27.09.2015 Views

Ecological restoration in the Czech Republic

Ecological restoration in the Czech Republic - Society for Ecological ...

Ecological restoration in the Czech Republic - Society for Ecological ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ecological</strong> <strong>restoration</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

Editors<br />

Ivana Jongepierová, Pavel Pešout, Jan Willem Jongepier & Karel Prach


<strong>Ecological</strong> <strong>restoration</strong> <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

Editors<br />

Ivana Jongepierová, Pavel Pešout, Jan Willem Jongepier & Karel Prach<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

Prague 2012


Front cover photograph:<br />

— Šumava foothills near Želnava. (Z. Patzelt)<br />

Back cover photographs:<br />

— Rak<strong>in</strong>g hay <strong>in</strong> Javorůvky NR, Bílé Karpaty PLA. (J.W. Jongepier)<br />

— Disturb<strong>in</strong>g sites with Gentianella lutescens, Pod Hribovňou NR, Bílé Karpaty PLA. (I. Jongepierová)<br />

— Remov<strong>in</strong>g eutrophic soil layers, Váté písky NR, Bzenec. (I. Jongepierová)<br />

— Sheep graz<strong>in</strong>g <strong>in</strong> Central Bohemian Uplands (České středohoří) PLA. (J. Marešová)<br />

— Elim<strong>in</strong>ation of scrub <strong>in</strong> Vápenice NR, Velký Kosíř Nature Park. (Archive ZO ČSOP Hořepník)<br />

Editors<br />

Ivana Jongepierová, Pavel Pešout, Jan Willem Jongepier & Karel Prach<br />

Reviewers<br />

Ladislav Miko<br />

Tomáš Kučera<br />

Graphic design<br />

David Jongepier<br />

Pr<strong>in</strong>ted by<br />

Boma Pr<strong>in</strong>t, Kyjov<br />

This publication was issued on <strong>the</strong> occasion of <strong>the</strong> 8 th European Conference<br />

on <strong>Ecological</strong> Restoration held <strong>in</strong> České Budějovice (Budweis) 9–14 September 2012.<br />

Published by<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, © AOPK ČR<br />

ISBN 978-80-87457-31-3<br />

CATALOGUING-IN-PUBLICATION – NATIONAL LIBRARY OF THE CZECH REPUBLIC<br />

<strong>Ecological</strong> <strong>restoration</strong> <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> / editors Ivana Jongepierová ... [et al.]. – Prague : Nature Conservation Agency of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>, 2012. – 147 p. : ill.<br />

ISBN 978-80-87457-32-0 (pbk.)<br />

502.5+712 * 502.174 * 502.171:574.4/.5 * 502.171:574.2 * (437.3)<br />

— landscape assessment – <strong>Czech</strong>ia<br />

— <strong>restoration</strong> ecology – <strong>Czech</strong>ia<br />

— ecosystem management – <strong>Czech</strong>ia<br />

— habitat protection – <strong>Czech</strong>ia<br />

— case studies<br />

363.7 – Environmental protection [2]


Contents<br />

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7<br />

Nomenclature, abbreviations and explanatory notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8<br />

Restoration ecology and ecological <strong>restoration</strong> <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9<br />

Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

Active <strong>restoration</strong> and management of forest habitats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Conversion of p<strong>in</strong>e monocultures to mixed deciduous forests <strong>in</strong> Podyjí National Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Can fire and secondary succession assist <strong>in</strong> <strong>the</strong> regeneration of forests <strong>in</strong> a national park? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

Restoration of forests damaged by air pollution <strong>in</strong> <strong>the</strong> Jizera Mounta<strong>in</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

Spontaneous recovery of mounta<strong>in</strong> spruce forests after bark beetle attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

Grasslands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

Experimental <strong>restoration</strong> and subsequent degradation of an alluvial meadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

Restoration management of wetland meadows <strong>in</strong> <strong>the</strong> Podblanicko region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

Recreation of species rich grasslands <strong>in</strong> <strong>the</strong> Bílé Karpaty Mounta<strong>in</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Graz<strong>in</strong>g of dry grasslands <strong>in</strong> <strong>the</strong> Bohemian Karst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Resumption of graz<strong>in</strong>g management on abandoned upland grasslands <strong>in</strong> <strong>the</strong> Jizera Mounta<strong>in</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

Restor<strong>in</strong>g heterogeneity <strong>in</strong> submontane meadows for <strong>the</strong> butterfly Euphydryas aur<strong>in</strong>ia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

Optimis<strong>in</strong>g management at Gentianella praecox subsp. bohemica sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56<br />

Restoration of sands as part of <strong>the</strong> Action Plan for Dianthus arenarius subsp. bohemicus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

Restoration of <strong>the</strong> alp<strong>in</strong>e tundra ecosystem above <strong>the</strong> timberl<strong>in</strong>e <strong>in</strong> <strong>the</strong> Giant Mounta<strong>in</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

Wetlands and streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

Restoration of <strong>the</strong> Černý potok stream, Krušné hory Mts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

Revitalis<strong>in</strong>g effects of a near-natural bypass at a migration barrier on <strong>the</strong> Blanice river . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

Restoration of dra<strong>in</strong>ed mires <strong>in</strong> <strong>the</strong> Šumava National Park . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

Restoration of <strong>the</strong> m<strong>in</strong>ed peatbog Soumarský Most . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

Restoration and conservation of sand and gravel-sand pits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

Coal m<strong>in</strong><strong>in</strong>g spoil heaps <strong>in</strong> <strong>the</strong> Most region: <strong>restoration</strong> potential of spontaneous succession . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97<br />

Restoration of spoil heaps by spontaneous succession <strong>in</strong> <strong>the</strong> Sokolov coal m<strong>in</strong><strong>in</strong>g area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

Restoration of dry grassland vegetation <strong>in</strong> <strong>the</strong> abandoned Hády limestone quarry near Brno . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

Experimental <strong>restoration</strong> of species-rich deciduous forest on m<strong>in</strong><strong>in</strong>g deposits <strong>in</strong> Mokrá limestone quarry . . . . . . . . . . . . . . . . . . . 104<br />

Experimental acceleration of primary succession on abandoned tail<strong>in</strong>gs: role of surface biological crust . . . . . . . . . . . . . . . . . . . . . 106<br />

Abandoned military areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

Disturbance management, a way to preserve species-rich communities <strong>in</strong> abandoned military areas . . . . . . . . . . . . . . . . . . . . . . . 114<br />

Restor<strong>in</strong>g disturbance and open vegetation <strong>in</strong> <strong>the</strong> former military tra<strong>in</strong><strong>in</strong>g area Na Plachtě . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

Landscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

Reclamation of rural landscapes at Velké Bílovice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

Restoration of <strong>the</strong> Včelnička stream catchment, Bohemian-Moravian Uplands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

Restoration of greenery elements <strong>in</strong> <strong>the</strong> Podblanicko region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

Restoration of standard orchard at Habrůvka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

Restoration of semi-natural vegetation <strong>in</strong> old fields <strong>in</strong> <strong>the</strong> Bohemian Karst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

List of authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

Society for <strong>Ecological</strong> Restoration (SER). Work<strong>in</strong>g Group for Restoration Ecology, České Budějovice, <strong>Czech</strong> <strong>Republic</strong> . . . . . . . . . . . . 146


Foreword<br />

František Pelc<br />

Despite strong efforts and partly positive results <strong>in</strong> <strong>the</strong> field of nature conservation, we have recently witnessed cont<strong>in</strong>u<strong>in</strong>g deterioration of<br />

<strong>the</strong> natural environment and decrease <strong>in</strong> biodiversity on a global as well as a national scale. It is <strong>the</strong>refore no wonder that ra<strong>the</strong>r lively discussions<br />

have been go<strong>in</strong>g on between conservationists, biologists and o<strong>the</strong>r <strong>in</strong>terested parties on ways of secur<strong>in</strong>g <strong>the</strong> protection of <strong>the</strong> most valuable<br />

natural environment, usually concentrated <strong>in</strong> small fragments, <strong>in</strong> total cover<strong>in</strong>g a few percent of our country’s area. Sometimes this problem<br />

has unfortunately been centred around two rivall<strong>in</strong>g visions: <strong>the</strong> approach of ‘conservation’ management (by some considered obsolete), based<br />

on non-<strong>in</strong>tervention and preference of natural processes, on <strong>the</strong> one hand, and ‘active’ management (often considered modern), based on systematic<br />

<strong>in</strong>tervention by man.<br />

The dispute about what is more correct has led to endless discussions. I am conv<strong>in</strong>ced that most protected areas need some k<strong>in</strong>d of active<br />

management. However, <strong>the</strong>re will always be a wide range of options depend<strong>in</strong>g on what we want to protect – from preferr<strong>in</strong>g absolute protection<br />

of natural processes to very specific management simulat<strong>in</strong>g e.g. abandoned farm<strong>in</strong>g methods or preserv<strong>in</strong>g selected sites or protected<br />

species. Both approaches must be part of an <strong>in</strong>tegral concept of modern conservation and <strong>restoration</strong> of our natural heritage. They are mutually<br />

complementary and no antipodes. It is important to make clear what to protect and how to achieve this, tak<strong>in</strong>g <strong>in</strong>to consideration <strong>the</strong> natural<br />

potential and historical context of a given area. Based on this, a long-term, susta<strong>in</strong>able strategic decision can be adopted, which must however<br />

not unpredictably be changed <strong>in</strong> <strong>the</strong> short term.<br />

In general it would be desirable to respect <strong>the</strong> fact that man cannot steer everyth<strong>in</strong>g <strong>in</strong> <strong>the</strong> natural environment, and protected areas are<br />

no exception. He does not have sufficient knowledge or means. After all, it is just a small step from here to <strong>the</strong> misused noosphere concept by<br />

Russian philosopher Vernadský. On <strong>the</strong> o<strong>the</strong>r hand, man has <strong>in</strong>fluenced <strong>the</strong> environment and environmental processes <strong>in</strong> such a way that many<br />

natural phenomena cannot be protected or rehabilitated anymore without his <strong>in</strong>tervention.<br />

The present publication is a representative display of <strong>restoration</strong> management case studies realised <strong>in</strong> various environments such as forests,<br />

wetlands, grasslands as well as specific sites damaged or created by m<strong>in</strong><strong>in</strong>g or o<strong>the</strong>r activities. It should also contribute to <strong>the</strong> so desirable <strong>in</strong>tegration<br />

of views by scientists, conservationists, foresters, farmers, fishermen and o<strong>the</strong>r <strong>in</strong>terested parties, and <strong>the</strong>ir application. As such it should<br />

become <strong>the</strong> start<strong>in</strong>g po<strong>in</strong>t of a more effective use of scientific knowledge to preserve our nature and protect our landscape better.<br />

Although <strong>the</strong> case studies ma<strong>in</strong>ly deal with so-called active management, I hope <strong>the</strong>ir overall impression will contribute to creat<strong>in</strong>g a state<br />

<strong>in</strong> which <strong>the</strong> management of protected areas and natural habitats will not be divided <strong>in</strong>to ‘conservational’ and ‘active’, but ra<strong>the</strong>r be judged as<br />

good or bad.<br />

František Pelc, Director<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

6


Introduction<br />

The <strong>Czech</strong> <strong>Republic</strong>, a country <strong>in</strong> central Europe, used to consist of a fi ne-scale mosaic of natural, semi-natural and anthropogenous<br />

ecosystems. However, this mosaic has been substantially disturbed <strong>in</strong> <strong>the</strong> second half of <strong>the</strong> 20 th century under <strong>the</strong> communist regime. Many<br />

ecosystems were disturbed, degraded or destroyed.<br />

The traditional nature conservation approach <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> was, similarly to o<strong>the</strong>r countries, strictly protect<strong>in</strong>g well-preserved<br />

ecosystems. Only <strong>in</strong> <strong>the</strong> past three decades, more active approaches utilis<strong>in</strong>g methods of ecological <strong>restoration</strong> have been adopted. These are applied<br />

to both exist<strong>in</strong>g ecosystems, such as meadows, and newly develop<strong>in</strong>g ones, for example sites disturbed by m<strong>in</strong><strong>in</strong>g or developed on former<br />

arable land. Recently, also some attempts have been made to restore complete landscapes.<br />

It is a highly positive trend that near-natural ways of <strong>restoration</strong> are gradually be<strong>in</strong>g accepted, not only <strong>in</strong> nature conservation but also by<br />

some decision-makers, m<strong>in</strong><strong>in</strong>g companies, and <strong>in</strong>creas<strong>in</strong>gly by <strong>the</strong> public. Ano<strong>the</strong>r favourable development is <strong>the</strong> collaboration of academics<br />

with practical <strong>restoration</strong>ists, NGOs, and state authorities <strong>in</strong> various <strong>restoration</strong> projects.<br />

However, <strong>the</strong> potential of near-natural <strong>restoration</strong> is not yet adequately exploited <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Various heavily disturbed sites have<br />

been, and still are, technically reclaimed, i.e. restored by means of technical measures, with little regard to natural processes and deny<strong>in</strong>g <strong>the</strong><br />

potential of modern ecological <strong>restoration</strong> methods. This is especially true for forest management and reclamation on heavily disturbed sites.<br />

Restoration, and especially reclamation, activities are not always aimed at restor<strong>in</strong>g ecologically desirable ecosystems, but often at ga<strong>in</strong><strong>in</strong>g<br />

f<strong>in</strong>ancial profit by private firms. In <strong>the</strong> latter case such activities lack a scientific background, are expensive and often mean<strong>in</strong>gless. Besides f<strong>in</strong>ancial<br />

profit, <strong>the</strong> reasons for this are ecological ignorance and lack of education. It is <strong>the</strong>refore necessary to make people aware of <strong>the</strong> fact that<br />

near-natural ecosystems usually provide much better ecosystem services to humans than uniform, technically reclaimed land.<br />

In this publication we discuss <strong>the</strong> possibilities of ecological <strong>restoration</strong> and present selected case studies concern<strong>in</strong>g woodlands, grasslands,<br />

wetlands, m<strong>in</strong><strong>in</strong>g sites, military tra<strong>in</strong><strong>in</strong>g areas, and landscapes as a whole. In this, we have attempted to illustrate <strong>Czech</strong> <strong>restoration</strong> activities as<br />

broadly as possible, although <strong>the</strong> authors’ will<strong>in</strong>gness and ability to submit contributions has also played a role. The compilation offers <strong>the</strong> participants<br />

of <strong>the</strong> 8 th European Conference on <strong>Ecological</strong> Restoration held <strong>in</strong> České Budějovice, September 9–14, 2012 a representative overview<br />

of ecological <strong>restoration</strong> efforts <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

We also hope it will contribute to a fur<strong>the</strong>r development of <strong>restoration</strong> ecology as a branch of science and of practical ecological <strong>restoration</strong><br />

<strong>in</strong> <strong>the</strong> country.<br />

The editors<br />

7


Nomenclature, abbreviations and explanatory notes<br />

Nomenclature of plant species follows Kubát et al. (2002), names<br />

of non-forest plant communities are accord<strong>in</strong>g to <strong>the</strong> recent vegetation<br />

compendium of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (Chytrý 2007, 2011; onl<strong>in</strong>e<br />

version available at: http://www.sci.muni.cz/botany/vegsci/vegetace.<br />

php?lang=en), names of woodland and shrubland communities follow<br />

Chytrý et al. (2010).<br />

Butterfly and moth species names follow <strong>the</strong> national checklist<br />

(Laštůvka & Liška 2005), names of most o<strong>the</strong>r <strong>in</strong>vertebrates as well<br />

as vertebrate species follow <strong>the</strong> national red lists (Farkač et al. 2005,<br />

Plesník et al. 2003).<br />

— NP – National Park<br />

— PLA – Protected Landscape Area<br />

— NR – Nature Reserve (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> categories National Nature<br />

Reserve, Nature Reserve, National Nature Monument, and Nature<br />

Monument)<br />

— SCI – Sites of Community Importance under Natura 2000<br />

— SPA – Special Protection Area <strong>in</strong> agreement with <strong>the</strong> Birds Directive<br />

— Landscape management programmes: several subsidy schemes<br />

f<strong>in</strong>anced by <strong>the</strong> M<strong>in</strong>istry of <strong>the</strong> Environment (Landscape Management<br />

Programme, River System Revitalisation Programme,<br />

etc.)<br />

Fig. 2. <br />

Chytrý M. (ed.) (2007): Vegetace České republiky 1. Trav<strong>in</strong>ná a<br />

keříčková vegetace. Vegetation of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> 1. Grassland<br />

and heathland vegetation. – Academia, Praha.<br />

Chytrý M. (ed.) (2011): Vegetace České republiky 3. Vodní a mokřadní<br />

vegetace. Vegetation of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> 3. Aquatic and wetland<br />

vegetation. – Academia, Praha.<br />

Chytrý M., Kučera T., Kočí M., Grulich V. & Lustyk P. (eds) (2010):<br />

Katalog biotopů České republiky (Habitat Catalogue of <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>). Ed. 2. – Agentura ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Farkač J., Král D. & Škorpík M. (eds) (2005): Červený seznam<br />

ohrožených druhů České republiky. Bezobratlí. Red list of threatened<br />

species <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Invertebrates. – Agentura<br />

ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Kubát K., Hrouda L., Chrtek J. jun., Kaplan Z., Kirschner J. & Štěpánek<br />

J. (eds) (2002): Klíč ke květeně České republiky (Key to <strong>the</strong> flora of<br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). – Academia, Praha.<br />

Laštůvka Z. & Liška J. (2005): Seznam motýlů České republiky<br />

(Checklist of Lepidoptera of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). – Available at:<br />

http://www.lepidoptera.wz.cz/ (version 8. 8. 2010).<br />

Plesník J., Hanzal V. & Brejšková L. (eds) (2003): Červený seznam<br />

ohrožených druhů České republiky. Obratlovci (Red list of threatened<br />

species <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Vertebrates). – Příroda 22:<br />

1–184.<br />

Fig. 1. <br />

8


Restoration ecology and ecological <strong>restoration</strong> <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

<br />

In <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, <strong>restoration</strong> ecology was <strong>in</strong>troduced as a<br />

science <strong>in</strong> <strong>the</strong> middle 1990s (Prach 1995), however various <strong>restoration</strong><br />

and reclamation activities, <strong>in</strong>clud<strong>in</strong>g conservation management, have<br />

a longer tradition.<br />

The first local <strong>restoration</strong> attempts concerned <strong>the</strong> reclamation of<br />

m<strong>in</strong><strong>in</strong>g sites and had been realised already <strong>in</strong> <strong>the</strong> first half of <strong>the</strong> 20 th<br />

century. Large-scale reclamation activities started <strong>in</strong> <strong>the</strong> two largest<br />

coal m<strong>in</strong><strong>in</strong>g districts <strong>in</strong> <strong>the</strong> 1960s. For a long time <strong>the</strong>se were based<br />

on technical approaches only, although spontaneous succession was<br />

demonstrated to be a very convenient and cheap way of spoil heap<br />

<strong>restoration</strong> already <strong>in</strong> <strong>the</strong> early 1980s (Prach 1982). The current state<br />

of m<strong>in</strong><strong>in</strong>g site <strong>restoration</strong> is evident from <strong>the</strong> ‘M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial<br />

sites’ section.<br />

The fi rst ideas about active management of nature reserves appeared<br />

already <strong>in</strong> <strong>the</strong> 1950s, but were not put <strong>in</strong>to practice at that time<br />

