong positive correlation 
with leaf age Assad et al. (2016), Laacouri et al. (2013), Millhollen et al. (2006). 

Mercury does not have any beneficial effects on organisms and is thus, regarded as the “main threat” 
since it is very harmful to both plants and animals; pollutes the air, water and soil; and is toxic Asati et 
al. (2016). Mercury has toxic effects on plants, even at low concentrations, and leads to growth 
retardation Ahammad et al. (2018) and many other adverse effects Shahid et al. (2020). Mercury in 
plants is strongly bound to sulfhydryl/thiol groups of proteins and forms SHgS. Mercury toxicity in 
plants occurs via its binding to SH groups of proteins, displacement of essential elements and disruption 
of the protein structure  Safari et al. (2019) . This biochemical property probably determines the toxic 
effects on plants Kabata-Pendias and Pendias (2001), Zhou et al. (2008), Azevedo and Rodriguez 
(2012). Studies of the toxic effects of Hg on soil organisms and native plants in fields are limited. The 
effects of Hg are usually examined in sterile and much-simplified laboratory conditions, which may 
differ from field conditions to varying degrees Patra and Sharma (2000). The field study of Moreno-
Jiménez et al. (2006) was conducted in the mining district of Almadén (Spain), which is a cinnabar 
(HgS) enriched zone, from which one-third of the total Hg produced worldwide is extracted. Mining 
activity began more than 2000 years ago, and Hg has influenced no other region in the world for such 
a long period. The region is considered one of the regions most polluted by Hg in the world. Mercury 
concentrations in the field plants Rumex induratus and Marrubium vulgare grown in these soils can be 
considered phytotoxic, although no symptoms of Hg toxicity have been observed in any of the studied 
plant species. In most contaminated soils and mine tailings, Hg is not readily available for plant uptake   
Moreno et al. (2004). The absorption of organic and inorganic Hg from soil by plants is low, and there 
is a barrier to Hg translocation from plant roots to tops. Thus, large increases in soil Hg levels produce 
only modest increases in plant Hg levels by direct uptake from soil Patra and Sharma (2000).  In 
terrestrial vegetation, Hg in the aboveground biomass originates primarily from the atmosphere, 
whereas, Hg in the roots comes from the soil Selin et al. (2007), Obrist (2007).The research conducted 
by Lomonte et al. (2010) suggested the existence of Hg stress-activated defense mechanisms in plants 
and hypothesized that these mechanisms were likely the reason for the increased production of sulfur 
compounds in the tested plant species, which stimulated their growth. Mercury has very limited 
solubility in soil, low availability for plant uptake and no known biological function, which may explain 
why Hg-hyperaccumulating plants have not yet been identified, meaning that a method for Hg 
phytoremediation in soils contaminated with Hg has not yet been developed Lomonte et al. (2010). 
However, studies suggesting the use of transgenic plants for phytoremediation have been published 
recently Fasani et al. (2018), Ahmed et al. (2019). 

The significant toxic effect of Hg on plants is the generation of reactive oxygen species (ROS) Kim 
et al. (2017), e.g., superoxide anion radicals, H2O2, and hydroxyl radicals (OH.)  Cho and Park (2000), 
Israr and Sahi (2006). Detoxification mechanisms to combat Hg. Induced oxidative stress include 
enzymatic antioxidants and some nonenzymatic antioxidants, such as the following: glutathione  Zhang 
et al. (2017) , phytochelatin  Gómez-Jacinto et al. (2015) , salicylic acids  Wani et al. (2017) , ascorbic 
acid  Kováčik et al. (2017)  selenium,  Zhou et al. (2017) , proline  Seneviratne et al. (2019)  and 
tocopherols, Hasanuzzaman et al. (2012) Fig.(22) .  
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Fig. 22: Illustrates the enzymatic and non-enzymatic antioxidant mechanism to defend oxidative stress 
enzymatic and nonenzymatic antioxidants in algae.ASC (Ascorbate),APX, (Ascorbate peroxidase), 
CAT Catalase, DHA (Dehydroascorbate), GSH (Glutathione), GR (Glutathione reductase) , GSSG 
(Glutathione disulfide ),MDHA (Monodehydroascorbate ),SOD (Superoxide dismutase ),DHA 
(Dehydroascorbate).After Kumari et al. (2022)  

 
Kumari et al. (2022) stated that   plants respond to various stresses during their lifecycle among 

which abiotic stress is the most severe one comprising heat, cold, drought, salinity, flooding, etc. which 
take a heavy toll on crop yield worldwide in every corresponding year. ROS has a dual role in abiotic 
stress mechanisms where, at high levels, they are toxic to cells while at the same time, the same 
molecule can function as a signal transducer that activates a local as well as a systemic plant defense 
response against stress. The most common ROS species are hydrogen peroxide (H2O2), superoxide 
anions (O-2), hydroxyl radicals (OH-), and singlet oxygen (1O-2) which are results of physiological 
metabolism often controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS 
generally, accumulate in plants during abiotic and biotic stress conditions resulting in oxidative damage 
that ultimately leads to programmed cell death. Many ROS scavenging pathways have been well studied 
against stress responses. Through careful manipulation of ROS levels in plants, we can enhance stress 
tolerance in plants under unfavorable environmental conditions. This process is correlated with the 
disruption of bio membrane lipids and cellular metabolism, resulting in plant injury Cargnelutti et al. 
(2006).  Increasing levels of mercury species in the soil exert a wide range of adverse effects on the 
growth and metabolism of plants Asati et al., (2016), Patra et al. (2004), Nagajyoti et al., (2010), such 
as reduced photosynthesis, transpiration, water uptake, chlorophyll synthesis.  

Sapre et al. (2019) reported that organic form of mercury severely affects plants, as they are more 
toxic than inorganic (Hg2+) counter parts Patra and Sharma (2000). Mercury has its toxic effect on most 
of the crop species, beyond the tolerance limit. It tends to amass in the roots; hence, the phytotoxic 
symptoms are also noticed in roots Chen et al. (2014). The excess mercury in the soil is taken up by 
plants, causing disturbance and malfunction to many of the biological processes, including 
photosynthesis, respiration, transpiration and cell division Fig. (23).  

The plausible mechanism of mercury toxicity is its ability to react with the sulfhydryl (SH) groups 
of proteins and enzymes; similarly, it has high affinity for the phosphate groups of lipids, energy-rich 
molecules like ATPs and nucleotides. It is also noted that it also substitutes the essential ions such as 
Mg2+ ion in chlorophyll Azevedo and Rodriguez (2012). Mercury also messes up with the aqua-porins 
(water channels), causing impaired transpiration and subsequent water uptake via vascular tissues Zhou 
et al. (2008) Fig. (24). 
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Fig. 23: Illustrates the effects of mercury toxicity on plants. After: Sapre et al. (2019)   
 

 
Fig. 24:  Aquaporins are inhibited by mercury ions. After: Xie et al. (2022) 

 
   Xie et al. (2022) noted that aquaporins are transmembrane channels that allow for the passive 

permeation of water and other small molecules across biological membranes. Their channel activities 
are sensitive to mercury ions. Intriguingly, while most aquaporins are inhibited by mercury ions, several 
aquaporins are activated by mercury ions. The molecular basis of the opposing aquaporin regulation by 
mercury remains poorly understood. Herein, we investigated AqpZ inhibition and AQP6 activation 
upon binding of mercury ions using solid-state NMR (ssNMR) and molecular dynamics (MD) 
simulations. Based on the structure of the Hg–AqpZ complex constructed by MD simulations and 
ssNMR, we identified that the pore closure was caused by mercury-induced conformational changes of 
the key residue R189 in the selectivity filter region, while pore opening was caused by conformational 
changes of residues H181 and R196 in the selectivity filter region in AQP6. Both conformational 
changes were caused by the disruption of the H-bond network of R189/R196 by mercury. The molecular 
details provided a structural basis for mercury-mediated functional changes in aquaporins.  

It deliberately disrupts the plant antioxidant defense enzymes, especially glutathione reductase (GR), 
superoxide dismutase (SOD), catalase and ascorbate peroxidase (APX). Besides, it also affects the other 
antioxidant entities such as glutathione (GSH) and non-protein thiols Israr et al. (2006), Zhou et al. 
(2008). The plants can tolerate the effect of mercury toxicity to some extent by the interplay of various 
physiological and molecular mechanisms. First, when plants come into contact with mercury ions, they 
prohibit or reduce the uptake of mercury into the roots by either complexing them to cell wall or root 
exudates; if it enters the root cell, the metal ion is restricted to the apoplasts. Nevertheless, if still the 
mercury ions gain entry into the plant cell, they are countered by detoxification through 
compartmentalization into vacuoles or complexation with amino acids, organic acids, chelation by 
phytochelatins (PC) and metallothioneins (MT). Further, some non-enzyme antioxidants such as a-
tocopherol and GSH also aid in combating mercury toxicity   Kalaivanan and Ganeshamurthy (2016). 
These processes mostly put a check on translocation of mercury ions to the leaf tissues and thereby 
shielding the photosynthesis from detrimental effect of mercury Rascio and Navari-Izzo (2011). Finally, 
Tiwari and Lata (2018) stated that plants resort the mercury toxicity by induction of oxidative stress 
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enzymes such as SOD, APX, catalase, glyoxalase and GR. They also trigger the stress-responsive 
proteins and hormones. Various signaling cascades are stimulated by encountering heavy metal ions, 
namely calcium-dependent signaling and mitogen-activated protein kinase (MAPK) signaling. Chen et 
al. (2014), observed that mercury toxicity activates the biosynthesis of aromatic amino acids 
(tryptophan and phenylalanine), calcium accumulation and stimulates MAPK in rice. Cargnelutti et al. 
(2006), Marrugo-Negrete et al. (2016), Teixeira et al. (2018) and increased lipid peroxidation Cho and 
Park (2000).  A high Hg content in plants affects the activity of most enzymes. The total activity of 
stress indicators such as superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxides 
(APX) increased after Hg treatment, but the vast majority of enzymes were inhibited at higher 
concentrations  Manikandan et  al. (2015) Mahbub et al. (2017); Zhou et al. (2007). 

 
7. Mercury and their effects on plants physiology 

Harmful effects of mercury lead to the inhibition of the growth and changes in biochemical 
constituents of food crops. Several biochemical reactions happen due to the metallic accumulation such 
as lipid peroxidation, enzyme activation, chromosomal aberrations, and untimely cell death. Mercury 
causes a decrease in photosynthetic rate that turns the colours of the plants to pale yellow. Chlorophyll 
synthesis in the leaves was suppressed by mercury toxicity and increases the rate of oxidizing enzymes. 
Mitotic behavior as well as leakage of metabolites was adversely affected due to mercury toxicity. 
Review intends to understand the toxic effects occurring due to mercury accumulation and 
morphological, physiological, and biochemical changes occurring in different food crops. 

 
7.1. Mercury and their effects on seedling germination and growth. 

Seedling growth inhibition has been observed in many plants on treatment with mercuric chloride 
(HgCl2). The concentration of HgCl2 played an important factor in the inhibition rate of germination. 
The concentration of HgCl2 is directly proportional to the inhibition of seedling growth. Root elongation 
is a crucial growth   affected by mercury treatment, explaining the inhibition rate observed in Vigna 
radiata under mercurial treatment that will help to understand the inhibition caused by germination 
rates of plants. The seed germination rate, as well as the growth rate, comparing with different 
concentrations of HgCl2 compared with the distilled water control. Mercury treatments were done in a 
dilute form of mercuric chloride with different concentrations and were observed that with a lesser 
concentration of HgCl2, there was less or no significant inhibition but as the concentration of HgCl2 
increased, there was a reduction in root length. Therefore, a conclusion was drawn that an increase in 
the concentration of mercury treatment caused significant reductions in the seedling length of mung 
bean seeds as compared to the control. A piece of evidence was if on the treatment of HgCl2 with a high 
percentage there was a decrease in seed germination that lead to inhibitory responses in plant growth 
and development. 

Mei et al. (2021) reported that cotton is a potential and excellent candidate to balance both 
agricultural production and remediation of mercury-contained soil, as its main production fiber hardly 
involves into food chains. However, in cotton, there is known rarely about the tolerance and response 
to mercury (Hg) environments. In this study, the biochemical and physiological damages, in response 
to Hg concentrations (0, 1, 10, 50 and 100 µM), were investigated in upland cotton seedlings. The 
results on germination of cotton seeds indicated the germination rates were suppressed by high Hg 
levels, as the decrease of percentage was more than 10% at 1000 µM Hg. They also reported that shoots 
and roots’ growth were significantly inhibited over 10 µM Hg. The inhibitor rates (IR) in fresh weight 
were close in values between shoots and roots, whereas those in dry weight the root growth were more 
obviously influenced by Hg Fig. (25), they also stated that effects of Hg on cotton   growth   treated 
plants were inhibited under Hg stress, which may indicate the decline on assimilations regarding 
photosynthesis. The phenotypes on leaf surface, as well as pigments and gas exchange involved in 
photosynthesis, were studied. Comparing, much severe sick phenotypes appeared on leaves under 
higher Hg concentration. At 10 µM Hg, small white zone emerged on the leaf upper surface, whereas 
obvious necrosis and shrinking happened at 50 and 100 µM Hg. Obviously, the extent of leaf health 
inversely synchronized to the IR depending on Hg levels Fig. (26). 
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Fig. 25: Morphology on germination of decoated seeds TM-1 under Hg treatments. Decoated seeds 
exposed to Hg2+ solution with gradient 0, 1, 10, 100, 1000 and 10,000 µM, which were presented 

from upper to lower rows respectively. After: Mei et al. (2021) 
 
        
 
 
          
 
             
 
      
 
           

Fig. 26: Illustrates the morphological leaves responding to Hg levels at 0, 1, 10, 50 and 100 µM.  
                                                       After: Mei et al. (2021)    
 

Comparison of organs, the growth inhibition ranked as root > leaf > stem. The declining of 
translocation factor (TF) opposed the Hg level as even low to 0.05 at 50 µM Hg. The assimilation in 
terms of photosynthesis, of cotton plants, was affected negatively by Hg, as evidenced from the 
performances on pigments (chlorophyll a and b) and gas exchange (Intercellular CO2 concentration 
(Ci), CO2 assimilation rate (Pn) and stomatal conductance (Gs)). Sick phenotypes on leaf surface 
included small white zone, shrinking and necrosis. Membrane lipid peroxidation and leakage were Hg 
dose-dependent as indicated by malondialdehyde (MDA) content and relative conductivity (RC) values 
in leaves and roots. More than 10 µM Hg damaged antioxidant enzyme system in both leaves and roots 
(p < 0.05). Concluding, 10 µM Hg post negative consequences to upland cotton plants in growth, 
physiology and biochemistry, whereas, high phytotoxicity and damage appeared at more than 50 µM 
Hg concentration. 

 
7.2. Impact of mercury on chlorophyll and photosynthesis   

Heavy metals have always dominated the biota since they are always present in elevated amounts. 
Heavy metals cannot be decomposed in nature and it can only be translocated into plants and transferred 
further into the human food chain Patra and Sharma (2000). The processes by which heavy metals are 
transferred to plants are (a) phytoextraction (phytoremediation sub process in which plants remove 
dangerous components from contaminated soil), (b) Phyto stabilization (immobilization and reduction 
of the mobility of heavy metals in soil), and (c) rhizofiltration (a form of phytoremediation to use plant 
roots to absorb the toxic substances). Through transference in the food chain, these metals harm plants 
and extend to harming human health Cho-Ruk et al. (2006). Leaves play an important role in capturing 
light and making their own food via photosynthesis. Photosynthesis is a hypersensitive process that is 
interfered with either by heavy metal invasion that leads to the inhibition of enzymatic steps directly or 
by inducing the deficiency of an important nutrient Sloan et al. (2001).  It has been observed that Hg 
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affects the level of phosphorus and manganese contents in plants that in turn reduces the chlorophyll 
content and increases the malondialdehyde (MDA) and thiol levels Van Assche and Clijsters (1990). A 
report on the chlorophyll contents of wheat upon treatment with Hg showed that in the initial days of 
treatment, there was an increase in the content of chlorophyll a, chlorophyll b, and total chlorophyll 
with the increasing concentration of Hg but later on the content of chlorophyll a, chlorophyll b, and 
total chlorophyll have decreased significantly with the increasing rate of Hg which states that both low 
and high concentration of Hg will stimulate or inhibit the chlorophyll synthesis level at early stages of 
the wheat growth while on the later stages of the wheat growth not only less but also a high 
concentration of Hg will lead to inhibition of chlorophyll synthesis. In the cells of Chlorella, 
pyrenoidosa that the color of the leaves turned pale–yellow on treatment with Hg and a significant fall 
in photosynthetic rate noticed Moreno-Jiménez et al. (2009). Yadav et al. (2016) stated that toxicity of 
heavy metals in plants and role of mineral nutrients in its alleviation. Heavy metal contamination in our 
environment has become a huge problem for all living things. Heavy metals comprise of an imprecise 
group of elements, such as lead (Pb), chromium (Cr), arsenic (As), zinc (Zn), cadmium (Cd), copper 
(Cu), mercury (Hg) and nickel (Ni). These contaminants occur due to the hastened rate of 
industrialization and enormous usage of pesticides in agriculture. Mining, gasoline, paints, sewage, 
sludges; coal combustion rock weathering are some of the other sources through which these 
contaminants get entry into the ecosystem Khan et al. (2008), Zhang et al. (2010). Heavy metals are 
also deemed trace elements because of their minimal, but indispensable requirement in plant growth 
and development Kabata-Pendias (2010). These HMs have immense roles in biochemical and 
physiological functions and are important constituents of various key enzymes and redox reactions 
when present in limited concentrations Tchounwou et al. (2012).  

Mao et al. (2021) reported that this is a novel study about responses of leaf photosynthetic traits and 
plant mercury (Hg) accumulation of rice grown in Hg polluted soils to elevated CO2 (ECO2). The aim 
of this study was to provide basic information on the acclimation capacity of photosynthesis and Hg 
accumulation in rice grown in Hg polluted soil under ECO2 at day, night, and full day. For this purpose, 
we analyzed leaf photosynthetic traits of rice at flowering and grain filling. In addition, chlorophyll 
content, soluble sugar and malondialdehyde (MDA) of rice leaves were measured at flowering. 

Seed yield, ear number, grain number per ear, 1000-grain weight, total mercury (THg) and 
methylmercury (MeHg) contents were determined after harvest. The results showed that Hg polluted 
soil and ECO2 had no significant effect on leaf chlorophyll content and leaf mass per area (LMA) in 
rice. The contents of soluble sugar and MDA in leaves increased significantly under ECO2. Mercury 
polluted soil treatment significantly reduced the light saturated CO2 assimilation rate (Asat) of rice 
leaves only at flowering, but not at grain filling. Night ECO2 greatly improved rice leaf water use 
efficiency (WUE). ECO2 greatly increased seed yield and ear number. In addition, ECO2 did not affect 
THg accumulation in rice organs, but ECO2 and Hg treatment had a significant interaction on MeHg in 
seeds, husks and roots. They also reported that   attention should be payed to crop MeHg contents since 
ECO2 could increase MeHg in Hg polluted regions. This will increase rice consumers’ Hg exposure 
risk. According to this study, rice yield may be underestimated at elevated CO2 ECO2, because elevated 
CO2 ECO2 increased rice yield at daytime, full day even nighttime. In addition, rice growth with Hg 
under elevated CO2 ECO2 at daytime and nighttime increased the seed yield of rice plants. Elevated 
CO2 ECO2 did not enhance the accumulation of THg, but the MeHg content in seeds was increased. 
Thus, elevated CO2 ECO2 may change the Hg accumulation form in rice plants. Rice without Hg 
exposure had a higher assimilation rate (Asat) at flowering and a lower assimilation rate (Asat) at grain 
filling, but exposure to Hg reduced   assimilation rate Asat as a consequence of Hg accumulation.    

Since the industrial revolution, with large-scale use and emission of mercury (Hg), the Hg pollution 
has obtained much attention due to its harmful effects on the ecological environment and human health 
Benoit et al., (1998), Ma et al., (2019b), 2019a, (2016). Mercury is persistent of migration, with high 
toxicity and bioaccumulation characteristics  Li et al., (2019); Ma et al., (2019b); Wu et al., (2018b); 
Zhao et al., (2019). Though Hg is a stubborn pollutant, studies tried to moderate the activity of mercury 
by using nanoparticles, biochar, sulfur or selenium to de-contamination the water and soil pollution  
Karimi-Maleh et al., (2020c), Li et al., (2019); Xing et al., (2019). The Hg is a worldwide toxic 
pollutant, especially the exposure to humans to methylmercury (MeHg) Abeysinghe et al., (2017); Ma 
et al., (2019b),   Tang et al., (2020). Recently, it has been reported that the source of human Hg exposure 
is not only intake of fish resources, but also of rice in Hg contaminated areas  Ma et al., (2019b); 
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Rothenberg et al., (2014); Tang et al., (2018); Wu et al., 2018a, (2018b). Rice is an important food 
crop, and about half of the world’s population supply with food fully depends on rice products. In Asia, 
the rice cultivation area is very large and rice constitutes the main food Abeysinghe et al., (2017); Zhao 
et al., (2019). The rice planting area in East Asia accounts for the largest area in the world and also is 
the most essential rice eating area  Rothenberg et al., (2014); Xing et al., (2019) Xu et al., (2017). 
Planting rice in Hg polluted land will lead to the enrichment of a large amount of Hg in rice, which is 
harmful to its consumers Wu et al., (2018b; Zhao et al., 2016a, (2016b). Cui et al. (2022) reported that 
rice grain consumption is a primary pathway of human mercury exposure, in China to trace the source 
of mercury in rice grain; we developed a rice paddy mercury transport and transformation model with 
a grid resolution of 1 km × 1 km by using the unit cell mass conservation method. Fig. (27). The total 
mercury (THg) and methylmercury (MeHg) concentrations in Chinese rice grain ranged from 0.08 to 
243.6 and 0.03 to 238.6 μg/ kg, respectively, in 2017. Approximately, 81.3% of the national average 
rice grain THg concentration was due to atmospheric mercury deposition. However, soil heterogeneity, 
especially, the variation in soil mercury, led to the wide rice grain THg distribution across grids. 
Approximately, 64.8% of the national average rice grain MeHg concentration was due to soil mercury. 
In situ methylation was the main pathway via which the rice grain MeHg concentration was increased.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 27: Illustrates mercury transport and transformation in rice paddies. [(1) Mercury input: PBM and 
RGM deposition into the floodwater; GEM deposition into rice plants; and irrigation water input and 
soil mercury desorption. (2) Transport and transformation in rice paddies: demethylation and reduction 
in the floodwater and diffusion, adsorption, methylation, and demethylation in the tillage layer. (3) 
Accumulation in rice grain: MeHg absorbed by roots and transported to rice grain and IHg absorbed 
from air. PBM: particle-bound mercury; RGM: reactive gaseous mercury; GEM: gaseous elemental 
mercury; MeHg: methylmercury; IHg: inorganic mercury; SOM: soil organic matter; BAF: 
bioaccumulation factor of roots; TF: transport factor; and LAI: leaf area index].After: Cui et al. (2022) 

 
The coupled impact of high mercury input and methylation potential led to extremely high rice grain 

MeHg in partial grids among Guizhou province and junctions with surrounding provinces. The spatial 
variation in soil organic matter significantly affected the methylation potential among grids, especially, 
in Northeast China. Based on the high-resolution rice grain THg concentration, we identified 0.72% of 
grids as heavily polluted THg grids (rice grain THg > 20 μg/kg). These grids mainly corresponded to 
areas in which the human activities of nonferrous metal smelting, cement clinker production, and 
mercury and other metal mining were conducted. Thus, we recommended measures that are targeted at 
the control of heavy pollution of rice grain by THg according to the pollution sources.   

On the other hand, atmospheric CO2 has increased dramatically in the past few centuries IPCC et al. 
(2013). This increasing trend is projected to continue throughout this century. Former studies showed 
that elevated CO2 concentration (ECO2) can greatly increase leaf photosynthetic rates and seed yield 
(Ainsworth et al. (2008a), (2002); Ellsworth et al. (2004); Kitaoka et al. (2016),   Watanabe et al. 
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(2016). In most of these studies, plants were exposed to ECO2 either at daytime or for the full day 
(Bunce (2003); Ellsworth et al. (2017), (2012); Hoshika et al. (2012); Kazemi et al. (2018). Therefore, 
physiology responses to night ECO2 are largely unknown Bunce (2017), (2002) and (2005). It is 
important to elucidate such responses, since leaf respiration during the night counteracts carbon 
accumulation by photosynthesis at daytime. Fossil fuel combustion would release both CO2 and Hg to 
the atmosphere, with the consequence of enhanced soil Hg under ECO2 Bunce (2017). Former in-situ 
studies reported that soil Hg accumulations were almost 30% greater under ECO2 in temperate forests 
ecosystems, but similar information on herbaceous crop plants is lacking (Bunce (2017). Numerous 
studies have focused on the independent effects of ECO2 and Hg on plant physiology  Ainsworth (2016); 
Ainsworth et al. (2008b); Frossard et al. (2017); Kazemi et al. (2018); Lv et al. (2020); Xiong et al., 
(2019). However, there is much less information on the effect of ECO2 levels combined with Hg 
pollution on leaf photosynthesis and grain yield, particularly for effects at night  Bunce (2005); Xiong 
et al. (2019). Here, we tested whether ECO2 released at daytime, during the nighttime, or during the full 
day induces differences in grain yield and leaf photosynthetic traits of rice. Since there is no information 
about the responses of herbaceous plants to Hg contamination under ECO2, this study aims to fill the 
knowledge gap of Hg absorption by rice under ECO2 and its physiological responses to this treatment. 
Therefore, the specific objectives of this study were to elucidate under ECO2 at day, night or full day, 
whether rice (1) has higher leaf net photosynthesis (Asat), stomatal conductance (gs), transpiration (E), 
water use efficiency (WUE) and seed yield, and (2) accumulates more Hg from contaminated soils. 