(Petříček 1999). In <strong>the</strong> 1980s, conservation management was mostly<br />

carried out by volunteers, predom<strong>in</strong>antly <strong>in</strong> nature reserves with species-rich<br />

meadows, where regular cutt<strong>in</strong>g was necessary to susta<strong>in</strong> <strong>the</strong><br />

species richness.<br />

After <strong>the</strong> collapse of <strong>the</strong> communist regime <strong>in</strong> 1989 <strong>the</strong> position<br />

of nature conservation changed radically, when <strong>the</strong> M<strong>in</strong>istry of<br />

<strong>the</strong> Environment was established, led at that time by m<strong>in</strong>isters well-<br />

educated <strong>in</strong> <strong>the</strong> natural sciences. Follow<strong>in</strong>g this, <strong>the</strong> modern Act on<br />

Nature and Landscape Protection was adopted <strong>in</strong> 1991. In 1994 <strong>the</strong><br />

Landscape Management Programme was set up, from which not only<br />

conservation management but also <strong>restoration</strong> activities (Petříček<br />

1999, Petříček & Míchal 1999), ma<strong>in</strong>ly <strong>in</strong> nature reserves, have been<br />

f<strong>in</strong>anced to this day (€6–8 million/yr).<br />

Today, <strong>the</strong> <strong>restoration</strong> of secondary grasslands is advanced <strong>in</strong> <strong>the</strong><br />

country, but f<strong>in</strong>ancial support from <strong>the</strong> M<strong>in</strong>istry of <strong>the</strong> Environment<br />

has recently decreased. A certa<strong>in</strong> compensation for this reduction is<br />

offered by Agri-environmental schemes launched <strong>in</strong> 2004, but <strong>the</strong>se<br />

are – due to <strong>the</strong>ir uniformity and <strong>in</strong>flexibility – considered very problematic<br />

<strong>in</strong> terms of preserv<strong>in</strong>g and restor<strong>in</strong>g grassland biodiversity.<br />

However, currently attempts are be<strong>in</strong>g made to turn <strong>the</strong>m <strong>in</strong>to a more<br />

environmentally-friendly <strong>in</strong>strument.<br />

In <strong>the</strong> past decade, modern methods of grassland recreation, such<br />

as sow<strong>in</strong>g regional seed mixtures, have been applied (Jongepierová<br />

2008). More <strong>in</strong>formation on grassland <strong>restoration</strong> and recreation is<br />

given <strong>in</strong> <strong>the</strong> ‘Grasslands’ section.<br />

In <strong>the</strong> 1990s, a special River System Revitalisation Programme<br />

was launched by <strong>the</strong> M<strong>in</strong>istry of <strong>the</strong> Environment, which also <strong>in</strong>cluded<br />

pond <strong>restoration</strong> and construction, partly aimed at <strong>in</strong>creas<strong>in</strong>g<br />

water retention <strong>in</strong> our landscape. However, <strong>the</strong> fi nances were often<br />

Fig. 1. <br />

9


Already <strong>in</strong> <strong>the</strong> 1970s and <strong>the</strong> early 1980s, a multidiscipl<strong>in</strong>ary<br />

study of spontaneous succession on abandoned arable land was <strong>in</strong>itiated<br />

by M. Rejmánek (Osbornová et al. 1990). Later, attention was<br />

also directed to various <strong>in</strong>dustrial sites, such as spoil heaps after coal<br />

m<strong>in</strong><strong>in</strong>g (Prach 1987), sedimentary bas<strong>in</strong>s (Kovář 2004), sand pits<br />

(Řehounková & Prach 2006), stone quarries (Novák & Prach 2003),<br />

and extracted peatlands (Bastl et al. 2009).<br />

Several case studies presented <strong>in</strong> this volume show how <strong>the</strong><br />

knowledge acquired from <strong>the</strong>se studies can successfully be applied <strong>in</strong><br />

ecological <strong>restoration</strong>.<br />

Fig. 2. <br />

-<br />

<br />

<strong>in</strong>appropriately <strong>in</strong>vested <strong>in</strong>to technical projects which benefited nature<br />

only marg<strong>in</strong>ally (Simon et al. 1998). Recently, river corridor <strong>restoration</strong><br />

has shifted very slowly <strong>in</strong>to a more ecological direction. The<br />

only unambiguous progress made <strong>in</strong> <strong>the</strong> case of rivers over <strong>the</strong> past<br />

two decades is <strong>the</strong> great improvement of <strong>the</strong>ir water quality, also a<br />

k<strong>in</strong>d of <strong>restoration</strong>. Examples of <strong>restoration</strong> of watercourses and o<strong>the</strong>r<br />

wetlands are presented <strong>in</strong> <strong>the</strong> ‘Wetlands’ section.<br />

Serious problems persist <strong>in</strong> <strong>the</strong> <strong>restoration</strong> of forests (‘Forests’ section),<br />

especially <strong>in</strong> terms of restor<strong>in</strong>g near-natural species composition.<br />

Most forests <strong>in</strong> <strong>the</strong> country have been converted to monospecific,<br />

mostly Norway Spruce (Picea abies) and Scots P<strong>in</strong>e (P<strong>in</strong>us sylvestris)<br />

plantations, result<strong>in</strong>g <strong>in</strong> soil degradation, acidification, decreased water<br />

retention, and an overall decrease <strong>in</strong> species diversity (Fanta 2007).<br />

The emphasis on timber production, still advocated by <strong>the</strong> majority<br />

of our foresters, means that <strong>the</strong> use of natural regeneration and o<strong>the</strong>r<br />

near-natural measures are not easily accepted.<br />

The need for <strong>restoration</strong> of complete landscapes is very urgent<br />

<strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. In <strong>the</strong> second part of <strong>the</strong> 20 th century, nearly<br />

all water courses were channelised, <strong>the</strong> area of arable land expanded,<br />

huge amounts of pesticides and fertilisers polluted <strong>the</strong> water, <strong>the</strong> soil<br />

was degraded, and landscape connectivity was disrupted. S<strong>in</strong>ce some<br />

parts of <strong>the</strong> country have suffered heavily, <strong>restoration</strong> of <strong>the</strong> landscape<br />

structure and functions (at least <strong>in</strong> part) is highly desirable. Some examples<br />

of landscape <strong>restoration</strong> are given <strong>in</strong> <strong>the</strong> ‘Landscapes’ section<br />

of this publication.<br />

Extensive military tra<strong>in</strong><strong>in</strong>g areas can be considered a special type<br />

of landscape. The <strong>Czech</strong> <strong>Republic</strong>, with a border divid<strong>in</strong>g NATO<br />

Germany and Warsaw Pact <strong>Czech</strong>oslovakia dur<strong>in</strong>g <strong>the</strong> communist<br />

regime, had many such areas. In spite of all <strong>the</strong> negative aspects, military<br />

tra<strong>in</strong><strong>in</strong>g areas have mostly reta<strong>in</strong>ed some landscape structures<br />

from <strong>the</strong> mid-20 th century with a low to zero eutrophication level<br />

(Kopecký & Vojta 2009). Repeated disturbances have also preserved a<br />

mosaic of different successional stages here. Therefore, military tra<strong>in</strong><strong>in</strong>g<br />

areas are very valuable from <strong>the</strong> viewpo<strong>in</strong>t of nature conservation,<br />

and <strong>restoration</strong> activities substitut<strong>in</strong>g military activities are desirable<br />

<strong>in</strong> some parts (see more <strong>in</strong> <strong>the</strong> ‘Abandoned military areas’ section).<br />

These areas could be partially left to spontaneous processes to create<br />

new ‘wilderness’, accompanied by re-<strong>in</strong>troduction of large herbivores<br />

and predators (rewild<strong>in</strong>g).<br />

In a way, each <strong>restoration</strong> has to do with ecological succession.<br />

Restoration measures attempt to substitute, mimic, accelerate, slow<br />

down, modify, return, or at least <strong>in</strong>terfere with spontaneous succession<br />

(Prach et al. 2007). The <strong>Czech</strong> <strong>Republic</strong> can boast a long tradition<br />

of research <strong>in</strong>to this process at various human-disturbed sites.<br />

References<br />

Bastl M., Štechová T. & Prach K. (2009): The effect of disturbance on<br />

<strong>the</strong> vegetation of peat bogs with P<strong>in</strong>us rotundata <strong>in</strong> <strong>the</strong> Třeboň<br />

Bas<strong>in</strong>, <strong>Czech</strong> <strong>Republic</strong>. – Preslia 81: 105–117.<br />

Fanta J. (2007): Lesy a lesnictví ve střední Evropě (Forests and forestry<br />

<strong>in</strong> central Europe) 1–6. – Živa 55: 18–21, 65–68, 112–115,<br />

161–164, 209–212, 257–260.<br />

Jongepierová I. (ed.) (2008): Louky Bílých Karpat. Grasslands of <strong>the</strong><br />

White Carpathian Mounta<strong>in</strong>s. – ZO Č SOP Bílé Karpaty, Veselí<br />

nad Moravou.<br />

Kopecký M. & Vojta J. (2009): Land use legacies <strong>in</strong> post-agricultural<br />

forests <strong>in</strong> <strong>the</strong> Doupovské Mounta<strong>in</strong>s, <strong>Czech</strong> <strong>Republic</strong>. – Applied<br />

Vegetation Science 12: 251–260.<br />

Kovář P. (ed.) (2004): Natural recovery of human-made deposits <strong>in</strong><br />

landscape (Biotic <strong>in</strong>teractions and ore/ash-slag artificial ecosystems).<br />

– Academia, Prague.<br />

Novák J. & Prach K. (2003): Vegetation succession <strong>in</strong> basalt quarries:<br />

pattern on a landscape scale. – Applied Vegetation Science<br />

6: 111–116.<br />

Osbornová J., Kovářová M., Lepš J. & Prach K. (eds) (1990): Succession<br />

<strong>in</strong> abandoned fields. Studies <strong>in</strong> Central Bohemia, <strong>Czech</strong>oslovakia.<br />

– Kluwer Academic Publishers, Dordrecht etc.<br />

Petříček V. (ed.) (1999): Péče o chráněná území I. Nelesní společenstva<br />

(Management of nature reserves I. Non-forest communities). –<br />

Agentura ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Petříček V. & Míchal I. (eds) (1999): Péče o chráněná území II. Lesní<br />

společenstva (Management of nature reserves II. Forest communities).<br />

– Agentura ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Prach K. (1982): Vegetace na substrátech vzniklých těžbou nerostných<br />

surov<strong>in</strong> (Vegetation on substrates created by m<strong>in</strong><strong>in</strong>g). – Acta ecologica<br />

naturae ac regionis 1982: 49–50.<br />

Prach K. (1987): Succession of vegetation on dumps from strip coal<br />

m<strong>in</strong><strong>in</strong>g, N. W. Bohemia, <strong>Czech</strong>oslovakia. – Folia Geobotanica et<br />

Phytotaxonomica 22: 339–354.<br />

Prach K. (1995): "Restaurační ekologie" či ekologie obnovy? (Restoration<br />

ecology). – Vesmír 74: 143–144.<br />

Prach K., Mars R., Pyšek P. & van Diggelen R. (2007): Manipulation of<br />

succession. – In: Walker L.R., Walker J. & Hobbs R.J. (eds), L<strong>in</strong>k<strong>in</strong>g<br />

<strong>restoration</strong> and ecological succession, pp. 121–149, Spr<strong>in</strong>ger,<br />

New York.<br />

Řehounková K. & Prach K. (2006): Spontaneous vegetation succession<br />

<strong>in</strong> disused gravel-sand pits: role of local site and landscape<br />

factors. – Journal of Vegetation Science 17: 583–590.<br />

Simon O., Just T. & Ondráková D. (1998): Metodika hodnoceni<br />

č<strong>in</strong>ností v jednotlivých mikropovodích z hlediska vlivu na vody<br />

(Methods for <strong>the</strong> evaluation of activities <strong>in</strong> micro-watersheds<br />

regard<strong>in</strong>g <strong>the</strong>ir impact on water quality). – Výzkumný ústav<br />

vodohospodářský T. G. Masaryka, Praha.<br />

10


Forests


Introduction<br />

<br />

Historical changes <strong>in</strong> forest conditions<br />

The <strong>Czech</strong> <strong>Republic</strong> has 2,657,379 ha of forest cover<strong>in</strong>g 33.8% of<br />

our country. On <strong>the</strong> European scale, this slightly above-average cover<br />

does not have a correspond<strong>in</strong>g level of forest quality, as for forest stand<br />

health, tree species composition, spatial structure, or related biodiversity.<br />

A total of 67% of our woodland consists of predom<strong>in</strong>antly coniferous<br />

stands (i.e. with more than 75% of conifer species). The current<br />

proportion of coniferous tree species (74%) is more than twice that of<br />

conifers (35%) <strong>in</strong> natural stands, accord<strong>in</strong>g to reconstruction (Anonymus<br />

2011b).<br />

Forest management has a rich history. It began <strong>in</strong> <strong>the</strong> Neolithic<br />

age <strong>in</strong> <strong>the</strong> lowest and <strong>the</strong>refore warmest regions approximately<br />

4,000–5,000 years ago. These beg<strong>in</strong>n<strong>in</strong>gs were not purposeful forms<br />

of management, but only <strong>the</strong>y just <strong>in</strong>dicate man’s <strong>in</strong>fluence on forests.<br />

As society developed, this impact spread to higher elevations.<br />

Medieval colonisation of highlands had a strong impact on forests.<br />

Pressure on forest use grew as <strong>the</strong> technology for cutt<strong>in</strong>g and process<strong>in</strong>g<br />

large diameter trees developed, and forests were <strong>in</strong>tensively used<br />

for graz<strong>in</strong>g, burn<strong>in</strong>g charcoal, litter rak<strong>in</strong>g, etc. The bad state of <strong>the</strong><br />

forests and a loom<strong>in</strong>g energy collapse (coal was not yet a standard<br />

source of energy) led to issu<strong>in</strong>g <strong>the</strong> so-called Theresian patents (<strong>in</strong><br />

1754 and 1756), which meant a fundamental change <strong>in</strong> <strong>the</strong> society’s<br />

view of forests <strong>in</strong> <strong>the</strong> 18 th century. Forest uses dim<strong>in</strong>ish<strong>in</strong>g yields and<br />

degrad<strong>in</strong>g <strong>the</strong> production potential were restricted (e.g. litter rak<strong>in</strong>g,<br />

graz<strong>in</strong>g, etc.), and forest management regulations were <strong>in</strong>troduced,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> first forest management plans.<br />

Plann<strong>in</strong>g played a major role <strong>in</strong> <strong>the</strong> change of forest conditions.<br />

Thanks to <strong>the</strong> application of procedures adopted from <strong>the</strong> German<br />

forestry school, open and untended stands were restored accord<strong>in</strong>g<br />

to a plan, primarily by <strong>the</strong> plant<strong>in</strong>g of Norway Spruce (Picea abies)<br />

and Scots P<strong>in</strong>e (P<strong>in</strong>us sylvestris). These long-term, targeted efforts not<br />

only provided <strong>the</strong> expected results <strong>in</strong> gradually <strong>in</strong>creas<strong>in</strong>g production<br />

(growth <strong>in</strong>crement) and <strong>in</strong>stantly rais<strong>in</strong>g timber supplies <strong>in</strong> forests,<br />

but also led to <strong>the</strong> creation of standardised, production-focused forestry.<br />

Thus forestry entered <strong>the</strong> 19 th century as an established form of<br />

human activity. It also conditioned <strong>the</strong> current state of our forests. In<br />

that time <strong>the</strong> production advantages of us<strong>in</strong>g spruce and p<strong>in</strong>e were<br />

unquestioned, although repeated regeneration of coniferous monocultures<br />

soon began to show its drawbacks: soil podzolisation and<br />

correspond<strong>in</strong>g decrease <strong>in</strong> potential soil production, a significant decl<strong>in</strong>e<br />

<strong>in</strong> forest stability due to biotic and abiotic factors, and of course a<br />

decrease <strong>in</strong> forest stand biodiversity. Due to <strong>the</strong>se changes many forest<br />

species are currently decl<strong>in</strong><strong>in</strong>g rapidly and are endangered, some have<br />

even gone ext<strong>in</strong>ct (Farkač et al. 2005).<br />

Forest <strong>restoration</strong> rehabilitat<strong>in</strong>g<br />

functional ecosystems<br />

In <strong>the</strong> second half of <strong>the</strong> 20 th century conditions worsened, and<br />

<strong>the</strong> acid ra<strong>in</strong> catastrophe which struck <strong>the</strong> <strong>Czech</strong> Sudeten Range<br />

clearly <strong>in</strong>dicated that <strong>the</strong> state of <strong>the</strong> forests needed improvement. Research<br />

aimed at <strong>restoration</strong> of <strong>the</strong> pollution-stricken forests started <strong>in</strong><br />

<strong>the</strong> former <strong>Czech</strong>oslovakia <strong>in</strong> <strong>the</strong> 1960s. From today’s po<strong>in</strong>t of view<br />

Fig. 1. <br />

Forests 13


Fig. 2. <br />

<br />

<strong>the</strong> application of its f<strong>in</strong>d<strong>in</strong>gs were <strong>the</strong> first tangible results of forest<br />

<strong>restoration</strong> management and <strong>restoration</strong> ecology <strong>in</strong> a broader sense.<br />

The ma<strong>in</strong> issue here was <strong>the</strong> re<strong>in</strong>statement of basic forest functions.<br />

Restoration of <strong>the</strong> production potential was to be <strong>the</strong> ic<strong>in</strong>g on <strong>the</strong> cake<br />

and was, <strong>in</strong> <strong>the</strong> earliest stages, not a goal considered to be atta<strong>in</strong>able<br />

<strong>in</strong> <strong>the</strong> near future. A good example is <strong>the</strong> <strong>restoration</strong> of forests <strong>in</strong> <strong>the</strong><br />

Jestřebí Mounta<strong>in</strong>s <strong>in</strong> <strong>the</strong> Trutnov region (Tesař et al. 2011).<br />

In protected areas <strong>the</strong> acid ra<strong>in</strong> catastrophe <strong>in</strong> mounta<strong>in</strong> forests<br />

was ano<strong>the</strong>r reason for <strong>the</strong> first extensive forest <strong>restoration</strong>. The<br />

Krkonoše National Park, <strong>in</strong> existence s<strong>in</strong>ce 1963, was one of <strong>the</strong> most<br />

affected areas, where 8,000 ha of forest were destroyed. In 1992–2001<br />

<strong>the</strong> most extensive and costly action aimed at restor<strong>in</strong>g forest functions<br />

and natural forest conditions ever taken <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

was carried out here. Thanks to f<strong>in</strong>ancial support of <strong>the</strong> Dutch FACE<br />