 
8. Biochemical toxicity of mercury in medicinal plants   

Plants are the storehouse of natural biochemical. To produce the necessary biochemical, plants rely 
on the most sophisticated metabolism for the regulation of their growth, development, and all those 
environmental interactions happening around which produces plant hormones, vitamins, and distinct 
phytochemicals via its primary and secondary metabolic processes. The production of essential 
phytochemicals has mediated by medicinal plants. Therefore, the proper regulation of the plant 
biochemical is very necessary but the exposure of plants to heavy metals such as mercury that is 
considered the most persistent toxic metal causing alteration in the regulatory metabolism happening in 
the medicinal plants.  

Mercury present in the medicinal plant stimulates the production of bioactive compounds that 
interrupt the regulation of the phytochemicals. The oxidative stress induced due to mercury 
accumulation triggers signaling pathways that eventually affects the production of specific plant 
metabolites. To be specific reactive oxygen species (ROS), initiated during mercurial stress causes lipid 
peroxidation that stimulates the configuration of highly active signaling compounds that are capable of 
triggering the production of bioactive compounds Kamp-Nielsen (1971). Lian-Jiu et al. (2019) reported 
that reactive oxygen species (ROS) induced lipid peroxidation plays a critical role in cell death including 
apoptosis, autophagy, and ferroptosis. This fundamental and conserved mechanism is based on an 
excess of ROS that attacks bio membranes, propagates lipid peroxidation chain reactions, and 
subsequently induces different types of cell death. A highly evolved sophisticated antioxidant system 
exists that acts to protect the cells from oxidative damage. In this review, we discussed how ROS 
propagate lipid peroxidation chain reactions and how the products of lipid peroxidation initiate 
apoptosis and autophagy in current models. We also discussed the mechanism of lipid peroxidation 
during ferroptosis, and we summarized lipid peroxidation in pathological conditions of critical illness. 
We aim to bring a more global and integrative sight to know how different ROS-induced lipid 
peroxidation occurs among apoptosis, autophagy, and ferroptosis. They also stated that ROS are 
partially, reduced oxygen containing molecules, which are free radicals and/or oxygen derivatives, 
including superoxide anion, hydrogen peroxide, hydroxyl radical, lipid hydro peroxides, and peroxyl 
radicals. Most intracellular ROS are derived from superoxide radical, whose formation is mainly 
through NADPH oxidases (NOXs), xanthine oxidase (XO), and the mitochondrial electron transport 
chain (mETC) in endogenous biologic systems  Sakellariou et al. (2014), Guerriero et al. (2014). 
Reactive oxygen species are converted to hydrogen peroxide by the superoxide dismutase (SOD) and 
yield the highly toxic hydroxyl radical in the presence of reduced iron (Fe2+) through the Fenton reaction 
which have different peroxide species to generate hydroxyl (⋅ OH) or alkoxyl (RO⋅ ) radicals Wen et 
al. (2013) . Ferric iron (Fe3+) can be recycled to Fe2+ via the Haber-Weiss reaction by oxidation with a 
peroxyl radical to oxygen Doll and   Conrad (2017), Kruszewski (2003)   Fig. (28). Imbalance in the 
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rate of ROS generation leads to oxidative stress and consequent production of free radicals that can 
damage DNA, proteins, and lipids Latunde-Dada (2017). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 28: Illustrates generation of ROS and lipid peroxidation in cell death. (a) Generation of ROS; ROS 
are derived from superoxide radical, whose formation is mainly through NADPH oxidases, xanthine 
oxidase, and the mitochondrial electron-transport chain. Polyunsaturated fatty acids containing 
phospholipids can generate alkoxyl (RO⋅ ) radicals by Fenton chemistry reaction. (b) The products of 
lipid peroxidation induce apoptosis and autophagy via different pathways. (c) GPX4 activity decreases 
and a depletion of GSH causes lipid peroxidation and consequently to ferroptosis. After: Lian-Jiu et al. 
(2019) 

 
                    

Hélio et al. (2013) reported that UV radiation is divided into three classes: UV-C, UV-B, and UV-
A. Although the highly energetic UV-C (200–280 nm) is completely absorbed by atmospheric gases 
and UV-A (315–400 nm) is hardly absorbed by ozone, the potentially harmful UV-B (280–320 nm) is 
only partially absorbed by atmospheric ozone, comprising approximately 4% of terrestrial radiation. In 
the last 20 years, the depletion of the stratospheric ozone layer, catalyzed by chlorofluorocarbons and 
other pollutants, resulted in rising levels of the sun’s UV-B radiation reaching the Earth’s surface. Due 
to the high energy of UV-B radiation, even modest increases could lead to significant biological damage 
Jansen et al. (1998); Frohnmeyer and Staiger (2003). Elevations of UV-B radiation levels have effects 
on plant development, morphology, and physiology. Such responses include inhibition of plant growth 
rates, biomass reduction, increased accumulation of UV absorbing secondary metabolites, and influence 
on numerous ecological processes. In addition to indirect changes, caused by affecting host plant 
quality, predators, and pathogens, UV-B radiation may directly cause modifications in herbivore 
behavior and physiological processes  Julkunen-Tiitto et al. (2005); Tuteja et al. (2009). As sessile 
organisms, plants are exposed to various environmental factors that lead to changes in physiology and 
morphology. One of the most relevant of these factors is ultraviolet radiation, on which significant 
advances have been achieved, in both understanding effects on plants and describing response 
mechanisms. UV-B radiation can inhibit growth and decrease leaf area, but also increase parameters 
such as leaf number, secondary branch number, and leaf weight per plant. Other aspects of leaf 
morphology can also change upon UV-B exposure, including presence of particulate matter in 
substomatic chambers Zu et al. (2010), and accumulation of epicuticular wax crystalloids on the leaf 
surface, reflecting solar radiation Barnes et al. (1996). UV-A and UV-C radiation affected the structure 
and ultrastructure of Capsicum longum, leading to a decrease in shoot growth and leaf area, whereas, 
stem and leaf thickness, as well as stomata number and size significantly increased. UV treatment also 
caused thylakoid expansion, starch reduction, and formation of crystals in peroxisomes of mesophyll 
cells Sarghein et al. (2011). Plants have protective mechanisms, both constitutive and induced, or can 
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activate repair responses to cope with UV-B stress. One of the most common protective responses is 
the accumulation of secondary metabolites capable of absorbing radiation in the ultraviolet wavelength 
range, such as anthocyanins, flavonols, and flavones, which can scavenge free radicals, mainly ROS 
Hahlbrock and Scheel (1989). Plants can also produce antioxidant enzymes, such as catalases, 
peroxidases, and superoxide dismutases, to scavenge these free radicals and protect cellular integrity 
Heinonen et al. (1998). Differences in defense responses, as well as in their kinetics and intensity, can 
be the reason for some plants being highly resistant to UV radiation compared to others Fig. (29). 
Pandey et al. (2023) stated that UV-B and heavy metals cause alterations in the secondary metabolites 
of medicinal plants, they found that UV-B and heavy metal stress activate a signal transduction pathway 
that consequently, leads to alterations in the expression of various genes of the enzymes taking part in 
the biosynthesis of secondary metabolites in medicinal plants.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
 
 
 

Fig. 29: Illustrates a schematic representation of main UV-B signal transduction pathways in plants. 
Low levels of UV-B (light-colored arrows) may mediate UV-B specific pathways, differently from 
general stress responses, generated under high levels of radiation (dark arrows). These pathways change 
the expression of an array of genes, with both specific and/or overlapping responses. Dashed lines 
indicate incompletely understood correlations. Data to date indicates that UVR8 monomerization and 
UVR8- COP1 interaction are UV-B dependent processes that lead to HY5 gene transcription. HY5 
protein then regulates downstream target genes involved in UV photomorphogenic responses, including 
UV protection genes, such as those encoding enzymes of the flavonoid pathway. ROS: reactive oxygen 
species; JA: jasmonic acid; SA: salicylic acid; UVR8: UV RESISTANCE LOCUS8; COP1: 
CONSTITUTIVELY PHOTOMORPHOGENIC1; HY5: ELONGATED HYPOCOTYL5. After: Hélio 
et al. (2013)    

 
However, these alterations in biosynthesis and accumulation of secondary metabolites range from 

having positive to negative to no effects, depending on various other factors. Including species, 
cultivars, dose and duration, developmental stages, experimental conditions and various environmental 
variables. In addition, as there are not many data available regarding the interactive effect of heavy 
metals and UV-B on medicinal plants, it is not completely clear whether the two stresses (UV-B and 
heavy metals) act synergistically or antagonistically. However, the interactive effect mostly showed a 
synergistic effect on the formation of secondary metabolites in medicinal plants. Furthermore, there is 
a need to explore interactive studies involving different doses of heavy metals and UV-B radiation on 
various medicinal plants under varied environments to unravel the precise mechanism behind this 
stimulation. Moreover, understanding how UV-B and heavy metals both individually and in 
combination influence the accumulation of secondary metabolites in medicinal plants can help us to 
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assess these metabolites’ biological functions, and can offer standards for specifying the ideal quality 
and  yields   of   medicinally   important   compounds. They  also   reported   that  various  secondary 
metabolites are present in plants, and consumers are becoming more interested in them because of the 
extensive usage of plants in the pharmaceutical industry. These secondary metabolites possess various 
pharmaceutical activities; due to this, they are widely used in the treatment of various disorders of 
human beings. The WHO estimates that 60% of people worldwide and 80% of human beings in 
developing countries still rely on herbal remedies. Due to their minimal side effects, the demand for 
medicinal plants has dramatically increased in recent years, and interest in their use has increased 
locally, nationally and globally Mahajan et al. (2020). These secondary metabolites frequently exhibit 
multiple functionalities and typically contain more than one functional group. Even though secondary 
metabolites are structurally diverse compounds, they are derived from limited products of primary 
metabolism Ncube et al. (2012). Broadly, secondary metabolites are classified into three groups, 
phenolics, terpenoids and nitrogen-containing compounds Fig. (30).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 30: Schematic overview of biosynthesis of different groups of secondary metabolites and their 
interrelationship with primary metabolism, modified from Mahajan et al. (2020) Jan et al. (2021). 
Abbreviations: MVA- Mevalonic acid pathway; MEP-Methylerythritol phosphate pathway; IPP-
Isopentenyl pyrophosphate; DMAPP-Dimethylallyl pyrophosphate; GPP-Geranyl pyrophosphate; FPP-
Farnesyl pyrophosphate; GGPP-Geranylgeranyl pyrophosphate. After: Pandey et al. (2023) 
 

Terpenoids are synthesized by the plastidic MEP (Methylerythritol phosphate) and cytosolic MVA 
(Mevalonic acid) pathway, which utilizes Dimethylallyl pyrophosphate (DMAPP) and Isopentenyl 
pyrophosphate (IPP) moieties, respectively, which serve as fundamental building blocks of all 
isoprenoid. The MEP pathway leads to the generation of mono, di, tetra and polyterpenes, while the 
MVA pathway results in the synthesis of sesquiterpenes, diterpenes and phytosterols  Pandey et al. 
(2021), Mahajan et al. (2020). Another important group of secondary metabolites is phenolics that are 
generally divided into five subgroups, flavonoids, phenolic acid, lignin, coumarins and tannins. 
Phenolics are synthesized through the phenylpropanoid pathway by utilizing phenylalanine as a key 
precursor molecule, which in turn is synthesized via the shikimic acid pathway by the reaction of 
erythrose-4-phosphate and phosphoenolpyruvate. Nitrogen-containing metabolites are also one of the 
potential groups of secondary metabolites including alkaloids, cyanogenic glycoside. In general, the 
various essential roles that secondary metabolites play in plant-environment interaction are associated 
with their occurrence in a variety of cellular and subcellular compartments. Agati et al. (2012) revealed 
that dihydroxy B-ring-substituted flavonoids localized to the chloroplasts, vacuoles and the nucleus, 
and may effectively scavenge ROS from these sites. In addition, Facchini (2001) reported that several 
enzymes that are involved in the biosynthesis pathway of different alkaloids localized in various 
subcellular compartments, such as enzymes of vindoline (a terpenoids indole alkaloid) biosynthesis in 
Catharanthus roseus, are localized to not less than five subcellular compartments. Similarly, the 
biosynthesis of quinolizidine alkaloids in a legume, namely lupin, occurs in the chloroplast of mesophyll 
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cells Facchini (2001). Much less numerous are the studies related to localization of secondary 
metabolites in subcellular compartments concerning the effects of abiotic stresses, particularly, UV-B 
and heavy metals. Zagoskina et al. (2003) observed that, exposure of the callus culture of Camellia 
sinensis to UV-B cause’s enhanced accumulation of phenolic acids in intercellular spaces and cell walls, 
and accumulation of lignin on the surface of the callus culture Zagoskina et al. (2003). Inhibition of 
photophosphorylation involved with noncyclic electron transport was observed in spinach plants due to 
mercury addition that also marked the interruption of the photophosphorylation rate by mercury. 

 
9. Impacts of mercury on enzymes. 

The enzymes glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase 
(GDH), and nitrate reductase (NR) are responsible for the biosynthesis of nitrogen-carrying amino acids 
Lam (1996). Nitrate reductase (NR, EC 1.6.6.1) is a complex enzyme characterized as a SH containing 
molybdoflavohemoprotein Hewitt and Nottan (1979). Nitrate is currently one of the most hazardous 
pollutants Awasthi and Rai (2005). Nitrate reductase is substrate inducible and involves de novo 
synthesis of the enzyme in response to nitrate   Zielke and Filner (1971), Somers et al. (1983). Nitrate 
reduction catalyzed by this enzyme is considered as the rate-limiting step in the overall process of nitrate 
assimilation pathway Srivastava (1980), Lin et al. (2020) it is important to understand the biochemical 
mechanism for nitrate uptake and assimilation including different pathway regulations in these plants. 
Nitrate uptake in plants is a protein-mediated process and assimilation of nitrate requires three enzyme-
dependent conversions. The process was shown in Fig. (31).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 31:  Illustrates the relation of the enzymes with nitrogen assimilation and pentose phosphate 

pathway. After: Lin et al. (2020). 
 

Driving pentose phosphate pathway can provide energy (NADPH) for nitrate assimilation and 
provide growth regulators and phenols needed by plants. Enzymes are essential catalysts for these 
processes, such as SDH that promotes the production of NADPH in the TCA process. Firstly nitrate 
(NO-

3) is reduced to nitrite (NO-
2) by the nitrate reductase (NR), next, the nitrite (NO-

2) is converted to 
ammonium (NH+

4) by nitrite reductase (NIR), and lastly, ammonium is reduced into amino acids with 
glutamine synthetase/glutamate synthase Farr et al. (1994) .The efficient utilization of absorbed nitrate 
in plants largely relies on the efficiency of reducing nitrate to ammonium and ammonium into amino 
acids Jiang et al. (2002). In the synthesis of nitrate reductase, light is the most important factor in 
regulating the supply of reductant in this process. Many studies reported that NADPH produced by the 
oxidative pentose phosphate pathway could act as an alternative to reducing equivalent for nitrate 
reduction in dark Huppe et al. (1994), Pattanayak and Chatterjee (1998). Electrons from NADPH must 
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be found to reduce Fd, which act as electron donor to nitrate reductase. Onset of nitrate (NO3¯) 
assimilation is in accordance with the Fd thioredoxin-dependent activation of glucose-6-phosphate 
dehydrogenase (G6PDH), the regulatory enzyme of the oxidative pentose phosphate pathway Huppe et 
al. (1994), Farr et al. (1994).  Oxidation of carbohydrate through the oxidative pentose phosphate 
pathway also gives reducing power for nitrite (NO2¯) reduction Bowsher et al. (1989), Bradford (1976). 
Pentose phosphate pathway can generate NADPH, which can be utilized for nitrate reduction in the 
cytosol. The conversion to ribulose - 5 - phosphate along with generation of NADPH by G6PDH is the 
first committed step of pentose phosphate pathway Sarkar and Shetty (2011). Pentose phosphate 
pathway acted on the shikimate and phenylpropanoid pathways, accumulated phenolic phytochemicals 
in plants by direct generation or regulatory of the pathway Sarkar and Shetty (2011). Lin et al. (2010). 
Proline synthesis during microbial interaction and proline analogue treatment drives the utilization for 
NADPH and provide NADP+, which is cofactor for G6PDH Sarkar and Shetty (2011 Sarkar et al. 
(2009) . Therefore, it may improve cellular NADP+ / NADPH ratio, which could stimulate G6PDH. 

 As a result, deregulation of the pentose phosphate pathway may stimulate anabolism of erythrose-
4-phosphate for biosynthesis of shikimate and phenylpropanoid metabolites Sarkar and Shetty (2011), 
Jiang and Zhang (2016)  Meanwhile, proline acts as a reducing equivalent, in place of NADH to 
synthesize ATP through oxidation phosphorylation in the mitochondria  Sarkar and Shetty (2011)., 
Rayapati and Stewart  (1991). The relation of the enzymes with nitrogen assimilation and the pentose 
phosphate pathway was shown in Fig. (32). According to the correlation between the biosynthesis of 
exogenous lypsy phenolic. Substances and the reaction of plant antioxidant enzymes, a model of action 
of phytophenolmetabolites is proposed Sarkar and Shetty (2011), Lin et al. (2010).  Sarkar et al. (2012). 
Through adopting more effective strategies, high nitrate concentration in water and soil also could 
produce similar reaction in plants and plants could tolerate stress. The early growth period is vital for 
any plant under nitrate stress, especially, from germination to development of first two leaves. During 
early growth stages, nitrate assimilation of plants combined with proline-associated pentose phosphate 
pathway could provide a better defensive strategy against high nitrate concentrations. We predicted that 
the research on three feed-plant species including alfalfa (Medicago sativa L.), tall fescue (Festuca 
arundinacea L.) and perennial ryegrass (Lolium perenne L.) could clarify the relation of nitrate 
assimilation and proline-associated pentose phosphate pathway and mechanism of these feed-plant 
species to defend high nitrate concentrations. The efficient utilization of absorbed nitrate in plants 
largely relies on the efficiency of nitrate reduction to ammonium and ammonium assimilation into 
amino acids, which are largely relevant to nitrate reductase activity. Photochemical efficiency has been 
chosen as light is important in the synthesis of nitrate reductase. Oxidation of carbohydrate through the 
oxidative pentose phosphate pathway gives reducing power and G6DPH is the regulatory enzyme in 
this procedure, so the G6DPH is a key factor in nitrite (NO2¯) reduction. In view, that proline can 
scavenge reactive oxygen species as a reductant, proline-linked pentose phosphate pathway stimulates 
the generation of total soluble phenolics that plays an important role in countering oxidative stress, the 
proline content, and total soluble phenolics content was measured in the study. SDH relate to TCA cycle 
that can produce NADH as reductant. The activity of key antioxidant enzymes such as SOD, CAT, 
GPX, can be stimulated by the proline under nitrate treatments.  

In the overall strategy for checking the efficiency that plants removing the nitrate in soil and ground 
water nitrate removal, we have measured total soluble phenolics content, nitrate reductase activity, 
G6PDH, proline content, SDH, activity of critical antioxidant enzymes and photochemical efficiency, 
then explored the relation of nitrate assimilation and proline associated pentose phosphate pathway and 
mechanism of these feed-plant species defending high nitrate concentrations. 

Supply of inorganic mercury inhibited substantially in vivo as well as in vitro NR activity and 
endogenous nitrate pool in excised bean leaf segments. Though in vitro specific activity of the enzyme 
remains unchanged, it has been suggested that mercury has an inhibitory role on NR activity in bean 
leaf segments Vyas and Puranik, (1993). Application of mercury to excised bean leaf segments 
increased glutamate dehydrogenase (NADH-GDH, EC 1.4.1.3) activity substantially. However, 
specific activity of the enzyme decreased at lower concentration of mercury and increased to a lesser 
extent at higher concentration of mercury Fig. (32).  
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Fig. 32: Illustrates mercury and protein thiols: Stimulation of Mitochondrial lF1FO– ATPase and 
inhibition of respiration. After: Salvatore Nesci et al. (2016)  

 
Salvatore Nesci et al. (2016) stated that in spite of the known widespread toxicity of mercury, its 

impact on mitochondrial is a still poorly explored topic. Even if many studies have dealt with of 
mitochondrial respiration, as far as we are aware Hg2+ effects on individual complexes are not so clear. 
In the present study, changes in swine heart mitochondrial respiration and F1FO-ATPase (F-ATPase) 
activity promoted by micromolar Hg2+ concentrations were investigated. Hg2+ was found to inhibit the 
respiration of NADH-energized mitochondria, whereas, it was ineffective when the substrate was. 
Interestingly, the same micromolar Hg2+ doses that inhibited the NADH–O2 activity stimulated the F-
ATPase, most likely by interacting with adjacent thiol residues. 

Tollefsen et al. (2017) reported inorganic mercury (IHg) is highly toxic to organisms including 
crustaceans and displays multiple toxic modes of action (MoA). The main aim of this investigation was 
to assess the acute and sublethal toxicity mediated by mercury chloride (HgCl2) in the marine copepod 
Calanus finmarchicus. A combination of short-term static studies to determine acute toxicity and a 
transcriptional investigation to characterize the sublethal MoA of HgCl2 were conducted with an in-
house continuous culture of C. finmarchicus. Transcriptional changes were determined by a custom 6.6 
k C. finmarchicus Agilent oligonucleotide microarray and quantitative RT-PCR analysis. Data 
demonstrate that HgCl2 produced a concentration and time-dependent reduction in survival (NOEC48 
h= 6.9 μg/L [Hg2+] and LC50 of 279, 73, 48, and 34 µg/L [Hg2+] after 24, 48, 72, and 96 h, respectively) 
and that exposure to sublethal concentrations of HgCl2 (5 μg/L [Hg2+ ]) induced differential expression 
of 98 features (probes) on the microarray. Gene ontology (GO) and toxicological pathway analyses 
suggested that the main MOA were (A) uncoupling of mitochondrial oxidative phosphorylation 
(OXPHOS) and ATP production, (B) oxidative stress and macromolecular damage, (C) inactivation of 
cellular enzymes, (D) induction of cellular apoptosis and auto phagocytosis, (E) over-excitation of 
glutamate receptors (neurotoxicity), (F) disruption of calcium homeostasis and signaling, and (G) 
modulation of nuclear receptor activity involved in vitamin D receptor signaling. Quantitative RT-PCR 
analysis verified that oligoarray performed reliably in terms of specificity and response, thus 
demonstrating that Hg2+ exerts multiple potential MoA in C. finmarchicus Fig. (33). Accordingly, 
Hg2+ dose-dependently decreased protein thiols and all the elicited effects on mitochondrial complexes 
were reversed by the thiol reducing agent. These findings clearly indicate that Hg2+ interacts with Cys 
residues of these complexes and differently modulate their functionality by modifying the redox state. 
The results, which cast light on some implications of metal-thiol interactions up to now not fully 
explored, may contribute to clarify the molecular mechanisms of mercury toxicity to mitochondria. 
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Fig. 33: Potential molecular modes of Action (MoA) of divalent mercury (Hg2+) in Calanus 
finmarchicus. The results depict hypothetical MoA generated on basis of transcriptional changes 
observed in Calanus finmarchicus after 48 h exposure to 5 µg/L Hg2+ and review of known MoA of Hg 
in other eukaryotes. After: Tollefsen et al. (2017) 