Foundation 5,200 ha of forest were restored (i.e. natural species composition<br />

and spatial differentiation of stands, lead<strong>in</strong>g to development<br />

of natural conditions). FACE <strong>in</strong>vested USD 19.5 million <strong>in</strong>to this project<br />

(Anonymus 1998). Forest <strong>restoration</strong> management projects were<br />

also started up <strong>in</strong> o<strong>the</strong>r protected areas, such as <strong>the</strong> Jizera Mts. and<br />

<strong>the</strong> Eagle Mts.<br />

Purpose and aims of forest<br />

<strong>restoration</strong> management<br />

The plann<strong>in</strong>g and implementation of <strong>restoration</strong> management <strong>in</strong><br />

forests affected by air pollution (ei<strong>the</strong>r <strong>in</strong> protected areas or outside of<br />

<strong>the</strong>m) was automatically perceived as unquestionable and to be undertaken<br />

without delay. In <strong>the</strong> earliest stages, however, <strong>the</strong> aims of<br />

<strong>restoration</strong> management on <strong>the</strong> general level were not dealt with. A<br />

major change <strong>in</strong> <strong>the</strong> competency of state nature conservation authorities<br />

codified <strong>in</strong> <strong>the</strong> Act on Nature and Landscape Protection enabled<br />

a rapid start to take measures <strong>in</strong> forests <strong>in</strong> protected areas (Anonymus<br />

2011a). It <strong>the</strong>n became necessary to answer basic questions about <strong>the</strong><br />

purpose and aims of <strong>restoration</strong> management.<br />

Generally, forest <strong>restoration</strong> management can be broken down<br />

<strong>in</strong>to three approaches, each with different aims relat<strong>in</strong>g to different<br />

functions of <strong>the</strong> forests to be restored:<br />

1. Forest <strong>restoration</strong> to rehabilitate a functional ecosystem without<br />

emphasis<strong>in</strong>g production functions. This is exemplified by <strong>the</strong> situation<br />

<strong>in</strong> <strong>the</strong> Jestřebí Mts. (see above), where part of <strong>the</strong> strategy is<br />

also <strong>the</strong> <strong>restoration</strong> of <strong>the</strong> previously stable production potential.<br />

These cases of <strong>restoration</strong> management are not limited to protected<br />

areas.<br />

2. Conversion to a near-natural forest, subsequently leav<strong>in</strong>g <strong>the</strong><br />

forest to spontaneous development. Th is is, <strong>in</strong> contrast, almost<br />

always applicable to forests <strong>in</strong> protected areas and with specific<br />

aims. None<strong>the</strong>less, of <strong>the</strong> three approaches, this one has been least<br />

applied. A special variant of this approach is “zero management”,<br />

i.e. spontaneous regeneration of forest where strong disturbances<br />

have taken place ei<strong>the</strong>r <strong>in</strong> large areas or affect<strong>in</strong>g basic forest functions<br />

(such as w<strong>in</strong>d damage followed by bark beetle <strong>in</strong>festations,<br />

or fires). The ecosystem is <strong>in</strong> its <strong>in</strong>itial development phase, but its<br />

<strong>restoration</strong> is left to <strong>the</strong> spontaneous effects of natural forces. Here<br />

man is merely an observer of <strong>the</strong> phenomena tak<strong>in</strong>g place.<br />

3. Restoration of forests to a certa<strong>in</strong> state (even if conditioned by<br />

man) allow<strong>in</strong>g endangered species to survive and requir<strong>in</strong>g longterm,<br />

more-or-less active management, i.e. <strong>restoration</strong> management<br />

with protection of biological diversity as <strong>the</strong> priority. This<br />

approach is currently mostly applied to forests <strong>in</strong> protected areas,<br />

but this does not always have to be <strong>the</strong> case. Even <strong>the</strong> Forest Act<br />

def<strong>in</strong>es a category of ‘Special-purpose forests’, with ‘Forests necessary<br />

for preserv<strong>in</strong>g biodiversity’ as a subcategory.<br />

Forest <strong>restoration</strong> aimed at leav<strong>in</strong>g <strong>the</strong><br />

forest to spontaneous development<br />

If Approach 1 represents <strong>the</strong> <strong>restoration</strong> of mounta<strong>in</strong> ecosystems,<br />

<strong>the</strong>n Approach 2 typically <strong>in</strong>cludes <strong>in</strong>troduction of miss<strong>in</strong>g tree species<br />

important for development dynamics, and spatial management<br />

of forest stands, which are <strong>the</strong>n left to develop spontaneously. In<br />

1992–2012, miss<strong>in</strong>g or underrepresented fi r was most often <strong>in</strong>troduced,<br />

or <strong>in</strong> some cases supported, <strong>in</strong> stands dom<strong>in</strong>ated by beech <strong>in</strong><br />

forest reserves. This is a very good illustration of forests hav<strong>in</strong>g been<br />

<strong>in</strong>fluenced by man <strong>in</strong> various ways (selective cutt<strong>in</strong>g, occasional graz<strong>in</strong>g,<br />

occasional removal of decompos<strong>in</strong>g wood, or formerly managed<br />

beech stands on fir–beech sites surrounded by spruce monocultures),<br />

which have been designated protected areas with <strong>the</strong> aim of remediat<strong>in</strong>g<br />

<strong>the</strong>ir state and <strong>the</strong>n leav<strong>in</strong>g <strong>the</strong>m to spontaneous development<br />

(Vrška et al. 2002). Fir is ei<strong>the</strong>r actively <strong>in</strong>troduced to stands by underplant<strong>in</strong>g<br />

<strong>the</strong> beech storey or to small areas affected by disturbance.<br />

At o<strong>the</strong>r sites where part of <strong>the</strong> orig<strong>in</strong>al population has rema<strong>in</strong>ed,<br />

natural regeneration of fir is supported, ei<strong>the</strong>r by passive protection<br />

from wildlife brows<strong>in</strong>g, or actively by <strong>in</strong>crement th<strong>in</strong>n<strong>in</strong>g <strong>in</strong> <strong>the</strong> beech<br />

storey.<br />

Nature conservation authorities and forestry organisations are<br />

more or less <strong>in</strong> agreement on <strong>the</strong>se procedures, however <strong>the</strong>re is certa<strong>in</strong>ly<br />

less agreement on <strong>the</strong> question of what state forests should be<br />

left <strong>in</strong> for spontaneous development. There is of course no s<strong>in</strong>gle answer<br />

to this question. In <strong>the</strong> field of forest <strong>restoration</strong> management<br />

it is however an issue which has yet to be assessed comprehensively,<br />

both with<strong>in</strong> and outside of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

14 Forests


Forest <strong>restoration</strong> management<br />

for biodiversity protection<br />

The youngest, yet very important, approach to forest <strong>restoration</strong><br />

management is Approach 3, which was developed <strong>in</strong> nature conservation<br />

at <strong>the</strong> end of <strong>the</strong> 20 th century <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. The preservation,<br />

<strong>restoration</strong>, and subsequent stabilisation of forest biodiversity,<br />

especially when endangered species are <strong>in</strong>volved, mostly concerns<br />

low-altitude forests, i.e. forests located under <strong>the</strong> beech wood belt. In<br />

contrast to forests at mid-level altitudes, <strong>the</strong>se forests are not characterised<br />

by a dramatic change <strong>in</strong> tree species composition, but by longterm<br />

<strong>in</strong>tensive forest management compris<strong>in</strong>g of coppice systems with<br />

short rotation periods to produce fuel wood, agroforestry, pastur<strong>in</strong>g<br />

<strong>in</strong> forests, prun<strong>in</strong>g of branches to create hollows <strong>in</strong> tree trunks, etc.<br />

Man’s <strong>in</strong>tensive and long-last<strong>in</strong>g <strong>in</strong>fluence <strong>in</strong>clud<strong>in</strong>g a wide variety<br />

of forest management techniques has allowed for <strong>the</strong> survival of<br />

species dependent on sunnier and warmer microhabitats. In <strong>the</strong> 1950s<br />

coppic<strong>in</strong>g was strongly limited <strong>in</strong> order to <strong>in</strong>crease forest productivity<br />

and <strong>the</strong> cultivation of species of higher quality. It is now only used for<br />

black locust control, primarily <strong>in</strong> South Moravia. Oak and hornbeam<br />

coppice forests have been converted us<strong>in</strong>g whole-area soil preparation<br />

after which <strong>the</strong>y were reforested with p<strong>in</strong>e. At sites adjacent to stands<br />

where oak is managed, no change <strong>in</strong> species composition has taken<br />

place, but for example standard large-scale oak shelterwood systems,<br />

although not pos<strong>in</strong>g problems <strong>in</strong> terms of production and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> production potential of <strong>the</strong> site, do not create sufficient conditions<br />

for <strong>the</strong> survival of critically endangered <strong>in</strong>sect species.<br />

Therefore, <strong>restoration</strong> management forms focus<strong>in</strong>g on protect<strong>in</strong>g<br />

biodiversity have met with varied reactions. Currently this issue<br />

is dealt with by means of experiments with forest graz<strong>in</strong>g (<strong>in</strong> <strong>the</strong> Bohemian<br />

Karst PLA and Podyjí NP) and to a somewhat greater extent<br />

with restor<strong>in</strong>g coppice systems (at Křt<strong>in</strong>y Tra<strong>in</strong><strong>in</strong>g Forest Enterprise<br />

of Mendel University Brno and <strong>in</strong> Podyjí NP).<br />

From <strong>the</strong> perspective of biodiversity <strong>the</strong>re is also a clear <strong>in</strong>congruity<br />

between active management us<strong>in</strong>g old management techniques<br />

and leav<strong>in</strong>g forests to spontaneous development. This is caused <strong>in</strong>ter<br />

alia by <strong>the</strong> fact that, logically, we do not have ‘traditional’ forest reserves<br />

at lower elevations, <strong>in</strong> contrast to mid-altitude and mounta<strong>in</strong><br />

regions (e.g. Žofín and Boubín Virg<strong>in</strong> Forests). Therefore, we do not<br />

yet have knowledge about <strong>the</strong> disturbance dynamics of forests below<br />

<strong>the</strong> beech vegetation zone. At <strong>the</strong> same time, forests <strong>in</strong>fluenced by<br />

man secondarily left to spontaneous development have not yet had<br />

sufficient time for disturbance patterns to develop fully: zero management<br />

pr<strong>in</strong>ciples have been used here for not more than a few decades.<br />

In contrast to lower altitudes, <strong>the</strong> <strong>restoration</strong> of biodiversity at<br />

middle and high altitudes is l<strong>in</strong>ked to forests which we consider natural<br />

(Miko & Hošek 2009) and where <strong>the</strong>re is no fundamental conflict<br />

between zero management or m<strong>in</strong>imal ma<strong>in</strong>tenance management<br />

and biodiversity. Here, biodiversity is l<strong>in</strong>ked to decompos<strong>in</strong>g wood<br />

and to <strong>the</strong> natural species composition of forests.<br />

Future issues<br />

Of <strong>the</strong> total forest area of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, 28.4% is located <strong>in</strong><br />

protected areas (Anonymus 2011a). One of <strong>the</strong> ma<strong>in</strong> issues for <strong>the</strong><br />

future is clarify<strong>in</strong>g <strong>the</strong> aims of <strong>restoration</strong> management, especially <strong>in</strong><br />

protected areas, a process which is tak<strong>in</strong>g place alongside <strong>the</strong> gradual<br />

renewal of management plans for each area. These plans can lead to<br />

fur<strong>the</strong>r decisions about <strong>the</strong> management methods to be used.<br />

Forests left to spontaneous development form a specific subgroup.<br />

They currently make up 0.95% of <strong>the</strong> forest area, and consensus has<br />

yet to be reached on <strong>the</strong>ir total target area (for example, <strong>in</strong> 2011, a<br />

Fig. 3. <br />

Forests 15


Fig. 4. <br />

<br />

proposal of 4% was not accepted by <strong>the</strong> coord<strong>in</strong>at<strong>in</strong>g committee of<br />

National Forest Programme II). The question <strong>in</strong> what state we want to<br />

leave <strong>restoration</strong> management forests for future spontaneous development<br />

still needs a comprehensive study.<br />

A more serious issue is that of select<strong>in</strong>g a method of permanent<br />

forest management <strong>in</strong> protected areas and outside <strong>the</strong>m – especially<br />

<strong>in</strong> special-purpose forests for <strong>the</strong> preservation of biodiversity. As opposed<br />

to forests <strong>in</strong>tentionally left to spontaneous development, which<br />

will never make up more than a few percent of <strong>the</strong> forest area, <strong>the</strong><br />

forest area <strong>in</strong> protected areas with permanent management will exceed<br />

20%. Their specific management, especially <strong>in</strong> low-altitude areas,<br />

is l<strong>in</strong>ked with <strong>the</strong> adoption of earlier management forms (e.g.<br />

coppice systems), as well as with compensation for loss of profit for<br />

non-state forest owners due to nature conservation measures. In<br />

state-owned forests, a clear policy should be adopted for register<strong>in</strong>g<br />

<strong>the</strong> profit loss by entities operat<strong>in</strong>g <strong>in</strong> <strong>the</strong>m as well as for disputable<br />

subsequent state-to-state payments (Nature Conservation Agency of<br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). Consider<strong>in</strong>g assumed future limits on f<strong>in</strong>ancial<br />

resources for special-purpose forest management, today most attention<br />

should be focused on select<strong>in</strong>g important biodiversity protection<br />

areas, which will be given fund<strong>in</strong>g priority to preserve specific forms<br />

of management.<br />

Four case studies <strong>in</strong> forest <strong>restoration</strong> management present examples<br />

of both spontaneous processes (through zero management) as<br />

well as <strong>the</strong> results of long-term active approaches <strong>in</strong> forest <strong>restoration</strong>.<br />

These examples come from mounta<strong>in</strong> forests and low-altitude forests.<br />

The study of mounta<strong>in</strong> forest <strong>restoration</strong> <strong>in</strong> <strong>the</strong> Jizera Mts. presents <strong>the</strong><br />

results of 20 years of restor<strong>in</strong>g mounta<strong>in</strong> ecosystems damaged by air<br />

pollution <strong>in</strong> a protected landscape area. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> study<br />

from <strong>the</strong> Šumava Mts. gives an example of spontaneous regeneration<br />

of a mounta<strong>in</strong> forest after large-scale disturbance <strong>in</strong> <strong>the</strong> Core Zone of<br />

Šumava NP. A rare, and <strong>the</strong>refore important, example of spontaneous<br />

forest development after fire comes from Bohemian Switzerland<br />

(České Švýcarsko) NP. Forest <strong>restoration</strong> management <strong>in</strong> <strong>the</strong> Podyjí<br />

NP is presented as a case of gradual conversion of forests earlier dom<strong>in</strong>ated<br />

by p<strong>in</strong>e to mixed deciduous forests with a rich spatial structure<br />

<strong>in</strong> order to protect <strong>the</strong> biodiversity of low-altitude forests.<br />

References<br />

Anonymus (1998): Forest rehabilitation <strong>in</strong> Krkonoše and Šumava<br />

National Parks. F<strong>in</strong>al report. – United Nations Framework Convention<br />

on Climate Change. (Available at: http://unfccc.<strong>in</strong>t/kyoto_mechanisms/aij/activities_implemented_jo<strong>in</strong>tly/items/1976.<br />

php & http://unfccc.<strong>in</strong>t/kyoto_mechanisms/aij/activities_implemented_jo<strong>in</strong>tly/items/1729.php;<br />

version February 2012)<br />

Anonymus (2011a): Aktualizace státního programu ochrany přírody<br />

a kraj<strong>in</strong>y České republiky (Update of <strong>the</strong> State Programme for<br />

Nature and Landscape Protection). – M<strong>in</strong>isterstvo ž ivotního<br />

prostředí, Praha.<br />

Anonymus (2011b): Zpráva o stavu lesa a lesního hospodářství<br />

České republiky v roce 2010 (Report on <strong>the</strong> state of forests and<br />

forest management <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> 2010). – M<strong>in</strong>isterstvo<br />

zemědělství, Praha.<br />

Farkač J., Král D. & Škorpík M. (eds) (2005): Červený seznam<br />

ohrožených druhů České republiky. Bezobratlí. (Red list of threatened<br />

species <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Invertebrates). – Agentura<br />

ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Miko L. & Hošek M. (2009): Příroda a kraj<strong>in</strong>a České republiky – zpráva<br />

o stavu 2009 (Report on <strong>the</strong> state of nature and landscape of<br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> 2009). – Agentura ochrany přírody a kraj<strong>in</strong>y<br />

ČR, Praha.<br />

Tesař V., Balcar V., Lochman V. & Nehyba J. (2011): Přestavba lesa<br />

zasaženého imisemi na Trutnovsku (Conversion of forest affected<br />

by air pollution <strong>in</strong> <strong>the</strong> region of Trutnov). – Mendelova univerzita,<br />

Brno.<br />

Vrška T., Hort L., Adam D., Odehnalová P. & Horal D. (2002): Developmental<br />

dynamics of virg<strong>in</strong> forest reserves <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

I – The Českomoravská vrchov<strong>in</strong>a Upland (Polom, Žákova hora<br />

Mt.). – Academia, Praha.<br />

Fig. 5. <br />

<br />

16 Forests


Active <strong>restoration</strong> and management of forest habitats<br />

<br />

With more than a third of its area covered by forests, <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong> is among <strong>the</strong> European countries with a high forest cover,<br />

and woodland organisms constitute a substantial portion of its biodiversity.<br />

<strong>Czech</strong> forest cover <strong>in</strong>creased from ~25% to 33.7% between<br />

1790 and 2010, and <strong>the</strong> stand<strong>in</strong>g timber stock per unit area nearly<br />

doubled between 1930 and 2010. More than half of <strong>the</strong> forests is<br />

owned by <strong>the</strong> state and run by state-owned companies. Over a quarter<br />

is part of conservation areas. Some forest reserves belong to <strong>the</strong> oldest<br />

on <strong>the</strong> cont<strong>in</strong>ent and date back to <strong>the</strong> mid-19 th century.<br />

The above picture seems optimistic not only <strong>in</strong> comparison with<br />

<strong>the</strong> usual reports on forest destruction <strong>in</strong> <strong>the</strong> tropics, but thanks to <strong>the</strong><br />

large share of state forests also <strong>in</strong> comparison with western Europe,<br />

where state-owned land is ra<strong>the</strong>r easily accessible to nature conservation.<br />

However, <strong>the</strong> picture drawn by <strong>in</strong>formation on <strong>the</strong> state of forest<br />

biodiversity based on facts from distribution atlases and o<strong>the</strong>r biological<br />

data is strongly different. Not only has forest expansion taken<br />

a dramatic toll on non-forest biodiversity, <strong>the</strong> newly created forests<br />

are also biologically <strong>in</strong>ferior. This, toge<strong>the</strong>r with a dramatic decl<strong>in</strong>e<br />

<strong>in</strong> old-forest biodiversity, contributes to <strong>the</strong> fact that many forestdwell<strong>in</strong>g<br />

organisms are highly endangered or locally ext<strong>in</strong>ct, although<br />

<strong>the</strong>y were common some 50–100 years ago (Beneš et al. 2002, Farkač<br />

et al. 2005, Konvička et al. 2005). The ra<strong>the</strong>r peculiar fact that most<br />

forests <strong>in</strong> conservation areas are production forests managed under a<br />

uniform clear-cut system is only partly to blame for <strong>the</strong> current poor<br />

forest biodiversity.<br />

Fig. 1. <br />

-<br />

<br />

Fig. 2. <br />

<br />

<br />

Naturally, conifers would constitute ~35% of trees <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

forests, with Silver Fir (Abies alba) account<strong>in</strong>g for nearly two thirds<br />

and Norway Spruce (Picea abies) nearly a third of all conifers. Today,<br />

however, conifers cover ~75%, and spruce alone more than half of<br />

forested land. While silver fir cover has decl<strong>in</strong>ed to


nature reserves and o<strong>the</strong>r protected forests. The virtually only alternative<br />

to clear-cutt<strong>in</strong>g <strong>in</strong> forests of protected areas used to be absence of<br />

active management. This has led to <strong>in</strong>creased canopy closure and decl<strong>in</strong>e<br />

of disturbance-dependent species. The vital role of disturbances<br />

<strong>in</strong> susta<strong>in</strong><strong>in</strong>g biodiversity, and thus <strong>the</strong> key role of an active approach<br />

to <strong>the</strong> management of habitats of many endangered species have yet to<br />

be fully recognised <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

Wood pasture<br />

Pasture of domesticated animals <strong>in</strong> forests has been banned from<br />

<strong>the</strong> territory of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> for more than 250 years. With <strong>the</strong><br />

exception of some fragments found <strong>in</strong> game reserves, grazed woodlands<br />

are thus virtually non-existent here. Serv<strong>in</strong>g as hunt<strong>in</strong>g grounds<br />

for <strong>the</strong> nobility, game reserves have often been spared from logg<strong>in</strong>g<br />

and fuel extraction. In <strong>the</strong> past century, <strong>the</strong>y have also been partly<br />

spared from forestry <strong>in</strong>tensification, <strong>in</strong>creased canopy closure and related<br />

changes. The fragments of pasture woodlands <strong>in</strong> game reserves<br />

thus host a number of highly threatened organisms associated with<br />

open woodlands, old trees and dead wood. Last century, <strong>the</strong> game<br />

reserves fell <strong>in</strong>to state hands, and many are still owned by <strong>the</strong> state.<br />

Today, despite <strong>the</strong>ir high value for biodiversity conservation, many<br />

game reserves lack any relevant protection status. Due to a recent <strong>in</strong>crease<br />

<strong>in</strong> demand for revenues from state-owned forests, even <strong>the</strong> last<br />

fragments of grazed forests are <strong>in</strong> serious danger of, or are already succumb<strong>in</strong>g<br />

to clear-cutt<strong>in</strong>g and replacement by plantation-like stands<br />

with a closed canopy.<br />

Although giant oaks and silver firs – typical attributes of pasture<br />

woodlands – have always drawn attention, nature conservation <strong>in</strong> <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong> has yet to realise <strong>the</strong> importance of wood pasture.<br />

Many formerly grazed woodlands have been designated reserves of<br />

“virg<strong>in</strong>” or “primeval” forest; whereby <strong>the</strong> presence of massive trees<br />

often served as evidence of forest “virg<strong>in</strong>ity”. Hands-off management<br />

applied to such forest reserves has led to an <strong>in</strong>evitable biodiversity<br />

decrease due to canopy closure, substitution of <strong>the</strong> ma<strong>in</strong> tree species<br />

(oak, fir) by o<strong>the</strong>r species, and to gradual disappearance of tree veterans<br />

(e.g. Vrška et al. 2002, Vrška et al. 2006) and o<strong>the</strong>r valuable habitats.<br />

After it had been prohibited by law for more than two centuries,<br />

it is no wonder that wood pasture is return<strong>in</strong>g pa<strong>in</strong>stak<strong>in</strong>gly slowly.<br />

Follow<strong>in</strong>g nearly a decade of discussions with<strong>in</strong> <strong>the</strong> conservation<br />

community, wood pasture was started only recently as an experiment<br />

ra<strong>the</strong>r than management <strong>in</strong> Podblanicko, <strong>the</strong> Bohemian Karst near<br />

Prague, and Podyjí NP along <strong>the</strong> upper Dyje (Thaya) river.<br />

Coppic<strong>in</strong>g<br />

The only actively coppiced woodlands today are stands of exotic,<br />

<strong>in</strong>vad<strong>in</strong>g black locust (Rob<strong>in</strong>ia pseudacacia), which have no conservation<br />

value. Never<strong>the</strong>less, coppices uncut for over 50 years currently<br />

cover several thousand hectares, mostly <strong>in</strong> lowlands and foothills.<br />

Although many open woodland specialists have disappeared, <strong>the</strong> old<br />

coppices still reta<strong>in</strong> cont<strong>in</strong>uity and are key habitats for a number of<br />

endangered organisms, <strong>in</strong>clud<strong>in</strong>g e.g. Stag Beetle (Lucanus cervus),<br />

Violet Click Beetle (Limoniscus violaceus) and Lady's-Slipper Orchid<br />

(Cypripedium calceolus). Ra<strong>the</strong>r than be<strong>in</strong>g restored, <strong>the</strong> old coppices<br />

are often clear-cut and replanted, even <strong>in</strong> conservation areas. In most<br />

nature reserves and national parks, on <strong>the</strong> o<strong>the</strong>r hand, coppices are<br />

be<strong>in</strong>g sacrificed to succession.<br />

After nearly hav<strong>in</strong>g been forgotten, coppic<strong>in</strong>g was re<strong>in</strong>troduced <strong>in</strong><br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> as a hot novelty by <strong>the</strong> end of last century. Active<br />

coppic<strong>in</strong>g was first restored near <strong>the</strong> town of Moravsky Krumlov <strong>in</strong><br />

<strong>the</strong> mid-1990s. Led by economic ra<strong>the</strong>r than conservation reasons, it<br />

was <strong>the</strong> first and by far <strong>the</strong> largest (>100 ha) attempt to date (Ut<strong>in</strong>ek<br />

2004). However, <strong>the</strong> area has now been destroyed by clear-cutt<strong>in</strong>g. Recently,<br />

coppic<strong>in</strong>g was restored <strong>in</strong> <strong>the</strong> Bohemian Karst, Moravian Karst<br />

and Pálava PLAs, and <strong>in</strong> Podyjí NP. Active coppices are conf<strong>in</strong>ed to<br />

small areas of mostly 1–2 ha, and coppic<strong>in</strong>g has yet to be accepted<br />

as conservation management and a sometimes even economically viable,<br />

nature-friendly alternative to commercial forest management.<br />

Pollard<strong>in</strong>g<br />

Although pollarded trees were much more common <strong>in</strong> <strong>the</strong> past,<br />

pollard<strong>in</strong>g is still <strong>the</strong> most widespread traditional woodland management<br />

<strong>in</strong> <strong>the</strong> country. Pollarded willows (Salix sp.) are found <strong>in</strong> many<br />

areas, mostly <strong>in</strong> or near towns and villages. In extensively managed<br />

agricultural landscapes or human settlements, pollards often facilitate<br />

survival of fauna associated with veteran trees and tree hollows, <strong>in</strong>clud<strong>in</strong>g<br />

e.g. Hermit Beetle (Osmoderma barnabita), Red Click Beetle<br />

(Elater ferrug<strong>in</strong>eus) and Stag Beetle (Lucanus cervus) (Šebek et al.<br />

2010). Thanks to a recent <strong>in</strong>crease <strong>in</strong> fuel-wood prices, pollard<strong>in</strong>g is<br />

probably <strong>the</strong> most commonly restored traditional woodland management.<br />

Conclusion<br />

The past decade has seen efforts by a grow<strong>in</strong>g number of conservationists<br />

and forestry experts <strong>in</strong> <strong>in</strong>troduc<strong>in</strong>g active conservation<br />

management <strong>in</strong> woodlands <strong>in</strong> protected areas. However, <strong>the</strong> process is<br />

<br />

<br />

Fig. 3, 4. <br />

<br />

<br />

18 Forests


Fig. 5, 6. <br />

<br />

<br />

<br />

<br />

slow, mostly due to reluctance of <strong>the</strong>ir more conservative colleagues.<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> rapid decrease <strong>in</strong> biodiversity <strong>in</strong> conservation<br />

areas makes it <strong>in</strong>evitable to shift <strong>the</strong> emphasis from conservation of<br />

vaguely def<strong>in</strong>ed communities and “natural” processes to evidencebased<br />

biodiversity conservation. Although not much has been done<br />

<strong>in</strong> <strong>the</strong> field dur<strong>in</strong>g <strong>the</strong> past decade, <strong>the</strong> attitude of <strong>the</strong> professionals<br />

concerned, <strong>in</strong>clud<strong>in</strong>g biologists, conservationists and foresters, has<br />

substantially changed. The road to <strong>restoration</strong> of traditional woodland<br />

management and active biodiversity conservation <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

woodlands is certa<strong>in</strong>ly not free of obstacles. It is, however, open.<br />

Acknowledgements<br />

Most of <strong>the</strong> data on forests <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> are <strong>the</strong> result of<br />

<strong>the</strong> Forest Inventory performed by <strong>the</strong> Forest Management Institute,<br />

Brandys nad Labem (www.uhul.cz), and are available on its website.<br />

Mart<strong>in</strong> Škorpík and Dušan Ut<strong>in</strong>ek k<strong>in</strong>dly supplied <strong>the</strong> most recent <strong>in</strong>formation<br />

on <strong>the</strong> progress of traditional woodland management <strong>restoration</strong>.<br />

Tomáš Vrška k<strong>in</strong>dly commented on <strong>the</strong> manuscript. The author<br />

was supported by <strong>the</strong> <strong>Czech</strong> M<strong>in</strong>istry of Education (6007665801,<br />

LC06073).<br />

Ut<strong>in</strong>ek D. (2004): Conversions of coppices to a coppice-with-standards<br />

<strong>in</strong> Urban Forests of Moravský Krumlov. – Journal of Forest<br />

Science 50: 38–46.<br />

Vrška T., Hort L., Adam D., Odehnalová P. & Horal D. (2002): Dynamika<br />

vývoje pralesovitých rezervací v ČR I – Českomoravská vrchov<strong>in</strong>a<br />

(Polom, Žákova hora) (Developmental dynamics of virg<strong>in</strong><br />

forest reserves <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> I – The Českomoravská<br />

vrchov<strong>in</strong>a Upland). – Academia, Praha.<br />

Vrška T., Hort L., Adam D., Odehnalová P., Král K. & Horal D. (2006):<br />

Dynamika vývoje pralesovitých rezervací v Č R II – Lužní lesy<br />

(Cahnov-Soutok, Ranšpurk, Jiř<strong>in</strong>a) (Developmental dynamics<br />

of virg<strong>in</strong> forest reserves <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> II – The lowland<br />

floodpla<strong>in</strong> forests). – Academia, Praha.<br />

References<br />

Beneš J., Konvička M., Dvořák J., Fric Z., Havelda Z., Pavlíčko A.,<br />

Vrabec V. & Weidenhoffer Z. (2002): Motýli České republiky:<br />

Rozšíření a ochrana I, II (Butterflies of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>: distribution<br />

and conservation I, II). – Společnost pro ochranu motýlů,<br />

Praha.<br />

Farkač J., Král D. & Škorpík M. (eds) (2005): Červený seznam<br />

ohrožených druhů České republiky. Bezobratlí. Red list of threatened<br />

species <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Invertebrates. – Agentura<br />

ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Konvička M., Beneš J. & Čížek L. (2005): Ohrožený hmyz nelesních<br />

stanovišť: ochrana a management (Endangered <strong>in</strong>sects of open<br />

habitats: conservation and management). – Sagittaria, Olomouc.<br />

Šebek P., Čížek L., Hauck D. & Schlaghamerský J. (2010): Viability of<br />

an Osmoderma barnabita population <strong>in</strong> a pollard willow stand<br />

at Vojkovice (<strong>Czech</strong> <strong>Republic</strong>). – In: Anonymus (ed.), 6th European<br />

symposium and workshop on <strong>the</strong> conservation of saproxylic<br />

beetles, June 15–17, 2010, Ljubljana, pp. 18–19, University of Ljubljana,<br />

Biotechnical Faculty, Ljubljana.<br />

Forests 19


Conversion of p<strong>in</strong>e monocultures to mixed deciduous forests <strong>in</strong> Podyjí<br />

National Park<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs Ca. €240/ha <strong>in</strong> 1992–2008<br />

Podyjí NP, sou<strong>the</strong>ast <strong>Czech</strong> <strong>Republic</strong>, on <strong>the</strong> border with Austria<br />

48°52'32" N, 15°53'25" E; altitude 375–430 m<br />

NP, SCI<br />

<br />

Hercynian oak-hornbeam forests (Carp<strong>in</strong>ion), Herb-rich beech forests (Fagion sylvaticae)<br />

Approx. 900 ha <strong>in</strong> <strong>the</strong> central part of <strong>the</strong> NP, 96 ha of which <strong>in</strong> <strong>the</strong> Pyramida experimental area<br />

Landscape management programmes, operational budget of <strong>the</strong> Podyjí NP Authority<br />

Initial conditions<br />

Young forests used to consist ma<strong>in</strong>ly of coniferous monocultures<br />

(P<strong>in</strong>us sylvestris, Picea abies). Medium-aged and older forests were<br />

more often mixed – two-layered – with conifers <strong>in</strong> <strong>the</strong> ma<strong>in</strong> layer (P<strong>in</strong>us<br />

sylvestris, Picea abies, Larix decidua), and broad-leaved trees <strong>in</strong><br />

<strong>the</strong> sublayer (Quercus petraea, Carp<strong>in</strong>us betulus, Tilia cordata etc.).<br />

Most deciduous trees developed from coppice because <strong>the</strong> mature coniferous<br />

layer was <strong>the</strong> first generation after mixed broad-leaved coppice<br />

had been converted. Deciduous forests with or without a m<strong>in</strong>or<br />

admixture of conifers represented a smaller part of <strong>the</strong> area. They<br />

were mostly oak woods and mixed hornbeam–oak forests. The texture<br />

of <strong>the</strong> forests was not highly differentiated and consolidated <strong>in</strong>to<br />

larger blocks; structural differentiation was limited to a maximum of<br />

two layers (ma<strong>in</strong> layer coniferous, sub-layer deciduous), tree species<br />

composition significantly lacked Fagus sylvatica, and <strong>the</strong>re was no<br />

deadwood <strong>in</strong> <strong>the</strong> form of stand<strong>in</strong>g or ly<strong>in</strong>g dead logs left <strong>in</strong> situ.<br />

Objectives<br />

The end goal of our conversion efforts is structurally differentiated<br />

mixed deciduous forest with a f<strong>in</strong>er structure and more ragged edges.<br />

In its ma<strong>in</strong> aspects <strong>the</strong> tree species composition should approach <strong>the</strong><br />

potential composition.<br />

1. The ma<strong>in</strong> part of <strong>the</strong>se forest stands will be left to spontaneous<br />

development.<br />

2. The stands located <strong>in</strong> <strong>the</strong> Buffer Zone of <strong>the</strong> NP will be cont<strong>in</strong>ually<br />

managed. In <strong>the</strong>se stands special attention is paid to <strong>the</strong> presence<br />

of admixed species (Prunus avium, Pyrus communis, Sorbus<br />

spp., etc.). Trees of <strong>the</strong> target species which have naturally died are<br />

left <strong>in</strong> situ to decompose <strong>in</strong> <strong>the</strong> forest. The f<strong>in</strong>e texture of <strong>the</strong> forest<br />

will create varied, constantly chang<strong>in</strong>g light and temperature conditions<br />

to support viable populations of protected plant species<br />

(Decocq 2004) and animal species, especially xylophagous <strong>in</strong>sects<br />

(Götmark 2007). Silvicultural management is based on selection<br />

pr<strong>in</strong>ciples, ma<strong>in</strong>ly <strong>the</strong> target thickness method (Diaci et al. 2006).<br />

Fig. 1. <br />

20 Forests


Methods<br />

1. Classification of <strong>the</strong> <strong>in</strong>itial situation <strong>in</strong> 1992 – five forest types<br />

(Fig. 2), accord<strong>in</strong>g to:<br />

a) current tree species composition;<br />

b) spatial structure of <strong>the</strong> forest (degree of structural differentiation);<br />

c) forest management methods.<br />

2. Repeated assessment of changes (2003, 2008, planned <strong>in</strong> 2013):<br />

a) proportions of different forest types;<br />

b) size of textural features;<br />

c) number of textural features;<br />

d) tree species composition.<br />

3. Economic evaluation of <strong>the</strong> conversion measures:<br />

a) data from primary records (cont<strong>in</strong>uously archived s<strong>in</strong>ce<br />

1992);<br />

b) phase calculations;<br />

c) forest stand regeneration – from pr<strong>in</strong>cipal fell<strong>in</strong>g to established<br />

plantation.<br />

Restoration measures and monitor<strong>in</strong>g<br />

1992 Cessation of conventional management of even-aged<br />

p<strong>in</strong>e and spruce stands.<br />

Cessation of afforestation with p<strong>in</strong>e, spruce and<br />

larch.<br />

1992–1993 Compilation of NP management plan and classification<br />

of <strong>the</strong> <strong>in</strong>itial state of <strong>the</strong> forest.<br />

1994 Start of beech plant<strong>in</strong>g and active <strong>restoration</strong> management.<br />

2003 First evaluation of changes <strong>in</strong> <strong>the</strong> forest and of <strong>the</strong><br />

entire experimental area.<br />

2008 Second evaluation of changes <strong>in</strong> <strong>the</strong> forest and of <strong>the</strong><br />

entire experimental area.<br />

2013 Third evaluation of changes <strong>in</strong> <strong>the</strong> forest and of <strong>the</strong><br />

entire experimental area + economic and silvicultural<br />

modell<strong>in</strong>g.<br />

<br />

Fig. 2. <br />

— <br />

— <br />

— <br />

— <br />

— <br />

<br />

<br />

Forests 21


Results<br />

Changes <strong>in</strong> <strong>the</strong> total area of forest types (FTs) are shown <strong>in</strong> Fig.<br />

3 and changes <strong>in</strong> <strong>the</strong> spatial distribution of <strong>the</strong> FTs <strong>in</strong> Fig. 4, both for<br />

<strong>the</strong> Pyramida experimental area. The rapid decrease <strong>in</strong> FT3- area is<br />