 
Eventually, pronounced increase in mercury activity indicated the possible role of the enzyme under 

mercury stress Gupta and Gadre, (2005). Mercury supply increased glutamate synthase [NAD (P) H-
GOGAT, EC 1.4.1.14]   Basak et al., (2001) activity. It has been suggested that mercury activates the 
NADH-GDH enzyme by binding to thiol groups of protein. In the presence of mercury (HgCl2) 
demonstrates Increase in NR activity by glutathione (GSH) involves its thiol groups   Vyas and Puranik, 
(1993). GDH is found in all higher plants examined and is often present at high levels in senescing and 
root tissues  Loyolevargas and Jiminez, (1984). One of these alternative pathways is the reaction 
catalyzed by the mitochondrial NAD (H)-dependent glutamic acid dehydrogenase (GDH; EC 1.4.1.2), 
which possesses the capacity to assimilate ammonium in vitro utilizing the organic molecule 2-
oxoglutarate to synthesize glutamic acid. This observation led a number of authors to propose that GDH 
could operate in the direction of ammonium assimilation   Yamaya and Oaks (1987); Oaks (1995); 
Melo-Oliveira et al. (1996), although all the 15N labeling experiments performed in vivo on a variety 
of plants demonstrated that GDH operates in the direction of glutamic acid deamination Robinson et al. 
(1992); Aubert et al. (2001). It was concluded that GDH is involved in the supply of 2-oxoglutarate 
rather than in the assimilation of ammonium when carbon becomes limiting (Robinson et al. (1992); 
Aubert et al. (2001); Miflin and Habash (2002). The physiological role of GDH in the whole-plant 
context remains speculative given the recent finding that the majority of the GDH protein is located in 
the mitochondria of companion cells   Dubois et al. (2003). GDH was increased in the mitochondria 
and appeared in the cytosol of companion cells. Taken together, our results suggest that the enzyme 
plays a dual role in companion cells, either in the mitochondria when mineral nitrogen availability is 
low or in the cytosol when ammonium concentration increases above a certain threshold   Tercé-
Laforgue et al. (2004). Inhibition of NADH-GDH by arsenate in excised bean leaf segment   Jot and 
Gadre, (1995). Ammonia in higher plants is believed to be assimilated primarily by the glutamine 
synthetase–glutamate pathway Miflin and Lea (1980). The GDH enzyme could operate primarily in the 
assimilation or reassimilation of ammonium and play a complementary role to the GOGAT cycle 
Srivastava and Singh (1987). Two isozymic forms of GOGAT (i.e., Fd-GOGAT and NAD (P) H-
GOGAT) are of common occurrence in the tissues of higher plants and are involved in the assimilation 
of primary ammonia as well as of photo-respiratory ammonia Miflin and Lea (1980). The GS and 
GOGAT cyclic mechanism is largely active when exogenous nitrogen concentrations are limiting, due 
to the high affinity of GS for ammonium. This pathway utilizes approximately 15% of the cells’ 
adenosine triphosphate (ATP) requirement  Reitzer (2003) for the production of glutamine and its 
activity is, therefore, strictly regulated at both transcriptional and posttranslational levels in order to 
prevent energy wastage. Thus, the enzyme seems to be playing a pivotal role in linking the enzyme 
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activity in plants, but the effect seems to be dependent on the isoform and the plant species analyzed 
Puranik and Srivastava (1994). 

  
10. Defense mechanisms against negative effects of mercury  

Plants have developed defense mechanisms that ensure tolerance characteristics to cope with the 
negative effect of toxic metals or metalloids. These mechanisms include chelation, 
compartmentalization, biotransformation, and cellular repair Salt et al. (1998).  Ajsuvakova et al. (2020) 
stated that   present study addresses existing data on the affinity and conjugation of sulfhydryl (thiol; -
SH) groups of low- and high-molecular-weight biological ligands with mercury (Hg) Fig. (34).  

 
 
 
 
 
 

  
       
 
 
 
 
 
 
 
 

Fig. 34: Illustrates sulfhydryl groups as targets of mercury toxicity. After: Ajsuvakova et al. (2020) 
 

The consequences of these interactions with special emphasis on pathways of Hg toxicity are 
highlighted. Cysteine (Cys) is considered the primary target of Hg, and link its sensitivity with thiol 
groups and cellular damage. In vivo, Hg complexes play a key role in Hg metabolism. Due to the 
increased affinity of Hg to SH group in Cys residues, glutathione (GSH) is reactive. The geometry of 
Hg (II) glutathione’s is less understood than that with Cys. Both Cys and GSH Hg-conjugates are 
important in Hg transport. The binding of Hg to Cys mediates multiple toxic effects of Hg, especially 
inhibitory effects on enzymes and other proteins that contain free Cys residues. In blood plasma, 
albumin is the main Hg-binding (Hg2+, CH3Hg+, C2H5Hg+, C6H5Hg+) protein. At the Cys34 residue, 
Hg2+ binds to albumin, whereas other metals likely are bound at the N-terminal site and multi-metal 
binding sites. In addition to albumin, Hg binds to multiple Cys-containing enzymes (including 
manganese-superoxide dismutase (Mn-SOD), arginase I, sorbitol dehydrogenase, and δ-
aminolevulinate dehydratase, etc.) involved in multiple processes.  The affinity of Hg for thiol groups 
may also underlie the pathways of Hg toxicity; in particular, Hg-SH may contribute to apoptosis 
modulation by interfering with Akt/CREB, Keap1/Nrf2, NF-κB, and mitochondrial pathways. The 
toxicity of inorganic Hg forms (e.g., HgCl2) is at least in part explained by the element’s great affinity 
for biomolecules containing SH groups   Phytochelatins (PCs) are cysteine-rich polypeptides of general 
structure [y(-Glu-Cys)2-11-Gly], which play an essential role in the detoxification of some heavy metals 
(cadmium (Cd), copper (Cu), zinc (Zn), mercury (Hg), and lead (Pb) and metalloids (arsenic) in fungi, 
plants, nematodes, and other organisms (Grill et al. (1987); Clemens et al. (1999); Cobbett and 
Goldsbrough (2002); Vivares et al. (2005). The inhibitory effect of heavy metals may be due to the (a) 
Blocking of the supply of reducing equivalents of nitrate reduction, (b) Formation of mercurial 
derivatives of –SH of NR, and  

(c) Synthesis of PCs Subhadra and Sharma, (2007).  
 

The strength of mercury (II) binding to GSH and PC follows the given order: Y Glu-Cys-Gly(y Glu-
Cys)2 Gly(y Glu-Cys)3 Gly(y Glu- Cys)4 Gly Patra and Sharma (2000). The transport of both PCs and 
Cd as its peptide complex, from the cytoplasm into the vacuole Saltz and Rauser (1995). In a second 
detoxification step, the PC–heavy metal complex is transported to the vacuole. An (ATP-binding 
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cassette)- ABC transporter, Hmt1, accepting low-molecular-weight PC–heavy metal complexes as 
substrate, has been identified in Schizosaccharomyces pombe  Ortiz et al. (1995), and phytochelatins 
(PCn) an MgATP-dependent transport activity for PC3 and PC3 ± Cd complexes has also been 
demonstrated in plants  Salt and Rauser, (1995). The high stability of the PC-Hg multi complexes (mPC-
nHg) seems to be the main reason for the lack of previous Hg-PC characterization studies. A modified 
method to detect and quantify unbound PC of Hg in plant extracts via high-performance liquid 
chromatography coupled to electrospray tandem mass spectrometry and inductively coupled plasma 
mass spectrometry in parallel. Iglesia-Turin (2006) separated PC from Hg by adding the chelating agent 
sodium 2, 3-dimercaptopropanesulfonate monohydrate. PC2 was observed in plant samples. The best 
activator tested was Cd followed by Ag, Bi, Pb, Zn, Cu, Hg, and Au cations; these metals also induce 
PC biosynthesis in vivo in plant cell cultures Cobbett (2000). Mercury inactivates the GSH enzyme by 
binding to the thiol (–SH) groups of protein. In addition, it also provides evidence that GSH serve as a 
precursor for PC, and this was confirmed by using Buthionine sulphoximine (BSO), an inhibitor of γ-
glutamyl- cystein synthethase and a key enzyme of synthesis pathway (Jot and Subhadra 2010). Studies 
employing the GSH biosynthetic inhibitor, buthionine sulfoximine, suggested an increase in the level 
of PCs and maintenance of GSH homeostasis in transgenic plants during exposure to excess zinc as the 
possible mechanism behind this tolerance Singla-Pareek et al. (2006). PC plays a key role in protecting 
macromolecules from damage by free radicals by trapping them in an aqueous phase Freedman et al. 
(1989). When the non-PC-based mechanism of detoxification gets exhausted and free metal ions 
become available to induce PC synthesis Schat et al., (2002). Exposure to excess Cu is capable of stress 
induction, in which the role of oxidative stress and reactive oxygen species (ROS) production may be 
involved (Stadtman and Oliver (1991), Waldermar et al. (1994). On the other hand, under Cu toxicity, 
excess copper is an efficient generator of ROS in Fenton-type reactions, leading to disturbances in 
metabolic pathways and macromolecule damages Hegedus et al. (2001). The oxidative stress is bound 
up with the increased metal accumulation in plants and decreased efficiency of the ascorbate–GSH 
cycle under the metal stress Wang et al. (2009). Exposure to toxic metals also induces plants to 
accumulate high amounts of proline Štefl and Vaš kov (1982). Increased accumulation of proline leads 
to the increase of glutamate kinase activity and creates a possibility for an increase in glutamic acid 
content due to the synthesis of GSH and PCs in plant cells Pavl kov et al., (2007). An increase of free 
proline inhibits biosynthesis of its excessive amounts in plants under heavy metal excess, and these 
results in the preferred utilization of glutamate for the metabolic route leading to PC synthesis Pavl kov 
et al. (2008).  

 
11. Role of selenium for mercury detoxification in soil–plant systems  

Pařízek and Oštádalová (1967) first noted the protective effect of Se against Hg toxicity over 50 
years ago in rats; most of the early studies were in mammals. Thi et al. (2021) reported that feasible 
countermeasures to mitigate mercury (Hg) accumulation and its deleterious effects on crops are urgently 
needed worldwide. Selenium (Se) fertilizer application is a cost-effective strategy to reduce mercury 
concentrations, promote agro- environmental sustainability and food safety, and decrease the public 
health risk posed by Hg-contaminated soils and its accumulation in food crops. This holistic review 
focuses on the processes and detoxification mechanisms of Hg in whole soil–plant systems after Se 
application. The reduction of Hg bioavailability in soil, the formation of inert HgSe or/and HgSe 
containing proteinaceous complexes in the rhizosphere and/or roots, and the reduction of plant root 
uptake and translocation of Hg in plant after Se application are systemically discussed. In addition, the 
positive responses in plant physiological and biochemical processes to Se application under Hg stress 
are presented to show the possible mechanisms for protecting the plant. However, application of high 
levels Se showed synergistic toxic effect with Hg and inhibited plant growth. The effectiveness of Se 
application methods, rates, and species on Hg detoxification is compared, this provides a good approach 
for plant production in Hg-contaminated areas to meet food security demands and reduce the public 
health risk Fig. (35). 
 



Middle East J. Appl. Sci., 13(3): 319-402, 2023 
EISSN: 2706 -7947    ISSN: 2077- 4613                                        DOI: 10.36632/mejas/2023.13.3.26 

360 

          
 Fig. 35: Illustrates reducing Hg accumulation and toxicity within plant. After: Thi et al. (2021) 

 
Several  studies  demonstrated that Se application could reduce the toxicity of many heavy metals, 

including Hg, Cd, and Pb, through  the reduction of heavy metal accumulation   by plants   Mukherjee 
and Sharma (1988); Shanker et al. (1996a); Thangavel et al. (1999). The protective effect involved the 
binding of Se to Hg, thereby, acting as a “tonic” that sequestered Hg in a form that no longer harmed 
important biomolecules. To understand how Se protects against Hg toxicity, it is necessary to 
understand the interaction processes between Hg and Se in the soil. 

Speciation of Hg in soil , most common forms of Hg in soils include elemental mercury  (Hg0 
),mercuric mercury (Hg2+), mercuric sulfide (HgS), and methyl Hg (CH3Hg+ )  Clarkson and Magos 
(2006); Yang et al. (2008). Hg2+ is the dominant and highly soluble Hg species under the highly 
oxidizing conditions of unflooded soils Fernandez-Martinez et al. (2015). Mercury is reduced in the 
soil environment, as follows: Hg0 ⇆ 2Hg 2+ ⇆ Hg2+ ⇆ (CH3) Hg ⇆ (CH3)2Hg  Shanker et al. (1996b), 
McNear et al. (2012). Bacterial merB (organ mercurial lyase) facilitates the protonolysis of organic-Hg 
to Hg2+, whereas bacterial merA (mercuric ion reductase) transforms Hg2+ to Hg0 Ruiz and Daniell 
(2009). Luis et al. (2011) reported that   in bacteria, mercury resistance mer genes are generally 
organized in operons located on plasmids and transposons Yurieva et al. (1997), Silver and Phung    
(2005). The narrow-spectrum mercury resistance mer RTPADE operon confers resistance to inorganic 
mercury and the broad-spectrum mercury resistance mer RTPAGBDE operon confers resistance to 
inorganic and organic mercury species Fig. (36). 