<strong>the</strong> result of <strong>the</strong> first management measures – open<strong>in</strong>g of <strong>the</strong> canopy<br />

of <strong>the</strong> p<strong>in</strong>e forests planted <strong>in</strong> <strong>the</strong> 1970s and 1980s and support<strong>in</strong>g subdom<strong>in</strong>ant<br />

deciduous trees. These measures facilitated <strong>the</strong> conversion<br />

of FT3- to higher-quality FT3+ forest, where fur<strong>the</strong>r canopy open<strong>in</strong>g<br />

takes place and <strong>the</strong> first <strong>in</strong>terventions have led to spatial differentiation<br />

of <strong>the</strong> forest. The area of FT2- and FT2+ stands has rema<strong>in</strong>ed<br />

more or less <strong>the</strong> same dur<strong>in</strong>g <strong>the</strong> studied period, s<strong>in</strong>ce <strong>the</strong>y are <strong>the</strong><br />

result of <strong>the</strong> actively managed FT3+ stands, but at <strong>the</strong> same time convert<br />

to spatially and species-differentiated FT1 forest.<br />

The development of textural differentiation of Pyramida is shown<br />

<strong>in</strong> Fig. 5. The most important result is <strong>the</strong> differentiation of compact<br />

and fully closed structurally simple forests <strong>in</strong> <strong>the</strong> SE part of <strong>the</strong> experimental<br />

area. This is where <strong>the</strong> first differentiat<strong>in</strong>g measures were<br />

carried out followed by <strong>the</strong> first beech plant<strong>in</strong>gs. The average size of<br />

<strong>the</strong> textural elements decreased from 0.81 ha (1992) to 0.48 ha (2008).<br />

The total number of structural elements <strong>in</strong>creased from 177 (1992) to<br />

197 (2008).<br />

Changes <strong>in</strong> tree species composition <strong>in</strong> <strong>the</strong> experimental area are<br />

given <strong>in</strong> Tab. 1. The results clearly illustrate <strong>the</strong> fast change (from a<br />

silvicultural po<strong>in</strong>t of view) <strong>in</strong> species composition. The decrease <strong>in</strong><br />

<strong>the</strong> percentage of conifers to 58% of <strong>the</strong> orig<strong>in</strong>al number (1992) was<br />

achieved thanks to <strong>in</strong>tensive work on scattered subdom<strong>in</strong>ant broadleaved<br />

trees and massive <strong>in</strong>troduction of beech <strong>in</strong> various ways.<br />

forest type area [ha]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

forest type:<br />

0<br />

1992 2003 2008<br />

year<br />

Fig. 3. -<br />

<br />

O<strong>the</strong>r lessons learned and future prospects<br />

The key factor <strong>in</strong> forest <strong>restoration</strong> is a clear formulation of <strong>the</strong><br />

long-term target and work<strong>in</strong>g methods for <strong>the</strong> forest managers. Us<strong>in</strong>g<br />

<strong>the</strong> forest type classification, practically applicable forest management<br />

guidel<strong>in</strong>es can be produced by f<strong>in</strong>d<strong>in</strong>g a balance between <strong>the</strong>ory<br />

and its practical application. However, <strong>in</strong> practice <strong>the</strong> atta<strong>in</strong>ability of<br />

favourable results largely depends on mutual respect and good <strong>in</strong>terpersonal<br />

relations.<br />

Acknowledgements<br />

The study was carried out with <strong>the</strong> support of project MSM<br />

6293359101.<br />

1<br />

2+<br />

2-<br />

3+<br />

3-<br />

Fig. 4. <br />

Fig. 5. <br />

22 Forests


Tab. 1. <br />

<br />

Species 1992 [%] 2003 [%] 2008 [%]<br />

P<strong>in</strong>us sylvestris 39.0 32.2 23.7<br />

Larix decidua 11.0 4.6 3.7<br />

Picea abies 10.5 9.0 7.9<br />

Σ Conifers 60.5 45.8 35.3<br />

Quercus spp. 27.5 32.7 34.8<br />

Carp<strong>in</strong>us betulus 8.5 13.2 16.3<br />

Fagus sylvatica 0.5 2.5 5.4<br />

Betula pendula 1.7 3.1 3.7<br />

Tilia cordata 0.3 1.1 2.0<br />

O<strong>the</strong>r deciduous species 1.0 1.6 2.5<br />

Σ Deciduous 39.5 54.2 64.7<br />

References<br />

Decocq G., Aubert M., Dupont F., Alard D., Saguez R., Wattez-Fanger<br />

A., Foucault B. de, Delelis–Dusollier A. & Bardat J. (2004): Plant<br />

diversity <strong>in</strong> a managed temperate deciduous forest: understorey<br />

response to two silvicultural systems. – Journal of Applied Ecology<br />

41: 1065–1079.<br />

Diaci J. (ed.) (2006): Nature-based forestry <strong>in</strong> Central Europe. Alternatives<br />

to <strong>in</strong>dustrial forestry and strict preservation. – University<br />

of Ljubljana, Biotechnical Faculty, Department of Forestry and<br />

Renewable Forest Resources, Ljubljana.<br />

Götmark F. (2007): Careful partial harvest<strong>in</strong>g <strong>in</strong> conservation stands<br />

and retention of large oaks favour oak regeneration. – Biological<br />

Conservation 140: 349–358.<br />

Fig. 6. -<br />

<br />

Forests 23


Can fire and secondary succession assist <strong>in</strong> <strong>the</strong> regeneration of forests <strong>in</strong> a<br />

national park?<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Bohemian Switzerland NP, near <strong>the</strong> NE edge of <strong>the</strong> village of Jetřichovice, northwest <strong>Czech</strong> <strong>Republic</strong><br />

50°51'19"–50°51'35" N, 14°24'07"–14°24'31" E; altitude 245–393 m<br />

NP<br />

Predom<strong>in</strong>antly acidophilous beech and beech-p<strong>in</strong>e forests (mostly Luzulo-Fagion sylvaticae)<br />

13.5 ha<br />

Bohemian Switzerland NP Authority<br />

€2,470 (fence construction and erosion-control measures)<br />

Initial conditions<br />

Most of <strong>the</strong> <strong>in</strong>digenous forests <strong>in</strong> <strong>the</strong> Bohemian Switzerland NP<br />

were <strong>in</strong> <strong>the</strong> past transformed <strong>in</strong>to coniferous monocultures. Traditionally,<br />

also geographically non-<strong>in</strong>digenous trees such as White<br />

P<strong>in</strong>e (P<strong>in</strong>us strobus), European Larch (Larix decidua), Douglas Fir<br />

(Pseudotsuga menziesii) and Nor<strong>the</strong>rn Red Oak (Quercus rubra) were<br />

used <strong>in</strong> local forest management (Drozd et al. 2010). P<strong>in</strong>us strobus, <strong>in</strong><br />

particular, has found extremely advantageous conditions for its development<br />

here (nowadays represent<strong>in</strong>g 4% of trees) and is gradually<br />

occupy<strong>in</strong>g all suitable habitats (Patzelt 2007).<br />

The Raven’s Rock (Havraní skála) site has become widely known<br />

s<strong>in</strong>ce June 22, 2006, when a wildfire broke out, develop<strong>in</strong>g <strong>in</strong>to one<br />

of <strong>the</strong> largest forest fires of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> <strong>in</strong> <strong>the</strong> past 30 years<br />

(Vonásek 2008), leav<strong>in</strong>g approximately 18 hectares of burnt forest beh<strong>in</strong>d.<br />

The orig<strong>in</strong>al forest consisted ma<strong>in</strong>ly of P<strong>in</strong>us strobus and Scots<br />

P<strong>in</strong>e (P<strong>in</strong>us sylvestris) with rare occurrence of European Beech (Fagus<br />

sylvatica) and Sessile Oak (Quercus petraea). Norway Spruce (Picea<br />

abies) grew at <strong>the</strong> feet of <strong>the</strong> hillsides, while rocky outcrops were often<br />

occupied by Silver Birch (Betula pendula). The age of <strong>the</strong> forest was<br />

max. 130 years. Before <strong>the</strong> fire, management had aimed at reduc<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>vad<strong>in</strong>g P<strong>in</strong>us strobus. Approximately 100 m 3 had been felled<br />

and left <strong>in</strong> situ, which was one of <strong>the</strong> factors which, besides <strong>the</strong> hot<br />

wea<strong>the</strong>r and m<strong>in</strong>imum precipitation, contributed to <strong>the</strong> high <strong>in</strong>tensity<br />

of <strong>the</strong> fire.<br />

Subsequently, <strong>the</strong> fi re-affected area was not managed accord<strong>in</strong>g<br />

to regular forestry methods (fell<strong>in</strong>g and plant<strong>in</strong>g). Instead, <strong>the</strong> National<br />

Park Authority decided to leave it to spontaneous development<br />

(except for <strong>the</strong> clear<strong>in</strong>g of a strip along a tourist trail for safety reasons).<br />

This constituted a unique opportunity to study <strong>the</strong> secondary<br />

succession follow<strong>in</strong>g <strong>the</strong> fire and to ask <strong>the</strong> question: can <strong>the</strong> natural<br />

processes <strong>in</strong>itiated by <strong>the</strong> fire be used to convert forests <strong>in</strong>vaded by <strong>the</strong><br />

alien P<strong>in</strong>us strobus to forests consist<strong>in</strong>g of native species?<br />

Objectives<br />

Currently, <strong>the</strong>re are two basic forest management targets <strong>in</strong> <strong>the</strong><br />

Bohemian Switzerland NP: (i) gradual reconstruction of <strong>the</strong> currently<br />

prevail<strong>in</strong>g coniferous monocultures to achieve near-natural forests<br />

with dom<strong>in</strong>ant Fagus sylvatica and admixed Abies alba, Quercus petraea<br />

and o<strong>the</strong>r trees, and (ii) removal of <strong>the</strong> <strong>in</strong>vad<strong>in</strong>g non-<strong>in</strong>digenous<br />

tree species.<br />

The aim of <strong>the</strong> study of secondary post-fire succession is to acquire<br />

<strong>in</strong>formation on <strong>the</strong> <strong>in</strong>terspecific competition of trees <strong>in</strong> various<br />

successional stages, <strong>the</strong> behaviour of <strong>the</strong> ma<strong>in</strong> <strong>in</strong>vasive species (P<strong>in</strong>us<br />

strobus), <strong>the</strong> rate of recovery of tree species conf<strong>in</strong>ed to later successional<br />

phases (Fagus sylvatica, Carp<strong>in</strong>us betulus, etc.) and also on <strong>the</strong><br />

development of <strong>the</strong> spatial structure and texture of <strong>the</strong> future forests.<br />

This raises one key question: can planned fire management become an<br />

alternative form of forest <strong>restoration</strong> <strong>in</strong> <strong>the</strong> National Park?<br />

Methods<br />

Most of <strong>the</strong> area (approx. 13.5 ha) was fenced to prevent damage<br />

by game and to restrict direct access to <strong>the</strong> plot by National Park<br />

visitors. This enclosure was sampled by means of a regular network<br />

(approx. 30 × 30 m) of permanent sample plots (PSPs) to monitor <strong>the</strong><br />

course of succession. S<strong>in</strong>ce 2007 regeneration has been studied and<br />

measured annually <strong>in</strong> 135 square PSPs of 1.5 × 1.5 m. Each of <strong>the</strong> plots<br />

is studied <strong>in</strong> detail and all tree and shrub <strong>in</strong>dividuals are recorded and<br />

divided <strong>in</strong>to five height classes: (i) one-year-old seedl<strong>in</strong>gs, (ii) up to<br />

30 cm, (iii) 30–60 cm, (iv) 60–130 cm, (v) over 130 cm (see Fig. 2a).<br />

Fig. 1. <br />

24 Forests


a) b)<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Fig. 2. <br />

<br />

<br />

<br />

Results<br />

Only one year after <strong>the</strong> fire, <strong>in</strong> 2007, <strong>the</strong> area was massively colonised<br />

by <strong>the</strong> youngest stages of pioneer tree species, i.e. seedl<strong>in</strong>gs and<br />

juvenile <strong>in</strong>dividuals prevailed (height class up to 30 cm). This year is<br />

characterised by establishment of <strong>the</strong> highest number of subsequently<br />

develop<strong>in</strong>g <strong>in</strong>dividuals (Figs. 2 and 3). The dom<strong>in</strong>ant species was p<strong>in</strong>e<br />

(P<strong>in</strong>us sp. – it was impossible to dist<strong>in</strong>guish different species of seedl<strong>in</strong>gs)<br />

followed by Populus tremula, Betula pendula and Salix caprea,<br />

respectively.<br />

Year 2008 was characterised by <strong>in</strong>tensive growth (Figs. 2 and 4).<br />

All <strong>the</strong> height classes were already present <strong>in</strong> <strong>the</strong> studied plot, although<br />

still dom<strong>in</strong>ated by height class (ii). Seedl<strong>in</strong>gs were rare, found mostly<br />

<strong>in</strong> areas with harsher habitat conditions and delayed succession. Selection<br />

(self-th<strong>in</strong>n<strong>in</strong>g) was observed as a key process (see sharp drop<br />

<strong>in</strong> <strong>the</strong> total number of grow<strong>in</strong>g tree <strong>in</strong>dividuals <strong>in</strong> <strong>the</strong> burnt area <strong>in</strong><br />

Fig. 2). Species composition also changed dramatically, with deciduous<br />

pioneer trees predom<strong>in</strong>at<strong>in</strong>g: Populus tremula, followed by Betula<br />

pendula, and Salix caprea. P<strong>in</strong>es, already differentiated <strong>in</strong>to <strong>the</strong><br />

species P<strong>in</strong>us sylvestris and P. strobus, represented ra<strong>the</strong>r marg<strong>in</strong>al<br />

groups. There was a significantly higher proportion of P<strong>in</strong>us sylvestris<br />

compared to P. strobus. This could lead to <strong>the</strong> assumption that <strong>in</strong> our<br />

conditions P. strobus is less adapted to fire and <strong>the</strong> subsequent succession.<br />

In terms of height growth both p<strong>in</strong>es were well beh<strong>in</strong>d <strong>the</strong><br />

pioneer species Betula pendula, Populus tremula, and Salix caprea.<br />

Fur<strong>the</strong>r gradual th<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> lower height classes took place<br />

<strong>in</strong> 2009 and 2010. A slight <strong>in</strong>crease <strong>in</strong> number of <strong>in</strong>dividuals was recorded<br />

only <strong>in</strong> <strong>the</strong> highest class (v). Year 2010 saw a second wave of<br />

seedl<strong>in</strong>g establishment. The proportion of tree species did not change<br />

significantly. Also a visible reduction <strong>in</strong> Populus tremula <strong>in</strong>dividuals<br />

was recorded while <strong>the</strong> numbers of o<strong>the</strong>r pioneer trees more or<br />

less stagnated (Betula pendula thus becom<strong>in</strong>g <strong>the</strong> dom<strong>in</strong>ant species).<br />

There was also a slight <strong>in</strong>crease <strong>in</strong> <strong>the</strong> “o<strong>the</strong>r species” group, ma<strong>in</strong>ly<br />

represented by species of later developmental stages (e.g. Fagus sylvatica,<br />

Quercus petraea, Picea abies, Carp<strong>in</strong>us betulus, Alnus spp.). This<br />

trend signalises <strong>the</strong> future shift to <strong>the</strong> next succession stage – from<br />

<strong>in</strong>itial to transition forest.<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Recent experience shows that traditional clear<strong>in</strong>g or at least control<br />

of <strong>the</strong> P<strong>in</strong>us strobus <strong>in</strong>vasion <strong>in</strong> Bohemian Switzerland NP can be<br />

successful only if it is performed consistently, on a long-term basis,<br />

and with<strong>in</strong> an area clearly separated from <strong>the</strong> adjacent areas. Management<br />

is not always fully efficient as it is not performed all over <strong>the</strong><br />

area and control is carried out for too short a period (Němcová 2007).<br />

Consistent application of efficient long-term procedures <strong>in</strong>creases labour<br />

consumption and f<strong>in</strong>ancial costs of <strong>the</strong> traditional (silvicultural)<br />

<strong>restoration</strong> management. The management set out by <strong>the</strong> National<br />

Park’s management plan requires about €1.2 million annually (Drozd<br />

et al. 2010). To cover this, fundrais<strong>in</strong>g outside <strong>the</strong> budget is necessary.<br />

Fig. 3. <br />

Fig. 4. -<br />

<br />

Forests 25


forests <strong>in</strong> Nor<strong>the</strong>rn Bohemia have been affected by forest fires dur<strong>in</strong>g<br />

a substantial part of <strong>the</strong> Holocene. Recent human-<strong>in</strong>duced accidental<br />

wildfire thus can imitate natural fire disturbances which <strong>the</strong> local p<strong>in</strong>e<br />

forests experienced <strong>in</strong> <strong>the</strong> past. Local fir<strong>in</strong>g gradually applied over <strong>the</strong><br />

area, generat<strong>in</strong>g complete succession series, would clearly lead to <strong>the</strong><br />

desirable diversification of uniform forests, reduction <strong>in</strong> <strong>the</strong> number<br />

of non-<strong>in</strong>digenous species, and to an <strong>in</strong>crease <strong>in</strong> forest biodiversity <strong>in</strong><br />

<strong>the</strong> National Park: many anthracophilous fungi, mosses, and vascular<br />

plants have been found on <strong>the</strong> burnt sites, and bird and small ground<br />

mammal species diversity has <strong>in</strong>creased as well (Marková et al. 2011).<br />

Attractiveness for tourists also plays a role <strong>in</strong> <strong>the</strong> National Park – after<br />

<strong>the</strong> fire, Raven’s Rock has attracted numerous expert excursions<br />

as well as <strong>the</strong> general public (<strong>in</strong> contrast to <strong>the</strong> unattractive clear cuts<br />

produced <strong>in</strong> traditional management). Obviously it is necessary to<br />

consider all <strong>the</strong> pros and cons.<br />

Fig. 5. <br />

In contrast, <strong>the</strong> costs of manag<strong>in</strong>g <strong>the</strong> area after <strong>the</strong> fire did not <strong>in</strong>clude<br />

more than <strong>the</strong> construction of a fence and erosion-control measures.<br />

Consider<strong>in</strong>g <strong>the</strong> promis<strong>in</strong>g results of secondary post-fire succession,<br />

<strong>the</strong> possibilities as well as <strong>the</strong> risks of prescribed fir<strong>in</strong>g should be<br />

discussed as an alternative (cheaper, faster, and closer to nature) form<br />

of <strong>restoration</strong> management. Fire is a natural disturbance factor which<br />

has always been present <strong>in</strong> nature. The latest anthracological research<br />

<strong>in</strong> <strong>the</strong> region (Novák et al. 2012) <strong>in</strong>dicates that similar sites of p<strong>in</strong>e<br />

Acknowledgements<br />

The study was carried out with <strong>the</strong> support of project MSM<br />

6293359101. Many thanks go out to Vilém Jurek for his help with collection<br />

of data <strong>in</strong> <strong>the</strong> field and to Dana Šteflová from <strong>the</strong> NP Authority<br />

for k<strong>in</strong>d back<strong>in</strong>g of <strong>the</strong> field research.<br />

References<br />

Drozd J., Härtel H & Klitsch M. (2010): Péče o lesní ekosystémy<br />

v Národním parku České Švýcarsko. (Management of forest ecosystems<br />

<strong>in</strong> Bohemian Switzerland National Park.) – Ochrana<br />

přírody 65/1: 18–20.<br />

Marková I., Adámek M., Antonín V., Benda P., Jurek V., Trochta J.,<br />

Švejnohová A. & Šteflová D. (2011): Havraní skála u Jetřichovic<br />

v národním parku České Švýcarsko – vývoj fl óry a fauny na<br />

ploše zasažené požárem. (Raven’s Rock (Havraní skála) near<br />

Jetřichovice <strong>in</strong> Bohemian Switzerland National Park – flora and<br />

fauna post-fire succession.) – Ochrana přírody 66/1: 18–21.<br />

Němcová I. (2007): Problémové <strong>in</strong>trodukované druhy rostl<strong>in</strong> v ČR<br />

(Problematic <strong>in</strong>troduced plant species <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). –<br />

Ms.; Bachelor <strong>the</strong>sis, Palacký University, Olomouc.<br />

Novák J., Sádlo J. & Svobodová-Svitavská H. (2012): Unusual vegetation<br />

stability <strong>in</strong> a lowland p<strong>in</strong>e forest area (Doksy region, <strong>Czech</strong><br />

<strong>Republic</strong>). – The Holocene [1]. Doi: 10.1177/0959683611434219.<br />

Patzelt Z. (2007): Národní park České Švýcarsko. (Bohemian Switzerland<br />

National Park.) – Ochrana přírody 62/1: 2–5.<br />

Vonásek V. (2008): Statistické <strong>in</strong>formace o zásazích jednotek požární<br />

ochrany a požárech za období leden – září 2006. (Statistics on<br />

firefighter actions and fires over <strong>the</strong> period January – September<br />

2006.) – M<strong>in</strong>isterstvo vnitra České republiky. (Available at: http://<br />

aplikace.mvcr.cz/archiv2008/statistiky/2006/pozary/ledzari.html)<br />

Fig. 6. <br />

<br />

26 Forests


Restoration of forests damaged by air pollution <strong>in</strong> <strong>the</strong> Jizera Mounta<strong>in</strong>s<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area 269 km 2<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Jizera Mounta<strong>in</strong>s, nor<strong>the</strong>ast Bohemia<br />

50°49' N, 15°20' E; altitude 325–1,124 m<br />

PLA<br />

František Pelc<br />

Forest communities with prevail<strong>in</strong>g herb-rich and acidophilous montane beech forests (Fagion sylvaticae<br />

and Luzulo-Fagion sylvaticae), climax montane and waterlogged spruce forests (Piceion abietis)<br />

Landscape management programmes, Forest Stabilisation Programme, Operation Programme Environment,<br />

Forests of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>; private funds from <strong>the</strong> non-profit sector, particularly <strong>the</strong> Foundation<br />

for <strong>the</strong> Preservation and Restoration of <strong>the</strong> Jizera Mounta<strong>in</strong>s<br />

€2.6 million (M<strong>in</strong>istry of <strong>the</strong> Environment, 1992–2011), €400,000 (Foundation for <strong>the</strong> Preservation and<br />

Restoration of <strong>the</strong> Jizera Mounta<strong>in</strong>s), €1.44 million (Operational Programme Environment through Forests<br />

of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>)<br />

Initial conditions<br />

In most of <strong>the</strong> Jizera Mts. native montane forests have been replaced<br />

by Norway Spruce (Picea abies) plantations of genetically <strong>in</strong>appropriate<br />

provenance. Thus, natural forest communities composed<br />

of local tree populations have been preserved only <strong>in</strong> fragments and<br />

patches of various sizes. In <strong>the</strong> 1980s, approximately one third of forests<br />

was found to be heavily damaged by strong air pollution from<br />

fossil-fuel power stations <strong>in</strong> Poland, Saxony and <strong>the</strong> current <strong>Czech</strong><br />

<strong>Republic</strong>, and by <strong>in</strong>appropriate forest management, thus affect<strong>in</strong>g biogeochemical<br />

soil properties.<br />

In order to save timber for economic reasons, forest stands were<br />

cut on more than 90 km 2 dur<strong>in</strong>g one decade (1980–1990), which<br />

caused extensive soil erosion. This seriously threatened <strong>the</strong> ecological<br />

<strong>in</strong>tegrity of <strong>the</strong> forest as a vegetation unit on <strong>the</strong> central plateau at an<br />

altitude of over 850 m, and homogenous Hairy Small-Reed (Calamagrostis<br />

villosa) grassland massively expanded.<br />

In <strong>the</strong> early 1990s, extensive areas were reforested with genetically<br />

non-native Picea abies and allochtonous Blue Spruce (Picea pungens).<br />

In <strong>the</strong> 1980s, environmentally controversial aerial lim<strong>in</strong>g had been<br />

repeatedly applied here. Reproduction by seed, even <strong>in</strong> native populations<br />

of Picea abies, European Beech (Fagus sylvatica) and Silver Fir<br />

(Abies alba), was very low and efforts to enhance vegetative reproduction<br />

did not appear to be effective.<br />

Fig. 1. <br />

<br />

Forests 27


Fig. 2. <br />

<br />

<br />

In <strong>the</strong> 1990s, due to technological improvements and closure of<br />

some power stations, air pollution decl<strong>in</strong>ed (Fig. 3). Consequently,<br />

<strong>the</strong> health of forest trees and <strong>the</strong>ir ability to reproduce by seed has<br />

improved. Never<strong>the</strong>less, <strong>the</strong> atmospheric deposition load <strong>in</strong> <strong>the</strong> area<br />

rema<strong>in</strong>s high. Ungulate game numbers have exceeded <strong>the</strong> carry<strong>in</strong>g<br />

capacity of <strong>the</strong> Jizera Mts. ecosystem several times, strongly limit<strong>in</strong>g<br />

forest recovery as well (Paschalis & Zajackowski 1994, Pelc 1994).<br />

Fig. 4. <br />

<br />

<br />

-<br />

<br />

<br />

Objectives<br />

Achiev<strong>in</strong>g healthier, ecologically more stable forests with a nearnatural<br />

species composition and spatial structure by us<strong>in</strong>g native forest<br />

tree populations better able to face possible future stress factors,<br />

e.g. air pollution, climate change and <strong>in</strong>sect pests.<br />

Methods<br />

In <strong>the</strong> early 1990s, <strong>the</strong> option of leav<strong>in</strong>g <strong>the</strong> forests without any<br />

regeneration support was rejected, although <strong>the</strong>re would have been<br />

some unquestionable advantages to this, e.g. deposition and low costs.<br />

A long-term strategy for forest <strong>restoration</strong> and stabilisation was established<br />

and under <strong>the</strong> Territorial System of <strong>Ecological</strong> Stability (a<br />

multi-level national ecological network) <strong>restoration</strong> biocentres were<br />

def<strong>in</strong>ed based on forest management pr<strong>in</strong>ciples (Pelc 1992, 1999, Pelc<br />

et al. 1993) (Fig. 5). These were <strong>in</strong>cluded <strong>in</strong> forest management plans<br />

or realised as <strong>in</strong>dependent projects.<br />

100<br />

90<br />

80<br />

70<br />

60<br />

<br />

50<br />

kg/ha<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1991 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010<br />

year<br />

Fig. 3. <br />

<br />

<br />

<br />

<br />

Fig. 5. <br />

<br />

28 Forests


Fig. 6. -<br />

<br />

-<br />

<br />

One project was prepared for <strong>the</strong> preservation and reproduction<br />

of native or o<strong>the</strong>rwise valuable tree populations: locally adapted<br />

varieties of Picea abies, Fagus sylvatica, Acer pseudoplatanus, Abies<br />

alba, Betula carpatica, P<strong>in</strong>us mugo, Ulmus glabra, and Sorbus aucuparia.<br />

Their conservation was partially secured by means of exist<strong>in</strong>g<br />

and newly designated nature reserves and by delimit<strong>in</strong>g gene pools.<br />

Collect<strong>in</strong>g seeds, grow<strong>in</strong>g sapl<strong>in</strong>gs and plant<strong>in</strong>g <strong>the</strong>se, preferably <strong>in</strong><br />

biocentres, was <strong>in</strong>cluded <strong>in</strong> an agreement of <strong>the</strong> Forests of <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong> and <strong>the</strong> Jizera Mts. PLA Authority.<br />

Restoration measures<br />

1990s The ext<strong>in</strong>ction risk of <strong>the</strong> local Picea abies population<br />

(particularly its peat-bog ecotype) was reversed<br />

by secur<strong>in</strong>g more than 700 kg of seed, i.e. potentially<br />

10 million seedl<strong>in</strong>gs enabl<strong>in</strong>g reforestation for ten<br />

years.<br />

Dur<strong>in</strong>g deforestation, plant<strong>in</strong>g of Picea pungens and<br />

P<strong>in</strong>us mugo of Carpathian orig<strong>in</strong> was stopped. The<br />

latter had contam<strong>in</strong>ated native P<strong>in</strong>us mugo populations<br />

<strong>in</strong> <strong>the</strong> 1970s and 1980s.<br />

S<strong>in</strong>ce 1992 Increased collection of Fagus sylvatica seeds, particularly<br />

from <strong>the</strong> 6 th and 7 th forest vegetation zones, as<br />

well as Betula carpatica seeds, to be used <strong>in</strong> restor<strong>in</strong>g<br />

humid stands <strong>in</strong> <strong>the</strong> 8 th forest vegetation zone.<br />

Use of local P<strong>in</strong>us mugo <strong>in</strong> reforestation.<br />

Inventory of Abies alba trees.<br />

Collection of seeds from populations of o<strong>the</strong>r native<br />

tree species, such as Ulmus glabra, Sorbus aucuparia<br />

and Acer pseudoplatanus, especially at altitudes of<br />

over 750 m.<br />

2001 Jizerskohorské buč<strong>in</strong>y NR was established as a<br />

unique tree gene pool, cover<strong>in</strong>g more than 2,600<br />

ha. Four o<strong>the</strong>r Fagus sylvatica and Picea abies gene<br />

pools, cover<strong>in</strong>g more than 2,270 ha <strong>in</strong> total, were also<br />

delimited. Here, sensitive stand <strong>restoration</strong> methods<br />

have been applied and <strong>the</strong> gene pool potential has<br />

been preserved.<br />

2011 Forests of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> submitted and<br />

launched a project on enhanc<strong>in</strong>g forest stability <strong>in</strong><br />

<strong>the</strong> Jizera Mts. PLA.<br />

Results<br />

Despite some problems, partial successes have been achieved <strong>in</strong><br />

implement<strong>in</strong>g <strong>the</strong> long-term strategy. This is clearly <strong>in</strong>dicated by <strong>the</strong><br />

<strong>in</strong>creas<strong>in</strong>g proportion of Fagus sylvatica, and also tree composition<br />

has gradually become more natural.<br />

In <strong>the</strong> representative Frýdlant Forest Management Unit, <strong>the</strong> Fagus<br />

sylvatica proportion <strong>in</strong>creased from 2,445 ha <strong>in</strong> 1992 to 2,761 ha <strong>in</strong><br />

2001. Currently, 3,051 ha are covered by deciduous tree species, an<br />

<strong>in</strong>crease by almost 20% <strong>in</strong> 20 years. The Picea pungens distribution,<br />

on <strong>the</strong> o<strong>the</strong>r hand, decl<strong>in</strong>ed from 1,996 ha <strong>in</strong> 1992 to 1,487 ha <strong>in</strong> 2001<br />

and 938 ha <strong>in</strong> 2011, i.e. less than half <strong>the</strong> area of 20 years ago (Fig. 7).<br />

The number of Abies alba trees able to set seed is approximately<br />

1,400 <strong>in</strong>dividuals, which is less than 0.05% of full-grown trees <strong>in</strong> natural<br />

forests of <strong>the</strong> Jizera Mts. The year 1998 was <strong>the</strong> most successful <strong>in</strong><br />

this regard, because 1,750 kg of cones, 200 kg of seeds, i.e. hundreds<br />

of thousands of seedl<strong>in</strong>gs were harvested.<br />

In total more than five million sapl<strong>in</strong>gs have been used for improv<strong>in</strong>g<br />

<strong>the</strong> species and genetic composition <strong>in</strong> forest <strong>restoration</strong><br />

and stabilisation dur<strong>in</strong>g <strong>the</strong> last two decades. Suchopýr, a public service<br />

company, has contributed to forest <strong>restoration</strong> with more than<br />

150,000 genetically valuable sapl<strong>in</strong>gs, whereas Čmelák, ano<strong>the</strong>r public<br />

service company, produced 65,000 Abies alba sapl<strong>in</strong>gs, almost 200,000<br />

Fagus sylvatica sapl<strong>in</strong>gs and almost 36,000 Ulmus glabra sapl<strong>in</strong>gs.<br />

Even greater numbers of genetically native and valuable sapl<strong>in</strong>gs were<br />

provided by Dendria, a silvicultural company: more than 2 million<br />

sapl<strong>in</strong>gs of Fagus sylvatica, over 2 million of local Picea abies and hundreds<br />

of thousands of Abies alba, Ulmus glabra, Betula carpatica, Acer<br />

pseudoplatanus, P<strong>in</strong>us mugo and o<strong>the</strong>r forest tree species.<br />

In <strong>the</strong> Jizerskohorské buč<strong>in</strong>y NR, after an agreement with <strong>the</strong><br />

Forests of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, 75 hectares were left to spontaneous<br />

development under a specific monitor<strong>in</strong>g scheme.<br />

Restoration of damaged forests was <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> delimitation<br />

of <strong>the</strong> Territorial System of <strong>Ecological</strong> Stability.<br />

Lessons learned and future prospects<br />

Problematic issues, which may generate risks <strong>in</strong> <strong>the</strong> future, <strong>in</strong>clude<br />

<strong>the</strong> follow<strong>in</strong>g:<br />

1. The central plateau is <strong>in</strong>habited by large and <strong>in</strong>creas<strong>in</strong>g even-aged<br />

stands of mostly Picea abies and P. pungens, which might face disruption<br />

with<strong>in</strong> a few decades.<br />

2. Nature conservation and foresters should prioritise stabilisation<br />

and <strong>restoration</strong> of biocentres by us<strong>in</strong>g natural regeneration and<br />

ha<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

1991 2001 2010<br />

Fig. 7. <br />

<br />

<br />

year<br />

Forests 29


Fig. 8. -<br />

<br />

genetically appropriate sapl<strong>in</strong>gs, and by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong>ir diversity<br />

<strong>in</strong> terms of species and distribution.<br />

3. High game numbers rema<strong>in</strong> locally a limit<strong>in</strong>g factor <strong>in</strong> <strong>the</strong> <strong>in</strong>crease<br />

of species diversity. However, also <strong>in</strong> case <strong>the</strong>ir numbers<br />

are reduced, it will be necessary to secure protection of natural<br />

regeneration stands and plant<strong>in</strong>gs.<br />

4. Except for research projects, reappear<strong>in</strong>g plans of large-scale<br />

measures, <strong>in</strong>clud<strong>in</strong>g aerial fertilis<strong>in</strong>g and lim<strong>in</strong>g, must be rejected,<br />

as <strong>the</strong>y pose serious risks to montane ecosystems due to <strong>the</strong><br />

heterogeneity and complexity of <strong>the</strong>ir biogeochemical processes.<br />

5. In <strong>the</strong> <strong>in</strong>terests of biodiversity conservation and natural processes<br />

and representative research, a large forest area needs to be left to<br />

spontaneous development.<br />

6. It is necessary to update <strong>the</strong> agreement between <strong>the</strong> Forests of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>, <strong>the</strong> Jizera Mts. PLA Authority and non-profit<br />

organisations on protection, reproduction and use of <strong>the</strong> native<br />

forest tree gene pool with special regard to legislation and <strong>the</strong> ecological<br />

condition of <strong>the</strong> forests.<br />

Public support<br />

One of <strong>the</strong> positive elements of <strong>the</strong> project has been fruitful cooperation<br />

between Forests of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, <strong>the</strong> Jizera Mts.<br />

PLA Authority and <strong>in</strong>terested non-profit organisations, especially <strong>the</strong><br />

Foundation for <strong>the</strong> Preservation and Restoration of <strong>the</strong> Jizera Mounta<strong>in</strong>s,<br />

Suchopýr, and Čmelák. We have also managed to raise <strong>the</strong> <strong>in</strong>terest<br />

of foresters <strong>in</strong> rational utilisation of <strong>the</strong> native tree gene pool and<br />

forest stabilisation <strong>in</strong> biocentres.<br />

Mounta<strong>in</strong>s). – In: Anonymus (ed.), Sborník k 25 letům Chráněné<br />

kraj<strong>in</strong>né oblasti Jizerské hory, pp. 14–22, Správa CHKO Jizerské<br />

hory, Liberec.<br />

Pelc F. (1994): Záchrana a využití původního genofondu dřev<strong>in</strong> pro<br />

obnovu imisemi poškozených lesních ekosystémů v CHKO Jizerské<br />

hory (Conservation and utilisation of <strong>the</strong> native tree gene pool<br />

<strong>in</strong> <strong>the</strong> <strong>restoration</strong> of forest ecosystems damaged by air pollution <strong>in</strong><br />

<strong>the</strong> Jizera Mts. PLA). – Ochrana přírody 7: 194–200.<br />

Pelc F. (1999): Program revitalizace imisně poškozených lesních<br />

ekosystémů Jizerských hor (Programme for <strong>the</strong> <strong>restoration</strong> of forest<br />

ecosystems damaged by air pollution <strong>in</strong> <strong>the</strong> Jizera Mounta<strong>in</strong>s).<br />

– Sborník Severočeského muzea, Přírodní vědy 21: 5–16.<br />

Pelc F., Mesčerjakov V. & Schwarz O. (1993): Rescue project of endangered<br />

gene-pool of tree species on <strong>the</strong> territory of PLA Jizera<br />

Mts. and its utilization for revitalization of forests damaged by air<br />

pollution (Project for Pr<strong>in</strong>ce Bernhard Fund). – Ms.; f<strong>in</strong>al report,<br />

Správa CHKO Jizerské hory, Liberec.<br />

Schwarz O., Hošek J., Anděl P., Hruška J., Hofmeister J., Svoboda<br />

T. & Petržílka L. (2009): Soubor map atmosférické depozice,<br />

překročení kritických zátěží síry a dusíku pro lesní ekosystémy<br />

a lišejníkové <strong>in</strong>dikace imisní zátěže v KRNAP a CHKO Jizerské<br />

hory (Critical Load Maps for atmospheric deposition of sulphur<br />

and nitrogen <strong>in</strong> forests ecosystems and lichen pollution <strong>in</strong>dicators<br />

<strong>in</strong> Krkonoše NP and Jizera Mts. PLA). – Lesnická práce, Kostelec<br />

nad Černými lesy.<br />

Fig. 9. <br />

-<br />

<br />

-<br />

-<br />

<br />

Acknowledgements<br />

I would like to thank Mr J. Antl (Čmelák), Mrs A. Hnídková (Suchopýr),<br />

and Mr I. Machovič (Dendria) for provid<strong>in</strong>g documents<br />

and expert estimations of <strong>the</strong> production of plant material, and Mr J.<br />

Hušek (Jizera Mts. PLA Authority) and Mr L. Dostál (Forests of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>) for provid<strong>in</strong>g some recent <strong>in</strong>formation.<br />