 
Fig. 36. Illustrates bacterial mechanisms for organic and inorganic mercury detoxification and regulation of the 
mer genes. MerA, mercuric reductase; MerB, organomercurial lyase; MerP, periplasmic mercury-binding protein; 
MerT, membrane mercury transport protein; MerG, periplasmic protein involved in cell permeability to 
phenylmercury; MerE membrane protein that probably acts as a broad mercury transporter; MerR, transcriptional 
activator or repressor of the transcription of mer genes (black pentagon); MerD, co-represor of transcriptional 
activation; Pt, promoter of merT and merB2 genes. After: Luis et al. (2011) 
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The bacterial mechanism of mercury resistance includes the uptake and transport of Hg2+ by the 
periplasmic protein MerP and the inner membrane protein MerT. MerE is a membrane protein that 
probably acts as a broad mercury transporter mediating the transport of both methyl mercury and Hg2+ 
Kiyono et al. (2009). The cytosolic mercuric reductase MerA reduces Hg2+ to less toxic elemental 
mercury Barkay et al. (2003).The gene merB encodes an organomercurial lyase that catalyses the 
protonolytic cleavage of carbon-mercury bonds  Moore et al. (1990), Misra   (1992) . The mer G gene 
product is involved in the reduction of cellular permeability to organomercurial compounds Kiyono and 
Pan-Hou   (1999). MerD probably acts as a distal co-repressor of transcriptional activation Barkay etal 
(2003), Champier etal (2004). MerR is the activator or repressor of the transcription of mer genes in 
presence or absence of mercury ions, respectively Ni’Bhriain etal (1983), Permina etal (2006). At 
mercury stress condition the transcriptional activator MerR triggers the expression of the structural mer 
genes Brown etal (2003). Sequencing of the native IncP-1b plasmid pTP6 that was originally isolated 
from mercury-polluted river sediment in a triparental mating showed that all these genes are part of 
transposon Tn50580 Smalla etal (2006). The heavy metal-resistant model bacterium Cupriavidus 
metallidurans strain CH34 harbors two large plasmids, pMOL28 and pMOL30, which carry genetic 
determinants for heavy metal resistance Mergeay etal (2003). Each plasmid contains a mer RTPADE 
operon that confers a narrow-spectrum mercury resistance. To improve inorganic and organic mercury 
resistance of strain C. metallidurans CH34, the IncP-1b plasmid pTP6 was introduced into strain CH34 
in this study. The trans conjugant strain Cupriavidus metallidurans MSR33 showed a broad-spectrum 
mercury resistance and was able stop efficiently remove mercury from polluted water. 

Mercuric chloride and mercuric hydroxide are likely to be reduced to Hg0 as follows: Hg2+ + Cl2 
and Hg2+ + [OH] 2 into Hg0) Shanker et al. (1996b), McNear et al. (2012). The speciation of Se in soil 
Selenium exists in different forms in the soil, including selenate (SeO4 2−), selenite (SeO3 2−), elemental 
Se (Se0), and selenide (Se2−) Zhang et al. (2014). Se0 and Se2− have poor mobility Tolu et al. (2011), 
SeO3 2− and SeO4 2− are both highly available for plant uptake, whereas SeO3 2− is less available than 
SeO4 2− due to its strong adsorption onto soil particles   Nakamaru and Altansuvd (2014). Long periods 
of overlying water stimulate lower pH values and anoxic conditions in flooded paddy soil Rothenberg 
and Feng (2 012). Under anoxic conditions, SeO4 2− can be reduced to SeO3 2− and then rapidly 
transformed into SeO and even to Se2− or organic Se by sulfate-reducing bacteria (SRB) as follows: 
SeO4 2

− → SeO3 2
− → SeO → Se2− (Yang et al. 2008; Li et al. (2014a). 

 
   11.1.  Reduction of Hg availability on the interface of soil–plant root after Se application  

Besides decreases of Hg bioavailability in soil after Se application, decline of Hg availability on the 
interface of soil–plant root also was identified by directly tracking inert HgSe or/and HgSe-containing 
proteinaceous complexes in the roots. These complexes reduced Hg accumulation in plants by inhibiting 
Hg uptake and transport.   Hasanuzzaman et al. (2011) reported that selenium (Se) supplementation 
could restrict metal uptake by roots and translocation to shoots, which is one of the vital stress tolerance 
mechanisms. Selenium can also enhance cellular functions like membrane stability, mineral nutrition 
homeostasis, antioxidant response, photosynthesis, and thus improve plant growth and development 
under metal/metalloid stress. Metal/metalloid toxicity decreases crop productivity and uptake of 
metal/metalloid through food chain causes health hazards. Selenium has been recognized as an element 
essential for the functioning of the human physiology and is a beneficial element for plants. Low 
concentrations of Se can mitigate metal/metalloid toxicity in plants and improve tolerance in various 
ways Fig. (37).  
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Fig. 37:  Illustrates ROS generation under heavy metal stress and protective roles of selenium.  

                                                                           After: Hasanuzzaman et al. (2011)   
 

Selenium stimulates the biosynthesis of hormones for remodeling the root architecture that decreases 
metal uptake. Growth enhancing function of Se has been reported in a number of studies, which is the 
outcome of improvement of various physiological features. Photosynthesis has been improved by Se 
supplementation under metal/metalloid stress due to the prevention of pigment destruction, sustained 
enzymatic activity, improved stomatal function, and photosystem activity. By modulating the 
antioxidant defense system Se mitigates oxidative stress. Selenium improves the yield and quality of 
plants. However, excessive concentration of Se exerts toxic effects on plants.  

In addition, the restriction of Hg access into the root of plants, due to the promotion of the formation 
of Fe plaques outside plant roots after Se application, may also be important for reducing the 
accumulation of Hg in roots and shoots. Reduction of Hg availability by formation of insoluble HgSe 
precipitate in root formation of insoluble HgSe precipitate in root formation of inert insoluble HgSe 
precipitate. The formation of HgSe insoluble complexes within plants cannot be completely ruled out, 
although HgSe insoluble precipitate likely dominates in the soil. Hypothetical pathways for Hg uptake 
in plants involve cellular entry through ionic channels and competition with the closest chemical 
relatives of essential metals for Hg2+ transporters  Blazka and Shaikh (1992); Clemens (2006). Hg2+ and 
CH3Hg+ are the principal chemical forms of Hg taken up by roots from the soil  Clemens (2013), and 
Hg2+ accumulates in roots  Meng et al. (2014); Zhao et al. (2014). Selenium is primarily taken up from 
the soil by plants as SeO4 2− or SeO3 2−  Zhu et al. (2009). After absorption by the plant root, SeO4 2− is 
reduced to SeO3 2−, reacts with glutathione (GSH), and is reduced to Se2− in the rhizosphere Zhu et al. 
(2009); Han et al. (2015). The combination of Se2− with Hg2+ forms the HgSe complexes in roots, as 
follows: Hg0 + Se0 → HgSe and/or Hg2+ + Se2− → HgSe, which may drastically increase the 
accumulation of Hg in roots Zhang et al. (2012), Li et al. (2015) Fig. (38). Under flooded soil 
conditions, over 90% of Hg was restricted to rice roots after SeO3 2

− application of 0.01−0.5 μg/ mL in 
Hg-contaminated soil, and 27.8% of Hg was present as the HgSe complex  Li et al. (2015). Zhao et al. 
(2013) analyzed the speciation of Hg (with Hg L3-edge XANES) in garlic (Allium sativum L.) tissues 
under hydroponic solution conditions, and they concluded that the direct binding of Se and Hg as HgSe 
only occurs in roots (CH3Hg+ with selenol-containing biomolecules. Compared with thiols, binding 
between Hg and selenols was stronger. Therefore, Hg2+ and CH3Hg+ complexes with selenols were 
more stable than their thiol analogs, thereby showing Hg–Se antagonism, resulting in the effective 
reduction of Hg2+ and CH3Hg+ in plant with the addition of Se into the soil  Wang et al. (2014); Zhang 
et al. (2012). Size exclusion chromatography and proteolysis revealed that water-soluble Hg was 
localized in the roots in association with Se in the form of a high molecular weight entity, which was 
difficult to be translocated and metabolized. Yathavakilla and Caruso (2007) found that water-soluble 
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Hg associated with Se and formed a high molecular weight (>600 kDa) proteinaceous complex in the 
roots of soybean (Glycine max L.) grown in soil containing both Hg and Se 

 
 
Fig. 38: Illustrates flow diagram representing the transporters involved in the uptake, translocation, and 
accumulation of different selenium species through xylem and phloem to the grain. The main 
transporters involved in inorganic Se uptake by plants (SULTR1;1, SULTR1;2 for selenate, NIP2;1, 
PT2 and PT8 for selenite, AA Tr. For amino acids). Organic Se forms are transported into the xylem 
via amino acid permeases (AA Tr.) and delivered to the shoots. Selenate is the major Se species present 
in the xylem and loaded into the xylem by SULTR2;1. Organic-Se compounds are transported into the 
seed via the phloem, while selenate is transported via both xylem and phloem. The translocation of 
SeMet to the seeds is enhanced by overexpression of the NRT1;1B transporter. After: Zhou et al. (2020) 

 
Mounicou et al. (2006) found a high molecular weight (>70 kDa) compound containing Se and Hg 

in the root extract of Indian mustard (Brassica juncea L. Czern.) grown in hydroponics. This compound 
was associated with either a polysaccharide or a protein. Afton and Caruso (2009) identified a possible 
Se–Hg association in a plant-root protein in green onion (Allium fistulosum L.) grown in perlite media 
by applying size exclusion and capillary-reversed phase chromatography coupled with inductively 
coupled plasma mass spectrometry (ICPMS). McNear et al. (2012) used capillary-reversed phase 
chromatography coupled with ICPMS, μ-XANES, and micro-synchrotron X-ray fluorescence and 
found that Hg may bind to –SH groups of the cell wall or plasma membrane proteins in green onion 
roots and may react with reduced Se2− to form   HgSe–BSS complex. However, Se2− reacted with an 
abundant amount of free Hg2+ to form a solid HgSe precipitate outside the root in the perlite media. 
HgSe–BSS comprised an Hg2+ and Se2− core to which GSH was appended via a Se–S or Hg–S bond 
McNear et al. (2012). Compared with Hg-containing proteins with small molecular weights, the 
formation of Hg-Se-containing proteins with high molecular weights can more effectively inhibit the 
translocation of CH3Hg+ to the aboveground parts of rice plants. Wang et al. (2016a) also proposed that 
a CH3Hg+ –Se interaction could exist within rice roots through the formation of CH3Hg+ –Se complexes, 
when CH3Hg+ distribution in roots was enhanced under the SeO3

-2 and SeO4
-2 fertilization. They 

concluded that CH3Hg+ –Se antagonism within plants was likely sufficient to induce such a reduction 
Wang et al. (2016a). Zhao et al. (2014) reported that rice cultured in Hg- and/or Se-contaminated fields 
is an important food source of human Hg/Se intake. There are elevated Hg and Se levels in the soil of 
the Wanshan District, Guizhou Province. Here we attempted to explore how a Hg antagonist, Se, 
modulates the absorption and accumulation of inorganic mercury (IHg) and methyl mercury (MeHg) in 
rice.  They stated inorganic mercury (IHg) mainly accumulated in the rice roots, but some also 
accumulated in the rice grain. In comparison to IHg, MeHg can be concentrated in the rice grain, and 
the proportion of MeHg in the rice grain may account for above 40% of the total Hg. Selenium can 
protect against Hg phytotoxicity in rice and inhibit IHg accumulation in rice tissues, but was not 
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remarkable for MeHg at a low dosage exposure level in this study. These discrepancies imply 
mechanistic differences between IHg and MeHg absorption and accumulation in rice. They reported 
that Se plays an important role in modulating Hg uptake, transportation and accumulation in rice and    
considering being a naturally existing element that effectively reduces Hg accumulation in rice, which 
may have significant implications for food safety 

            
Zhao et al. (2014) stated that SRXRF technique is a powerful tool for non-destructive elemental 

analysis with exceptional sensitivity Gao et al. (2008).To  reveal the influence of Se treatment on Hg 
micro-zone distribution in rice grown up in Hg-contaminated soil with or without Se treatment, 2D 
elemental distribution of the roots, leaves and rice grains were imaged using micro-SRXRF. The 
normalized X-ray fluorescence intensities are scaled from blue (minimum) to red (maximum). These 
images visually demonstrate the distributions and accumulations of Hg and Se in rice. The results are 
shown in Fig. (39-a1) shows that Hg was mainly localized in the epidermis and the pericycle of the rice 
root. 
 

 
Fig. 39: The distribution of Hg and Se in different tissues of the paddy soil cultured rice measured by 
m-SRXRF. (a) The cross section of the root tip from rice under Hg exposure (a1, Hg XRF image); (b) 
the cross section of the root tip from rice under Hg and Se exposure (b1, Hg XRF image; b2, Se XRF 
image); (c) the leaf from Hg exposed rice; (d) the leaf from Hg and Se co-exposed rice; (e) the rice grain 
from Hg exposed rice; (f) the rice grain from Hg and Se co-exposed rice. After: Zhao et al. (2014) 

 
Due to the high affinity of Hg for the sulfhydryl groups in the surface of the root, Cheeseman et al. 