References<br />

Paschalis P. & Zajackowski S. (eds) (1994): Protection of forests ecosystems:<br />

selected problems of forestry <strong>in</strong> Sudety Mts. – Fundacicja<br />

Rozwoj SGGW, Warszawa.<br />

Pelc F. (1992): Ekologické aspekty lesního hospodářství v Jizerských<br />

horách (<strong>Ecological</strong> aspects of forest management <strong>in</strong> <strong>the</strong> Jizera<br />

30 Forests


Spontaneous recovery of mounta<strong>in</strong> spruce forests after bark beetle attack<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Central part of <strong>the</strong> Šumava Mts. (Bohemian Forest), southwest <strong>Czech</strong> <strong>Republic</strong><br />

48°56'–8°59' N, 13°25'–13°29' E; altitude 1175–1280 m<br />

NP, UNESCO Biosphere Reserve, SCI<br />

Montane Calamagrostis spruce forests (Piceion abietis), represented by <strong>the</strong> Calamagrostio villosae-Piceetum<br />

association with <strong>the</strong> tree layer dom<strong>in</strong>ated almost exclusively by Spruce (Picea abies) with some Rowan (Sorbus<br />

aucuparia) at <strong>the</strong> edges<br />

Initial conditions<br />

The area is covered by extensive complexes of both natural and<br />

management-<strong>in</strong>fluenced spruce forests. Climax mounta<strong>in</strong> spruce<br />

forests occur <strong>in</strong> a mosaic with edaphically conditioned waterlogged<br />

and bog spruce forests, and treeless bogs. The current spruce forests<br />

orig<strong>in</strong>ated partly from natural regeneration, and plant<strong>in</strong>g and sow<strong>in</strong>g<br />

<strong>in</strong> clear-cuts after w<strong>in</strong>dstorm and bark beetle outbreaks <strong>in</strong> <strong>the</strong> 19 th<br />

century. Waterlogged and bog spruce forests have rema<strong>in</strong>ed <strong>the</strong> least<br />

<strong>in</strong>fluenced by management.<br />

A large complex of mounta<strong>in</strong> spruce forests situated <strong>in</strong> <strong>the</strong> central<br />

part of <strong>the</strong> Šumava Mounta<strong>in</strong>s was affected by a bark beetle outbreak<br />

<strong>in</strong> <strong>the</strong> 1990s. A non-<strong>in</strong>tervention approach was adopted <strong>in</strong> some Core<br />

Zones of <strong>the</strong> National Park, while <strong>in</strong>terventions aga<strong>in</strong>st <strong>the</strong> bark beetle,<br />

<strong>in</strong> <strong>the</strong> form of salvage logg<strong>in</strong>g, were applied <strong>in</strong> all o<strong>the</strong>r parts of<br />

<strong>the</strong> Šumava Mts.<br />

This study was performed as part of a long-term observation of<br />

recovery of spruce forests affected by bark beetle with and without<br />

<strong>in</strong>terventions.<br />

Abiotic conditions<br />

The bedrock is predom<strong>in</strong>antly gneiss, partly comb<strong>in</strong>ed with granodiorites.<br />

Podzols are <strong>the</strong> prevail<strong>in</strong>g soil type.<br />

Fig. 2. -<br />

<br />

<br />

Methods<br />

Permanent research plots, 400 m 2 each, were selected <strong>in</strong> representative<br />

parts of available stands of spruce forests both with and<br />

without <strong>in</strong>terventions. In this study, we compared two types of plots:<br />

1. Dead canopy, i.e. climax mounta<strong>in</strong> spruce forest attacked by bark<br />

beetle <strong>in</strong> 1997 result<strong>in</strong>g <strong>in</strong> spruce mortality, left without <strong>in</strong>tervention.<br />

Eight plots were established.<br />

2. Clear-cut climax mounta<strong>in</strong> spruce forest attacked by bark beetle<br />

and completely cut <strong>in</strong> 1997. The plots were artificially reforested<br />

with spruce (Picea abies) and rowan (Sorbus aucuparia). Five plots<br />

were established.<br />

Vegetation composition was evaluated between 1998 and 2007 us<strong>in</strong>g<br />

four phytocenological samples of 100 m 2 <strong>in</strong> each plot. Seedl<strong>in</strong>gs<br />

and sapl<strong>in</strong>gs of trees were recorded by species, height and age categories.<br />

The data were analysed with multivariate methods and repeated<br />

measurement ANOVA.<br />

Results<br />

Fig. 1. <br />

<br />

<br />

Typical species of mounta<strong>in</strong> spruce forests, such as Lycopodium<br />

annot<strong>in</strong>um, Dryopteris dilatata, Homogyne alp<strong>in</strong>a, Oxalis acetosella<br />

and Soldanella montana, prospered under <strong>the</strong> dead canopy and even<br />

<strong>in</strong>creased <strong>the</strong>ir cover. These species failed <strong>in</strong> <strong>the</strong> clear-cuts and were<br />

replaced mostly by grass and sedge species (Fig. 3). Three endangered<br />

herb species (Lycopodium annot<strong>in</strong>um, Soldanella montana, Streptopus<br />

amplexifolius) were found <strong>in</strong> plots under <strong>the</strong> dead canopy. The number<br />

of <strong>in</strong>dicator species of mounta<strong>in</strong> spruce forests and <strong>the</strong> number<br />

and cover of bryophytes were significantly higher under <strong>the</strong> dead<br />

canopy (Jonášová & Prach 2008).<br />

Forests 31


A substantial part of <strong>the</strong> natural regeneration was formed by<br />

spruce <strong>in</strong> both types of plots, with rowan be<strong>in</strong>g <strong>the</strong> second most numerous<br />

species. Pioneer species, such as Birch (Betula pubescens),<br />

Willow (Salix sp.) and Aspen (Populus tremula), appeared <strong>in</strong> <strong>the</strong> first<br />

years on <strong>the</strong> disturbed soil surface after salvage logg<strong>in</strong>g (Jonášová &<br />

Prach 2004). The total numbers of Spruce and Rowan were significantly<br />

higher under <strong>the</strong> dead canopy <strong>in</strong> 1998 and 2002. The numbers<br />

<strong>in</strong> 2007 were similar, but <strong>in</strong> clear-cuts <strong>the</strong>se numbers were achieved by<br />

plant<strong>in</strong>gs (Fig. 4). The height and age structure of spruce regeneration<br />

was reduced <strong>in</strong> clear-cuts compared to plots under <strong>the</strong> dead canopy<br />

(Jonášová & Prach 2004).<br />

Fig. 3. <br />

<br />

<br />

<br />

<br />

Fig. 5. <br />

<br />

<br />

Conclusions<br />

Our results <strong>in</strong>dicate that non-<strong>in</strong>tervention <strong>in</strong> mounta<strong>in</strong> spruce<br />

forests attacked by bark beetle is a much better option for <strong>the</strong> <strong>restoration</strong><br />

of <strong>the</strong>se forests than any forestry measures. The disturbance<br />

caused by salvage logg<strong>in</strong>g had a significant negative effect on vegetation<br />

and natural regeneration of <strong>in</strong>digenous species of mounta<strong>in</strong><br />

spruce forests, which led to <strong>the</strong> need for artificial reforestation. The<br />

non-<strong>in</strong>tervention approach achieved, at no cost, similar numbers of<br />

Spruce and Rowan as with artificial reforestation. The age and height<br />

structure of <strong>the</strong> future forest and <strong>the</strong> condition of <strong>the</strong> orig<strong>in</strong>al vegetation<br />

are more vigorous under dead canopy. Moreover, <strong>the</strong> non-<strong>in</strong>tervention<br />

approach allows for natural selection, which will lead to <strong>the</strong><br />

formation of substantially more resistant stands.<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> grants GAAV KJB600870701,<br />

COST OC09001 and AV0Z 60870520.<br />

Fig. 4. <br />

<br />

<br />

<br />

<br />

References<br />

Jonášová M. & Prach K. (2004): Central-European mounta<strong>in</strong> spruce<br />

(Picea abies (L.) Karst.) forests: regeneration of tree species after a<br />

bark beetle outbreak. – <strong>Ecological</strong> Eng<strong>in</strong>eer<strong>in</strong>g 23: 15–27.<br />

Jonášová M. & Prach K. (2008): The <strong>in</strong>fluence of bark beetles outbreak<br />

vs. salvage logg<strong>in</strong>g on ground layer vegetation <strong>in</strong> Central<br />

European mounta<strong>in</strong> spruce forests. – Biological Conservation<br />

141: 1525–1535.<br />

Neuhäuslová Z. (ed.) (2001): Map of potential natural vegetation of<br />

<strong>the</strong> Sumava National Park. – Silva Gabreta, suppl. 1: 75–129.<br />

32 Forests


Grasslands


Introduction<br />

<br />

Grasslands belong, <strong>in</strong> terms of plants and animals, to <strong>the</strong> most diverse<br />

communities <strong>in</strong> Europe, and this is true on various spatial scales<br />

(Veen et al. 2009). In Central European conditions most of <strong>the</strong> current<br />

grasslands, however, do not represent climax communities, but<br />

were created after deforestation of <strong>the</strong> landscape and are ma<strong>in</strong>ta<strong>in</strong>ed<br />

by farm<strong>in</strong>g activities. They have been managed for centuries, <strong>in</strong> some<br />

areas possibly even s<strong>in</strong>ce <strong>the</strong> Neolithic or Bronze Age (Hájková et al.<br />

2011), particularly by graz<strong>in</strong>g and mow<strong>in</strong>g (Chytrý 2007). At present<br />

<strong>the</strong>y <strong>the</strong>refore not only possess natural values, but are also of a high<br />

cultural-historic value, s<strong>in</strong>ce <strong>the</strong>y are <strong>the</strong> result of activities by dozens<br />

to hundreds of human generations.<br />

In <strong>the</strong> early 20 th century, nearly 1200 thousand hectares of grassland<br />

were registered on <strong>the</strong> territory of <strong>the</strong> present <strong>Czech</strong> <strong>Republic</strong>.<br />

Two thirds <strong>in</strong>cluded meadows and a third pastures. This ratio was preserved<br />

throughout <strong>the</strong> century, although <strong>the</strong> total area reached a low<br />

of 800 thousand ha (Hrázský 2006) at <strong>the</strong> end of <strong>the</strong> era of socialism<br />

and collectivisation (1950–1989), when <strong>in</strong>tensive agriculture caused<br />

<strong>the</strong> transformation of about one third of grasslands <strong>in</strong>to arable land.<br />

The rema<strong>in</strong><strong>in</strong>g grasslands were degraded by fertilis<strong>in</strong>g, dra<strong>in</strong><strong>in</strong>g, <strong>in</strong>tensive<br />

graz<strong>in</strong>g, additional sow<strong>in</strong>g of commercial grass and legume<br />

seed mixtures, or conversely, by abandon<strong>in</strong>g grassland management<br />

and by afforestation. All <strong>the</strong>se changes led to an enormous loss <strong>in</strong> <strong>the</strong><br />

species diversity of <strong>the</strong> orig<strong>in</strong>al communities and a homogenisation of<br />

<strong>the</strong> landscape <strong>in</strong> general.<br />

Dur<strong>in</strong>g Natura 2000 habitat mapp<strong>in</strong>g (Chytrý et al. 2010) approximately<br />

396 thousand hectares of semi-natural grassland communities<br />

were recorded <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Ano<strong>the</strong>r hundreds of thousand<br />

hectares of grassland were classified as Intensively Managed Mead-<br />

Fig. 1. -<br />

<br />

ows. This means that grasslands of conservation value <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong> (e.g. for reason of high total species richness or presence of<br />

endangered plant and animal species) have decl<strong>in</strong>ed strongly dur<strong>in</strong>g<br />

<strong>the</strong> past few decades. Moreover, well-preserved fragments of such<br />

grasslands today often occur isolated <strong>in</strong> <strong>the</strong> landscape, and thus lack<br />

<strong>the</strong> metapopulation dynamics necessary for <strong>the</strong> survival of a range of<br />

<strong>in</strong>vertebrate and plant species. F<strong>in</strong>ally, many plots, ma<strong>in</strong>ly grassland<br />

enclaves <strong>in</strong> forests and at o<strong>the</strong>r <strong>in</strong>accessible locations, on steep slopes,<br />

or small private plots around villages, have been abandoned or afforested<br />

<strong>in</strong> <strong>the</strong> past twenty years.<br />

Conservation management<br />

The fi rst attempts to secure <strong>the</strong> management of some valuable<br />

sites (at <strong>the</strong> time mostly fallow land or grassland encroached by<br />

shrubs and trees) were made <strong>in</strong> <strong>the</strong> late 1970s and early 1980s, thanks<br />

to volunteers of non-governmental organisations – TIS (Association<br />

for Nature and Landscape Conservation), later <strong>the</strong> <strong>Czech</strong> Union for<br />

Nature Conservation, and <strong>the</strong> Brontosaurus Movement. The situation<br />

generally changed after 1989, when particularly <strong>in</strong> submontane and<br />

mounta<strong>in</strong>ous regions grassland fertilisation was mostly stopped, and<br />

arable land was turned back <strong>in</strong>to grassland. In that time (at least to a<br />

small extent) also state nature conservation bodies began to support<br />

<strong>the</strong> management of preserved grassland (and thus <strong>in</strong>crease of biodiversity),<br />

ma<strong>in</strong>ly <strong>in</strong> protected areas, <strong>in</strong> an active way.<br />

In 1996 <strong>the</strong> M<strong>in</strong>istry of <strong>the</strong> Environment and <strong>the</strong> M<strong>in</strong>istry of Agriculture<br />

created <strong>the</strong> Landscape Management Programme, a subsidy<br />

scheme which has been <strong>in</strong> operation up to <strong>the</strong> present. This has f<strong>in</strong>ancially<br />

stimulated landowners and -tenants to take care of particular<br />

sites (e.g. nature reserves) or secure <strong>restoration</strong> and ma<strong>in</strong>tenance of<br />

abandoned sites. Unfortunately state f<strong>in</strong>ances are limited and <strong>the</strong>refore<br />

<strong>the</strong> total amount of subsidies has been gradually reduced <strong>in</strong> <strong>the</strong><br />

past years.<br />

Agri-environmental schemes<br />

As of 1999, subsidies of <strong>the</strong> M<strong>in</strong>istry of Agriculture can be used for<br />

landscape ma<strong>in</strong>tenance, particularly for mow<strong>in</strong>g and graz<strong>in</strong>g. These<br />

have led to a resumption of <strong>the</strong> management of several thousand hectares<br />

of grassland which had been ly<strong>in</strong>g fallow after <strong>the</strong> dis<strong>in</strong>tegration<br />

of agricultural cooperatives. Many sites have unfortunately only been<br />

mulched. With <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>’s entrance <strong>in</strong>to <strong>the</strong> European Union,<br />

<strong>the</strong> subsidy system essentially changed thanks to access to Agrienvironmental<br />

schemes. Their aim is to support agricultural land use<br />

respect<strong>in</strong>g <strong>the</strong> environment and <strong>the</strong> landscape. Besides mow<strong>in</strong>g, <strong>the</strong><br />

Agri-environmental Programme has also supported graz<strong>in</strong>g of particular<br />

sites, mostly by beef cattle and sheep.<br />

Paradoxically, despite <strong>the</strong>ir <strong>in</strong>tention, Agri-environmental<br />

schemes have unfortunately not contributed much to a higher biodiversity<br />

<strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> so far. Especially <strong>the</strong>ir too uniform and<br />

strictly enforced requirements for large blocks of land are a problem.<br />

Unify<strong>in</strong>g management of large areas is, thanks to modern farm<strong>in</strong>g<br />

equipment, easy today, but it has a very negative effect on rare, but<br />

also common plant and animal species. The po<strong>in</strong>t is that <strong>the</strong> mow<strong>in</strong>g<br />

of large areas <strong>in</strong> a short time practically removes all available food<br />

plants, nectar and shelter (<strong>in</strong>clud<strong>in</strong>g places for rest<strong>in</strong>g, patroll<strong>in</strong>g<br />

and hibernat<strong>in</strong>g) from <strong>the</strong> sward, which are particularly important<br />

to a range of <strong>in</strong>vertebrates. It also causes high mortality of animals<br />

<strong>in</strong> all development stages (especially when heavy equipment is used,<br />

Grasslands 35


e.g. rotary mowers) (Čížek et al. 2011). All this may lead to <strong>the</strong> ext<strong>in</strong>ction<br />

of formerly large populations of sensitive species, which are<br />

often important from <strong>the</strong> nature conservation viewpo<strong>in</strong>t, with<strong>in</strong> a<br />

few years (Konvička et al. 2005, 2008). Autumn mulch<strong>in</strong>g is also destructive,<br />

but farmers are forced to use it <strong>in</strong> case <strong>the</strong> sward exceeds a<br />

height of 30 cm. Mow<strong>in</strong>g of ungrazed patches after each graz<strong>in</strong>g cycle<br />

<strong>in</strong> pastures has a negative effect on biodiversity as well (Konvička &<br />

Mládek 2006). Currently nature conservation authorities can adjust<br />

management regimes on request. Th is is however adm<strong>in</strong>istratively<br />

difficult and farmers are not stimulated to do so, hence such cases are<br />

<strong>in</strong> reality exceptional (Marhoul 2010). Ano<strong>the</strong>r problem is that <strong>the</strong><br />

Agri-environmental Programme does not support small landowners,<br />

s<strong>in</strong>ce <strong>the</strong> m<strong>in</strong>imum land area is set at 2 ha <strong>in</strong> protected landscape<br />

areas and even 5 ha outside of <strong>the</strong>m. Although farm<strong>in</strong>g extensive ‘cultural’<br />

grasslands leads to conservation of an open landscape, it does<br />

not conserve its biodiversity (Piro & Wolfová 2008). Also, <strong>the</strong>re are no<br />

subsidies available at <strong>the</strong> moment for alternat<strong>in</strong>g graz<strong>in</strong>g and mow<strong>in</strong>g<br />

of unfertilised grasslands, but a change of <strong>the</strong> Programme is currently<br />

be<strong>in</strong>g prepared.<br />

In summary, Agri-environmental schemes should pay more attention<br />

to <strong>the</strong> need to divide and diversify uniform landscapes, ei<strong>the</strong>r<br />

by reduc<strong>in</strong>g land block sizes or <strong>in</strong>troduc<strong>in</strong>g <strong>the</strong> obligation to farm <strong>in</strong><br />

a diversify<strong>in</strong>g manner, both <strong>in</strong> space and time. A possible solution<br />

would be <strong>the</strong> creation of <strong>in</strong>dividual farm plans, respect<strong>in</strong>g <strong>the</strong> special<br />

features and natural conditions of each area.<br />

In <strong>the</strong> past years also o<strong>the</strong>r European resources have been used to<br />

ma<strong>in</strong>ta<strong>in</strong> and especially restore particular habitats, such as Operat<strong>in</strong>g<br />