(1988), Carrasco-Gil et al. (2011) Hg can be enriched to quite a high concentration in the epidermis of 
the rice roots. Moreover, Hg can also be accumulated in the vessel of the roots, implying that Hg is able 
to penetrate the root surface into the vascular cylinder and then transport upwards. For Se/Hg co-
exposed rice, one can see that the distribution of Se correlates well with that of Hg in the rice roots Fig. 
(39-b1, b2), and both of them principally concentrate in the epidermis and pericycle of the rice root. 
Comparing Fig. 39-b1 with a1, a substantial decrease in Hg accumulation in the epidermis and stele of 
the rice root can be found. This is consistent with the ICP-MS results shown in Fig. (39). The correlation 
between Hg and Se distribution in rice roots, combined with the strong affinity of Se to Hg, suggests 
that Hg and Se may form an Hg–Se complex in the rice root. This may explain how Se addition could 
inhibit Hg uptake and translocation in rice. Shanker et al. have reported the existence of an Hg–Se 
compound in the rhizosphere of radish, which can block the absorption of Hg through the root Shanker 
et al. (1996). Caruso et al. (2011) have confirmed the existence of an Hg–Se compound in the roots of 
Brassica juncea and soybean. Mounicou et al. (2006), Yathavakilla   and   Caruso (2007) Fig. (39)  c1, 
d1 and d2 show the effect of Se on Hg distribution in rice leaves. It can be seen that Hg is dispersed 
over the leaves, and some is specially located in the leaf vein Fig. (39 - c1). Furthermore, the Se 
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distribution pattern correlates well with that of Hg in the rice leaves Fig. (39-d2). The content of Hg in 
the leaves collected from the Hg/Se co-exposed rice plant Fig. (39-d1)   is much less than that of the Hg 
exposed group Fig. (39-c1), indicating the inhibitive effect of Se on Hg transportation from the roots to 
the leaves through the vascular cylinder. The effects of Se on the distribution and accumulation of Hg 
in the rice grain are illustrated in Fig. (39- e1, f1 and f2). From Fig. (39- e1), it is shown that Hg is 
principally concentrated on the surface of the rice grain (the aleurone layer), especially along the growth 
site of the embryo. It is notable that a considerable amount of Hg can accumulate in the embryo part 
Fig. (39-e1), while less Hg is located in the rice endosperm. Fig. (39-f1 and f2) show the distributions 
of Hg and Se in rice grain collected from Hg/Se co-exposed rice. Except for the location in the aleurone 
layer like Hg, a considerable proportion of Se can penetrate into the endosperm of the rice grain. 
Moreover, Se distribution in the embryo is more extensive than that of Hg.  

A similar Se distribution pattern was previously reported, Williams et al. (2009) in which much Se 
accumulation in the outer regions of the rice grain was observed, and an amount of Se was concentrated 
in the chalazal zone that shares a close proximity to the ocular vascular trace. Comparing Fig. (39-f1) 
with Fig. (39-e1), the concentration of Hg in the embryo part of the rice grain from Se and Hg co-
exposed rice is much lower than that of the rice exposed to Hg alone. This indicates that Se can interfere 
with Hg accumulation in the rice grain, and suggests that Se treatment may mitigate Hg toxicity towards 
the growth and development of rice seeds, as the embryo is the budding point of the rice seed. In 
addition, the essential elements (Fe, Cu, Zn, K, Ca etc.) are mainly concentrated in the embryo of the 
rice grain. Suggesting that the necessary nutrient elements, rather than the toxic elements, can be 
selectively accumulated in the rice grain. Furthermore, it implies the existence of a preventive 
mechanism for toxic element accumulation in rice. In conclusion, Se treatment can inhibit Hg uptake 
and transportation from the rice root to the aerial part, which finally results in lower Hg accumulation 
in the rice grain, especially, in the aleurone layer and embryo. The effect of Se on MeHg is less 
remarkable than IHg, along with the discrepancy of IHg and MeHg accumulation in different rice tissues 
indicating mechanistic differences in the absorption and transportation of IHg and MeHg in rice. The 
present study may provide valuable information for sequestering Hg and novel insights for addressing 
food safety in Hg/Se polluted environments. More researches on the positions for the methylation of 
IHg in vitro or in vivo and the phyto-biological behaviors of IHg and MeHg in rice will be needed to 
further understand the ecological toxicology of this toxic element.                

 
12. Molecular response to Hg 

Genome-wide transcriptome analysis has become a powerful tool to identify a set of genes that are 
specifically regulated by heavy metals Becher et al. (2004); Weber et al. (2004); Herbette et al. (2006); 
Van de Mortel et al. 2008; Gorfer et al. 2009; Yamaguchi et al. (2010); Ding et al. (2011). Suppression 
subtractive hybridization (SSH) is a widely used method for separating DNA molecules that distinguish 
two closely related DNA samples. Two of the main SSH applications are cDNA subtraction and 
genomic DNA subtraction. In fact, SSH is one of the most powerful and popular methods for 
generatingsubtracted cDNA or genomic DNA libraries. The SSH method is based on a suppression 
PCR effect and combines normalization and subtraction in a single procedure. The normalization step 
equalizes the abundance of DNA fragments within the target population, and the subtraction step 
excludes sequences that are common to the populations being compared. This dramatically increases 
the probability of obtaining low-abundance differentially expressed cDNA or genomic DNA fragments, 
and simplifies analysis of the subtracted library. In our hands, the SSH technique has enriched over 
1000-fold for rare sequences in a single round of subtractive hybridization. Using suppression 
subtractive hybridization (SSH) Fig (40), six genes (PsSAMT, PsI20H, PsNDA, PsAPSR, PsPOD, 
PsHMIP6B) were identified and strongly regulated by Hg in roots of pea (Pisum sativum) Sa¨venstrand 
and Strid (2004). Sahebi et al. (2015) reported that Suppression subtractive hybridization (SSH) is an 
effective method to identify different genes with different expression levels involved in a variety of 
biological processes. This method has often been used to study molecular mechanisms of plants in 
complex relationships with different pathogens and a variety of biotic stresses. 

Compared to other techniques used in gene expression profiling, SSH needs relatively smaller 
amounts of the initial materials, with lower costs, and fewer false positives present within the results. 
Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and 
polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to 
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be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) 
field. Because of progress within fields related to molecular chemistry and biology as well as specialized 
engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read 
number of generated sequences per run. Currently available sequencing platforms support an earlier 
unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS 
technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore 
allowing previously unthinkable scientific accomplishments along with novel biological purposes. 
However, the massive amounts of data generated by NGS impose a substantial challenge with regard 
to data safekeeping and analysis.  In addition   examines some simple but vital points involved in 
preparing the initial material for SSH and introduces this method as well as its associated applications 
to detect different novel genes from different plant species.  

Moreover, evaluates general concepts, basic applications, plus the probable results of NGS 
technology in genomics, with unique mention of feasible potential tools as well as bioinformatics Fig. 
(40). They also stated that suppression subtractive hybridization involves five main steps: (1) isolation 
of total messenger RNA (mRNA), followed by the synthesis of double-stranded cDNA fragments for 
both the driver and tester samples; (2) digestion of double-stranded cDNA fragments from the previous 
step; (3) ligation of two different tester cDNA aliquots with two different adaptors A and B provided in 
the kit Fig. (40-I). Adobe Photoshop CS5 and Illustrator CS6 software were used to prepare images 
showing the whole process involved in SSH; (4) the first suppressive hybridization at the first 
hybridization step, an excess of the driver cDNA from sample (A) is added to each sample of tester 
cDNA (B), then both samples B are heated, denatured, and annealed, generating four different types 
molecule a, b, c, and d   Fig.(40-II);  and (5) the second suppressive hybridization at the second 
hybridization step, two hybridized samples are combined and annealed again with a fresh sample of the 
denatured driver. Under these conditions, only the type (a) single-strand tester cDNA remaining from 
normalization and subtraction processes will be able to re-associate and form type (b), (c), and new 
hybrids (e) Fig. (40-III). An important feature of this newly hybrid type (e), distinguishes them from 
the other hybrids. This new hybrid type has two different adaptors (shown in green and red) at their 50 
ends. These two different inverted terminal repeats (adaptors) allow for the amplification of subtracted, 
normalized cDNA fragments (double-stranded) using PCR and two primers (P1 and P2) provided by 
the kit. This pair of primers corresponds to the outer parts of the green and red adaptors, respectively, 
and helps to preferentially amplify cDNA fragments. 

 
 

 
Fig. 40: Illustrates (I) Preparation of two-tester cDNA fragments, (II). First hybridization of 
suppression subtractive hybridization, (III). Second hybridization of suppression subtractive 
hybridization. After: Sahebi et al. (2015) 
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Some genes induced by Hg are also induced by other heavy metals Yamaguchi et al. (2010).  
Heidenreich et al. (2001) profiled the transcriptome of Arabidopsis thaliana exposed to Hg+2 and found 
Hg-induced genes encoding proteins involved in chlorophyll synthesis, cell wall metabolism, and P450- 
mediated biosynthesis of secondary metabolites.  Heidenreich et al. (2001) they also reported that 
mercuric-ion-induced gene expression was studied in Arabidopsis thaliana Columbia wild type. 
Rosettes of plants grown for 21 d on agar medium supplemented with 20, 30 and 40 µM HgCl2 were 
pooled and used to isolate cDNAs of induced genes by suppression subtractive hybridization. Of the 
576 clones isolated initially, 31 turned out to be mercury-induced by Northern hybridization. However, 
kinetic studies using cDNA arrays clearly showed that seven genes were exclusively mercuric-ion-
induced, 14 were induced by mercury but also affected by a diurnal rhythm, and 10 clones were only 
modulated by the day–night cycle. The expression levels of the metal-induced genes increased from 
1·5-fold to 10-fold. Functional classification resulted in genes encoding proteins for the photosynthetic 
apparatus and for the antioxidative system. In addition, unexpected genes, whose connection to mercury 
ion stress is not evident, were identified. Fig. (41). 

 

 
                          
 
 
 
 

 
              
 
 
 
 
 
 
 
 

 
 Fig. 41: Illustrates the flow chart showing the procedure used to identify mercuric-ion- induced genes 

(mt = mitochondrial; r = ribosomal). After: Heidenreich et al. (2001) 
 
Two full-length cDNAs coding for a putative metallothionein type 2 protein (SdMT2) and an auxin 

responsive protein (SdARP) were identified from heavy metal hyperaccumulator Sesbania drummondii 
under Hg exposure; the up-regulated expression of SdARP may contribute to the survival of Sesbania 
plants with Hg, whereas SdMT2 is likely to be involved in alleviation of Hg toxicity Venkatachalam et 
al. (2009), Christakis et al. (2021). Mercury (Hg) is a highly toxic element due to its high affinity for 
protein sulfhydryl groups, which upon binding, can destabilize protein structure and decrease enzyme 
activity. Prokaryotes have evolved enzymatic mechanisms to detoxify inorganic Hg and organic Hg 
(e.g., MeHg) through the activities of mercuric reductase (MerA) and organomercurial lyase (MerB), 
respectively. Here, the taxonomic distribution and evolution of MerAB was examined in 84,032 
archaeal and bacterial genomes, metagenomes assembled genomes, and single-cell genomes. Homologs 
of MerA and MerB were identified in 7.8 and 2.1% percent of genomes, respectively. MerA was 
identified in the genomes of 10 archaeal and 28 bacterial phyla previously unknown to code for this 
functionality.  

Likewise, MerB was identified in 2 archaeal and 11 bacterial phyla previously unknown to encode 
this functionality. Surprisingly, homologs of MerB were identified in a number of genomes (∼50% of 
all MerB-encoding genomes) that did not encode MerA, suggesting alternative mechanisms to detoxify 
Hg (II) once it is generated in the cytoplasm. Phylogenetic reconstruction of MerA place its origin in 
thermophilic Thermoprotei (Crenarchaeota), consistent with high levels of Hg (II) in geothermal 
environments, the natural habitat of this archaeal class. MerB appears to have been recruited to the mer 
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operon relatively recently and likely among a mesophilic ancestor of Euryarchaeota and 
Thaumarchaeota. This is consistent with the functional dependence of MerB on MerA and the 
widespread distribution of mesophilic microorganisms that methylate Hg (II) at lower temperature. 
Collectively, these results expand the taxonomic and ecological distribution of mer-encoded 
functionalities, and suggest that selection for Hg (II) and MeHg detoxification is dependent not only on 
the availability and on type of mercury compounds in the environment but also the physiological 
potential of the microbes who inhabit these environments. The expanded diversity and environmental 
distribution of MerAB identify new targets to prioritize for future research They also stated that  
functionalities encoded by the mer operon are the primary mechanisms microbial cells use for Hg 
resistance and detoxification  Silver and Hobman (2007); Lin et al., (2011). At its core, the mer operon 
encodes a homodimeric flavindependent disulfide oxidoreductase, termed mercuric reductase (MerA) 
that functions to reduce Hg (II) to volatile Hg (0) that can then diffuse out of the cell Boyd and Barkay 
(2012) Fig. (42). 

The operon may also code for organo-mercury lyase (MerB), that catalyzes the protonolytic cleavage 
of the C-Hg bond in organo-mercury compounds, among them MeHg Boyd and Barkay (2012). This 
reaction yields a reduced organic moiety, which in the case of MeHg is methane, and Hg (II); the latter 
is then reduced to Hg (0) through the activity of   MerA Boyd and Barkay (2012). In addition to MerAB, 
mer operons may code for the periplasmic protein MerP, inner membrane spanning proteins MerT, Mer 
C, MerE, MerF, and MerG that transport Hg (II) to the cytoplasmic MerA reviewed in Boyd and Barkay 
(2012). mer operons may also code for transcriptional regulators such as the repressor/activator MerR 
or anti-activator MerD reviewed in Barkay et al. (2003); Lin et al. (2011). Through the combined 
demethylation of MeHg by MerB and decreased concentration of Hg (II) in the cytoplasm by its 
reduction to gaseous Hg (0) via MerA, the mer operon effectively partitions Hg to the gaseous phase, 
allowing for microbial growth Barkay et al. (2003); Boyd and Barkay (2012).  In addition, several other 
genes responsible for Hg tolerance or accumulation have been identified Rugh et al. (1998); Hsieh et 
al. (2009); Ruiz et al. (2011); Shen et al. (2011); Wei et al. (2011). Regulation of gene expression can 
be also achieved at post-transcriptional and translational levels. Recently, the post-transcriptional 
regulation of genes by a group of microRNAs (miRNAs) represents a newly discovered mechanism for 
plant development and response to environmental stresses Jones- Rhoades et al. (2006); Phillips et al. 
(2007). Zhang etal (2022) reported that  MicroRNAs (miRNAs) are a class of non-coding endogenous 
small RNAs (long 20–24 nucleotides) that negatively regulate eukaryotes gene expression at post-
transcriptional level via cleavage or/and translational inhibition of targeting mRNA. Based on the 
diverse roles of miRNA in regulating eukaryotes gene expression, research on the identification of 
miRNA target genes has been carried out, and a growing body of research has demonstrated that 
miRNAs act on target genes and are involved in various biological functions of plants. 

It has an important influence on plant growth and development, morphogenesis, and stress response. 
Recent case studies indicate that miRNAmediated regulation pattern may improve agronomic properties 
and confer abiotic stress resistance of plants, to ensure sustainable agricultural production)   Fig. (42). 
In this regard, we focus on the recent updates on miRNAs and their targets involved in responding to 
abiotic stress including low temperature, high temperature, drought, soil salinity, and heavy metals, as 
well as plant-growing development. In particular, this review highlights the diverse functions of 
miRNAs on achieving the desirable agronomic traits in important crops.  MiRNA-based research lays 
the foundation for exploring miRNA regulatory mechanism, which aims to provide insights into a 
potential form of crop improvement and stress resistance breeding. 
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Fig. 42: Illustrates the mer detoxification system. (A) A generic mer operon. (B) The cellular mer-
encoded mercury detoxification mechanisms. The outer cell wall is depicted by a broken line illustrating 
that not all microbes have an outer membrane; broken line arrows depict diffusion; solid line arrows 
indicate transport or transformations; L = ligand with subscripts denoting the ligand type. The colors of 
various Mer proteins correspond with the colors of the genes that encode these proteins in panel A. 
After: Lin et al. (2011); Boyd and Barkay (2012) and Christakis et al. (2021 

 
miRNAs are processed from single-stranded RNA precursors capable of forming imperfectly 

complementary hairpin structures by the RNase III enzyme DICER-LIKE1 (DCL1) or DCL4. They are 
known to base pair their target mRNAs to repress their translation or induce their degradation in 
organisms Bartel (2004), Li and Mao (2007).  

A set of miRNAs in response to Hg stress was first identified from M. truncatula Zhou et al. (2008a) 
and B. napus Xie et al. (2007) using bioinformatic prediction and RT-PCR. With the development of 
the high-throughput sequencing technology, more novel miRNAs in response to heavy metals have 
been discovered. More recently, a deep sequencing approach developed by Solexa (Illumina Inc.) has 
been adopted to investigate global expression and complexity of miRNAs and their targets from M. 
truncatula under Hg Zhou et al. (2008a) and Cd Zhou et al. (2008b) exposure.  

Two small RNA libraries and two degradome libraries were constructed from Hg-treated and Hg-
free seedlings of M. truncatula, respectively. For miRNAs, each library generated 18.5–18.6 million 
short sequences, resulting in 10.2–10.8 million clean reads. From this study, at least 52 novel miRNAs 
with *21 nucleotides were identified from the M. Truncatula genome. Statistical analysis on transcript 
abundance of the new candidate miRNAs revealed that the heavy metal mercury Hg differentially 
regulated most of them, with 12 miRNAs being specifically induced by Hg exposure. Additionally, they 
identified 201 individual miRNAs representing 63 known M. truncatula miRNA families, including 12 
new conserved and one non-conserved miRNAs that have not been described before. In addition, 130 
targets for 58 known (37 conserved and 21 non-conserved) miRNA families and 37 targets for 18 new 
M. truncatula-specific candidate miRNA families were identified by high-throughput degradome 
sequencing Zhou et al. (2008b).  

Most of miRNAs target genes coding for tolerance proteins or enzymes. For instance, miR2681 
targets several transcripts coding TIR-NBS-LRR disease resistance proteins. Singh et al. (2021) 
reported that the most interesting signaling molecules that regulate a wide array of adaptive stress 
responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs 
constituting novel mechanisms of post-transcriptional gene regulate on. Recent studies revealed the role 
of miRNAs in several biotic and abiotic stresses by regulating various phytohormone-signaling 
pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. 
Phytohormones are signal molecules modulating the plant growth and developmental processes by 
regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital 
roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates 
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to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism 
governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. 
In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating 
various stress and its role in adaptive stress response in crop plants.   

                 They also stated that mode of gene regulation to combat the unavoidable abiotic stress mainly 
involves the up-regulation or down-regulation of targeted genes Fig. (43). 

 
Fig. 43: Illustrates the abiotic stress-mediated gene regulation in plants. This figure depicts miRNA-
mediated regulation of gene expression during various abiotic stresses. This positive or negative 
regulation results in providing stress tolerance to plants by involving MAPK, calcium signaling and 
phytohormones. After: Singh et al. (2021) 

 
The suppression of gene expression happens mainly due to the presence of innumerable tiny soldiers 

residing within the plant system, which protects them from the extreme conditions. One of these defense 
system comprises of the members of the ‘small RNA world’, the micro-RNAs (miRNAs), discovered 
in the early 1990s which are highly conserved group of non-coding RNA molecules usually 20–24 
nucleotides long, functioning via inhibiting translation or cleaving transcripts of targeted genes  Lee 
et al. (1993); Wightman et al. (1993). The mature miRNAs are produced from primary miRNAs (pri-
miRNAs) transcribed from target DNA sequences via RNA polymerase II that mostly down-regulates 
the mRNAs by binding to its 3’ UTR region or sometimes to the 5’ UTR region, promoter and coding 
sequence. Dicer-Like1 (DCL1) recognized the stem loop structured single-stranded RNAs and cuts the 
pre-imiRNAs forming precursor microRNAs (pre-miRNAs) and subsequently converting it to the 
miRNAs. These miRNAs are then loaded into the argonaute associated micro-RNA induced silencing 
complexes (miRISCs) for future processing. The miRNAs tend to be present in the nucleus, nucleolus, 
mitochondria and endoplasmic reticulum membrane and control the post-transcriptional gene silencing 
mechanism by commuting through those different sub-cellular components Makarova et al. (2016).  

The miRNAs are involved for providing abiotic stress tolerance, maintaining nutrient homeostasis 
and transcriptional regulation of gene expression in plants. Due to a complicated network of action, 
very few miRNAs have been characterized for their role in abiotic stress but this field is dynamically 
expanding nowadays with more miRNAs being characterized. Since, one of the major challenges for 
our world today is “food security” and abiotic stress apparently adds to it by reducing growth and 
productivity of plant. Thus, a detailed study of the mode of action of miRNAs would be highly 
beneficial in developing strategies for mitigation of a wide array of abiotic stresses in plants. Various 
physical and chemical factors such as high soil salinity, drought, fooding, extreme temperatures, 
ultraviolet (UV) radiation, heavy metal (HM) toxicity and nutrient scarcity collectively comprising the 
abiotic stress affect plants worldwide  Wang et al. (2003); Wani et al. (2016). In response to the abiotic 
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stress, several signaling pathways involving various phytohormones are also activated. Although 
miRNAs and phytohormones have different metabolic and transduction pathways, recent studies 
suggest interplay in miRNAs pathways and phytohormone responses during a number of abiotic 
stresses. This interaction results in overcoming various abiotic stresses either via modulating miRNAs 
using phytohormones or by controlling phytohormonal level using miRNAs as intermediate. The 
phytohormonal homeostasis and miRNA regulation walk parallel during abiotic stress responses, 
suggesting an interconnected network operating in regulating the genes responsible for abiotic stress 
tolerance Noman and Aqeel (2017). This functional regulation of phytohormones by miRNAs in 
response to various abiotic stresses encountered by plants.  A salt tolerance protein (TC114805) was 
identified as the target of miR2708. Notably, miR2687 targets a gene coding xyloglucan 
endotransglucosylase/ hydrolase (XTH), which is recognized as a cell wall-modifying enzyme, 
participates in cell wall development and confers plant tolerance to abiotic stresses. These results 
indicate that Hg is able to alter significantly genes expression in Hg-treated plants and the Hg-induced 
gene regulatory frameworks will contribute a great deal to our understanding of the molecular 
mechanism for plant tolerance to Hg stress. 

 
13. Summary and Conclusion   

Mercury (Hg) is recognized as a toxic, persistent, and mobile contaminant; it does not degrade in 
the environment and becomes mobile because of the volatility of the element and several of its 
compounds. Moreover, mercury has the ability to be transported within air masses over very long 
distances. The global risk posed to humans and the wider environment by mercury (Hg) contaminated 
soils is severe. Mercury (Hg) contaminated soils constitute complex systems where many 
interdependent factors, including amount and composition of soil organic matter and clays, oxidized 
minerals (e.g. Fe oxides), reduced elements (e.g. S-2), as well as soil pH and redox conditions affect 
mercury  forms and transformation.  Mercury can readily bind to colloids due to their high specific 
surface area and the presence of surface functional groups. Nano-sized mercury (Hg) particles as well 
as soluble mercury (Hg) complexes play an important role in mercury (Hg) mobility, availability, and 
methylation in soils 

Over the last few decades, considerable scientific knowledge has been developed on the sources and 
emissions of mercury, its pathways and cycling through the environment, human exposure, and impacts 
on the environment and human health. Mercury (Hg) is the only element in the periodic table to have 
its own environmental convention, i.e., the Minamata Convention on Mercury, thus highlighting the 
importance of the Hg pollution issue. An improved understanding of the global mercury (Hg) cycle is 
important for our capacity to predict how regulatory efforts to reduce current emissions to air, water 
and land will affect mercury (Hg) concentrations in environmental compartments, biota and humans. 
Hg is released into the environment through human activities and via natural sources and processes, 
such as volcanoes and rock weathering. Following its release, mercury (Hg) is transported and recycled 
between the major environmental compartments.  

Mercury (Hg) is considered a peculiar chemical element because it displays particularly, strong 
chemical and biological activity as well as variability in form (liquid and gaseous). Mercury (Hg) 
compounds with very different chemical and physical properties are included in various cycles of its 
natural circulation. Mercury (Hg) is a globally distributed pollutant due to characteristics such as low 
melting and boiling points, conversions between chemical forms and participation in biological cycles. 
In respect of   anthropogenic emissions, the global atmospheric mercury (Hg) deposition rate is 
approximately three times higher than that in preindustrial times and has increased by a factor of 2–10 
in and around the most industrialized regions. Mercury (Hg)-contaminated land environments pose a 
risk to global public health, with Hg being listed as one of the ‘ten leading chemicals of concern’. In 
2013, the United Nations (UN) introduced the ‘Minamata Convention on Mercury’, which aims for a 
more global effort for managing the risk presented by Mercury (Hg) to human health and the 
environment. Gene manipulation and molecular breeding of plant cultivars to minimize mercury (Hg) 
accumulation seems to be a prospective substitute to reduce the risk of Hg entering the human food 
chain. 
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