Programmes, <strong>the</strong> LIFE programme, and Norway Grants.<br />

Types of grassland <strong>restoration</strong> and recreation<br />

<br />

When grasslands are no longer fertilised and <strong>the</strong>ir biomass is<br />

regularly removed, <strong>the</strong> number of plant and animal species <strong>in</strong>creases<br />

with<strong>in</strong> a few years. Some sites <strong>in</strong> submontane and mounta<strong>in</strong>ous regions,<br />

which were until 1989 <strong>in</strong>fluenced by light fertilis<strong>in</strong>g, are good<br />

examples. In cases where mow<strong>in</strong>g has cont<strong>in</strong>ued, <strong>the</strong> orig<strong>in</strong>al species<br />

composition has often recovered with<strong>in</strong> 10–15 years, and sometimes<br />

protected and endangered plant and animals species have appeared<br />

(e.g. Královec et al. 2009).<br />

<br />

Abandoned sites are usually rapidly overgrown by fast-grow<strong>in</strong>g,<br />

competitive grasses (e.g. Brachypodium p<strong>in</strong>natum, Calamagrostis<br />

epigejos, Mol<strong>in</strong>ia spp.) and shrubs and trees (Crataegus spp., Prunus<br />

sp<strong>in</strong>osa, Rosa can<strong>in</strong>a, Populus tremula, Betula spp., Salix spp., Alnus<br />

glut<strong>in</strong>osa, etc.), so that species conf<strong>in</strong>ed to open vegetation gradually<br />

decl<strong>in</strong>e. In <strong>the</strong> past 30 years, management has been resumed on several<br />

thousand hectares of grassland which had been encroached by<br />

coarse grasses, shrubs and trees, particularly <strong>in</strong> protected areas. As<br />

documented by several case studies <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g chapters, rare and<br />

endangered plants have returned to many of <strong>the</strong>se sites.<br />

Several meadows and pastures have been afforested on purpose –<br />

mostly with conifers at lower elevations and with P<strong>in</strong>us mugo <strong>in</strong> <strong>the</strong><br />

Subalp<strong>in</strong>e zone. The latter community is successfully be<strong>in</strong>g restored <strong>in</strong><br />

<strong>the</strong> Krkonoše NP and described <strong>in</strong> <strong>the</strong> case study “Restoration of <strong>the</strong><br />

tundra ecosystem above <strong>the</strong> timberl<strong>in</strong>e <strong>in</strong> <strong>the</strong> Krkonoše Mts.”.<br />

Many <strong>restoration</strong> efforts have also been focused on moist grasslands.<br />

The case study “Restoration and subsequent degradation of<br />

an alluvial meadow” describes <strong>the</strong> rate of <strong>restoration</strong> <strong>in</strong> experimental<br />

plots of a neglected alluvial meadow. The case study “Restoration<br />

Fig. 2. <br />

management of wetland meadows <strong>in</strong> <strong>the</strong> Podblanicko region” provides<br />

a practical example.<br />

Ano<strong>the</strong>r example of successful <strong>restoration</strong>, <strong>in</strong>clud<strong>in</strong>g strong surface<br />

disturbance, is described <strong>in</strong> <strong>the</strong> case study “Optimis<strong>in</strong>g management<br />

at Gentianella praecox subsp. bohemica sites”.<br />

At several dry grassland sites, mostly thanks to <strong>in</strong>itiatives of state<br />

conservation authorities, graz<strong>in</strong>g by sheep and goats has been re<strong>in</strong>troduced.<br />

An example is described <strong>in</strong> <strong>the</strong> case study “Graz<strong>in</strong>g of dry<br />

grasslands <strong>in</strong> <strong>the</strong> Bohemian Karst”.<br />

Graz<strong>in</strong>g has also been re<strong>in</strong>troduced <strong>in</strong> o<strong>the</strong>r types of grassland<br />

communities, especially <strong>in</strong> submontane and mounta<strong>in</strong>ous regions.<br />

The results of an experiment aimed at monitor<strong>in</strong>g <strong>the</strong> long-term<br />

development of mesophilous abandoned grasslands after resum<strong>in</strong>g<br />

management are given <strong>in</strong> <strong>the</strong> case study “Restoration of graz<strong>in</strong>g management<br />

on abandoned upland grasslands <strong>in</strong> <strong>the</strong> Jizera Mounta<strong>in</strong>s”.<br />

A separate problem is <strong>the</strong> ma<strong>in</strong>tenance and <strong>restoration</strong> of plant<br />

communities on open sands, which are currently extremely rare habitats.<br />

In <strong>the</strong> past, succession of <strong>the</strong>se communities was often <strong>in</strong>hibited<br />

by regular fires or graz<strong>in</strong>g. After cessation of <strong>the</strong>se factors such sites<br />

are now chang<strong>in</strong>g due to shrub and tree encroachment, eutrophication,<br />

settl<strong>in</strong>g of <strong>in</strong>vasive and expansive species, etc. Therefore <strong>the</strong> most<br />

urgent measures to be taken here are <strong>the</strong> elim<strong>in</strong>ation of shrubs and<br />

trees, removal of <strong>the</strong> eutrophicated top soil layer, and mechanical disturbance<br />

(see case study “Restoration of sands as part of <strong>the</strong> Action<br />

Plan for Dianthus arenarius subsp. bohemicus” and also <strong>the</strong> section on<br />

military tra<strong>in</strong><strong>in</strong>g grounds and post-<strong>in</strong>dustrial habitats).<br />

<br />

Modern mechanisation has enabled farmers to mow dozens of<br />

hectares of grassland dur<strong>in</strong>g one or a few days, which has negative<br />

effects on biodiversity, particularly <strong>in</strong>vertebrates (see above). Longterm<br />

<strong>in</strong>tensive graz<strong>in</strong>g has a similar negative impact. Permanent preservation<br />

of plant and animal species diversity thus requires a type of<br />

management varied <strong>in</strong> space and time (<strong>the</strong> more small plots, <strong>the</strong> better)<br />

(Kirby 2001).<br />

36 Grasslands


The necessity of mosaic management is demonstrated by <strong>the</strong> case<br />

study “Restor<strong>in</strong>g heterogeneity <strong>in</strong> submontane meadows for <strong>the</strong> butterfly<br />

Euphydryas aur<strong>in</strong>ia”. See also Konvička et al. (2005, 2008), Marhoul<br />

(2010), and Čížek et al. (2011).<br />

<br />

After 1989, land has come back <strong>in</strong>to <strong>the</strong> hands of private owners,<br />

and agricultural cooperatives have been transformed. These changes<br />

have also meant <strong>the</strong> conversion of more than 230,000 hectares of arable<br />

land to grassland (regrass<strong>in</strong>g). This conversion has taken place<br />

ei<strong>the</strong>r spontaneously after <strong>the</strong> arable land was abandoned or by seed<strong>in</strong>g<br />

with grass or grass-herb seed mixtures.<br />

a) Spontaneous succession<br />

About 30–40% of converted arable land has returned to grassland<br />

spontaneously by means of natural succession. In some areas, particularly<br />

<strong>in</strong> marg<strong>in</strong>al regions, land has been abandoned due to dis<strong>in</strong>tegration<br />

of agricultural cooperatives. In many o<strong>the</strong>r areas spontaneous<br />

succession was deliberately applied as a cost-free way of convert<strong>in</strong>g<br />

arable land to grassland, e.g. <strong>in</strong> organic agriculture.<br />

Spontaneously revert<strong>in</strong>g swards can be used as low-productive<br />

pastures already a few years after <strong>the</strong> start of <strong>the</strong> succession. Less<br />

frequently such land is mown <strong>in</strong> <strong>the</strong> first years (<strong>in</strong> <strong>the</strong> weed stage),<br />

as it yields sparse hay of bad quality. However, quality pasture and<br />

meadow communities need to develop over a longer time depend<strong>in</strong>g<br />

on natural conditions and distance to seed resources of target species<br />

(Lencová & Prach 2011, Prach et al. 2012).<br />

Spontaneous succession is useful if not obta<strong>in</strong><strong>in</strong>g productive<br />

grassland <strong>in</strong> a short time is <strong>the</strong> aim, but resistance and naturalness of<br />

<strong>the</strong> result<strong>in</strong>g sward is more important.<br />

b) Grassland recreation with commercial seed mixtures<br />

Half to two thirds of all regrassed land <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> has<br />

been sown with seed mixtures available on <strong>the</strong> market. Species usually<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong>se mixtures are Alopecurus pratensis, Arrhena<strong>the</strong>rum<br />

elatius, Dactylis glomerata, Festuca arund<strong>in</strong>acea, F. pratensis, F.<br />

rubra, Phleum pratense, Poa pratensis agg., Lolium perenne, and L.<br />

multiflorum. Commercial grass mixtures are mostly applied <strong>in</strong> <strong>in</strong>tensive<br />

farm<strong>in</strong>g. However, if swards created this way are located close<br />

to species-rich communities and are not fertilised <strong>the</strong>reafter, <strong>the</strong>y are<br />

gradually colonised by grassland species from <strong>the</strong> surround<strong>in</strong>gs and<br />

may eventually come close to semi-natural swards <strong>in</strong> terms of species<br />

composition (Lencová & Prach 2011).<br />

In <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, commercial species-rich seed mixtures –<br />

besides cultural grasses and legumes also <strong>in</strong>clud<strong>in</strong>g seed of o<strong>the</strong>r dicotyledonous<br />

species – have so far been used to a limited extent. This<br />

seed is offered by several companies and is mostly used <strong>in</strong> gardens<br />

and orchards.<br />

c) Grassland recreation with regional species-rich mixtures<br />

The only region <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> where a species-rich mixture<br />

of regional grasses and herbs has been used on a large scale is<br />

<strong>the</strong> Bílé Karpaty Protected Landscape Area (PLA). This process was<br />

<strong>in</strong>itiated by an NGO, <strong>the</strong> <strong>Czech</strong> Union for Nature Conservation, Local<br />

Chapter Bílé Karpaty, Veselí nad Moravou, <strong>in</strong> collaboration with <strong>the</strong><br />

Bílé Karpaty PLA Authority and Grassland Research Station, Zubří.<br />

S<strong>in</strong>ce 1999 more than 500 ha of arable land have been regrassed with<br />

this mixture (Jongepierová 2008, Mitchley et al. 2012, Prach et al.<br />

2012) – see case study “Recreation of species-rich grasslands <strong>in</strong> <strong>the</strong><br />

Bílé Karpaty Mts.” In a few o<strong>the</strong>r regions regional seed mixtures are<br />

be<strong>in</strong>g prepared or have been used at a small scale, aga<strong>in</strong> at <strong>the</strong> <strong>in</strong>itiative<br />

of NGOs (Litovelské Pomoraví, surround<strong>in</strong>gs of Karlovy Vary).<br />

Fig. 3. <br />

Grasslands 37


Fig. 4. -<br />

<br />

Conclusion<br />

Thanks to <strong>restoration</strong> activities, <strong>the</strong> total area of grasslands <strong>in</strong><br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> has markedly <strong>in</strong>creased <strong>in</strong> <strong>the</strong> past 20 years, but<br />

to date <strong>the</strong>ir biodiversity has risen significantly <strong>in</strong> only a few areas.<br />

The future of grasslands is moreover dependent on subsidies from<br />

<strong>the</strong> M<strong>in</strong>istry of <strong>the</strong> Environment, <strong>the</strong> M<strong>in</strong>istry of Agriculture, and<br />

<strong>the</strong> European Union. At <strong>the</strong> moment <strong>the</strong> M<strong>in</strong>istry of <strong>the</strong> Environment<br />

is strongly reduc<strong>in</strong>g <strong>the</strong> f<strong>in</strong>ances it provides, which may have<br />

a catastrophic impact on <strong>the</strong> ma<strong>in</strong>tenance of preserved grassland<br />

communities. This is because <strong>the</strong>se f<strong>in</strong>ances support particularly <strong>the</strong><br />

management of remnants of <strong>the</strong> most valuable semi-natural habitats,<br />

which often require manual ma<strong>in</strong>tenance and special measures. Besides<br />

<strong>the</strong>ir immense natural and cultural-historic values such habitats<br />

are also irreplaceable as a resource for <strong>the</strong> spread of rare species to<br />

regrassed and degraded sites.<br />

References<br />

Chytrý M. (ed.) (2007): Vegetace České republiky. 1. Trav<strong>in</strong>ná a<br />

keříčková vegetace. Vegetation of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. 1. Grassland<br />

and heathland vegetation. – Academia, Praha.<br />

Chytrý M., Kučera T., Kočí M., Grulich V. & Lustyk P. (eds) (2010):<br />

Katalog biotopů České republiky (Habitat Catalogue of <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>). Ed. 2. – Agentura ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Čížek O., Zámečník J., Tropek R., Kočárek P. & Konvička M. (2011):<br />

Diversification of mow<strong>in</strong>g regime <strong>in</strong>creases arthropods diversity<br />

<strong>in</strong> species-poor cultural hay meadows. – Journal of Insect Conservation<br />

16: 215–226.<br />

Hájková P., Roleček J., Hájek M., Horsák M., Fajmon K., Polák M. &<br />

Jamrichová E. (2011): Prehistoric orig<strong>in</strong> of extremely species-rich<br />

semi-dry grasslands <strong>in</strong> <strong>the</strong> Bílé Karpaty Mts. (<strong>Czech</strong> <strong>Republic</strong> and<br />

Slovakia). – Preslia 83: 185–204.<br />

Hrázský Z. (2006): Zatravňování v České republice (Regrass<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>). – In: Jongepierová I. & Poková H. (eds), Obnova<br />

travních porostů regionální směsí, Metodická příručka pro<br />

ochranu přírody a zemědělskou praxi (Grassland <strong>restoration</strong> us<strong>in</strong>g<br />

regional seed mixtures, Handbook for nature conservation<br />

and agricultural practice), pp. 15–20, ZO ČSOP Bílé Karpaty, Veselí<br />

nad Moravou.<br />

Jongepierová I. (ed.) (2008): Louky Bílých Karpat. Grasslands of <strong>the</strong><br />

White Carpathian Mounta<strong>in</strong>s. – ZO Č SOP Bílé Karpaty, Veselí<br />

nad Moravou.<br />

Kirby P. (2001): Habitat management for <strong>in</strong>vertebrates – a practical<br />

handbook. – The Royal Society for <strong>the</strong> Protection of Birds, Sandy.<br />

Konvička M., Beneš J. & Čížek L. (2005): Ohrožený hmyz nelesních<br />

stanovišť: ochrana a management (Endangered <strong>in</strong>sects of open<br />

habitats: conservation and management). – Sagittaria, Olomouc.<br />

Konvička M., Beneš J., Číž ek O., Kopeček F., Konvička O. & Víťaz<br />

L. (2008): How too much care kills species: Grassland reserves,<br />

agri-environmental schemes and ext<strong>in</strong>ction of Colias myrmidone<br />

(Lepidoptera: Pieridae) from its former stronghold. – Journal of<br />

Insect Conservation 12: 519–525.<br />

Konvička M. & Mládek J. (2006): Dotační tituly ve vztahu k ochraně<br />

biodiverzity (Subsidy schemes <strong>in</strong> <strong>the</strong> light of biodiversity conservation).<br />

– In: Mládek J., Hejcman M., Pavlů V. & Geisler J.<br />

(eds), Pastva jako prostředek údržby trvalých travních porostů<br />

v chráněných územích, pp. 89–90, Výzkumný ústav rostl<strong>in</strong>né<br />

výroby, Praha.<br />

Královec J., Pocová L., Jonášová M., Macek P. & Prach K. (2009):<br />

Spontaneous recovery of an <strong>in</strong>tensively used grassland after cessation<br />

of fertiliz<strong>in</strong>g. – Applied Vegetation Science 12: 391–397.<br />

Lencová K. & Prach K. (2011): Restoration of hay meadows on ex-arable<br />

land: commercial seed mixtures vs. spontaneous succession.<br />

– Grass and Forage Science 66: 265–271.<br />

Marhoul P. (2010): Kobylka zavalitá na jičínských loukách versus<br />

zemědělské dotace (The Large Saw-tailed Bush-cricket on <strong>the</strong><br />

Jičín Meadows contra agricultural subsidies). – Ochrana přírody<br />

2010/2: 12–13.<br />

Mitchley J., Jongepierová I. & Fajmon K. (2012): Regional seed mixtures<br />

for <strong>the</strong> re-creation of species-rich meadows <strong>in</strong> <strong>the</strong> White<br />

Carpathian Mounta<strong>in</strong>s: results of a 10-yr experiment. – Applied<br />

Vegetation Science 15: 253–263.<br />

Piro Z. & Wolfová J. (eds) (2008): Zachování biodiverzity karpatských<br />

luk (Conservation of <strong>the</strong> Carpathian grassland diversity). – FOA,<br />

nadační fond pro ekologické zemědělství, Praha.<br />

Prach K., Jongepierová I. & Řehounková K. (2012): Large-scale <strong>restoration</strong><br />

of dry grasslands on ex-arable land us<strong>in</strong>g a regional seed<br />

mixture: establishment of target species. – Restoration Ecology<br />

Doi: 10.1111/j.1526-100X.2012.00872.x<br />

Veen P., Jefferson R., de Smidt J. & van der Straaten J. (2009): Grasslands<br />

<strong>in</strong> Europe of high nature value. – KNNV Publish<strong>in</strong>g, Zeist.<br />

38 Grasslands


Experimental <strong>restoration</strong> and subsequent degradation of an alluvial<br />

meadow<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Experimental area 675 m 2<br />

Horní Lužnice NR, Lužnice river floodpla<strong>in</strong>, south <strong>Czech</strong> <strong>Republic</strong>, near <strong>the</strong> border with Austria<br />

48°51'10" N, 14°54'39" E; altitude 455 m<br />

PLA and UNESCO Biosphere Reserve (Třeboňsko), NR<br />

Mosaic of alluvial meadows, marshes, pools and willow scrub; experiment <strong>in</strong> degraded alluvial meadows<br />

(Deschampsion cespitosae and Magno-Caricion gracilis)<br />

Initial conditions and <strong>restoration</strong> measures<br />

The experiment was established <strong>in</strong> an area of fl oodpla<strong>in</strong> which<br />

had been regularly cut until <strong>the</strong> late 1960s, and was <strong>the</strong>n left unmanaged.<br />

In 1989, a strip 135 m long and 5 m wide was delimited between<br />

<strong>the</strong> riverbank and <strong>the</strong> foot of <strong>the</strong> terrace, and cutt<strong>in</strong>g management<br />

was resumed. Vegetation was cut three times a year <strong>in</strong> <strong>the</strong> first three<br />

years of <strong>the</strong> experiment, i.e. 1989, 1990, and 1991, and twice a year<br />

<strong>the</strong>reafter because of <strong>in</strong>sufficient <strong>in</strong>crease <strong>in</strong> biomass later <strong>in</strong> <strong>the</strong> seasons<br />

of 1992 and 1993. All cut biomass was removed. No management<br />

was performed s<strong>in</strong>ce 1994.<br />

Objectives<br />

The follow<strong>in</strong>g ma<strong>in</strong> questions were addressed: (a) how fast is <strong>the</strong><br />

<strong>restoration</strong> of neglected alluvial meadows, (b) how much are target<br />

meadow species capable of establish<strong>in</strong>g, and (c) do <strong>the</strong> rate and ways<br />

of degradation differ from that of <strong>restoration</strong>?<br />

Methods<br />

A transect was demarcated <strong>in</strong> <strong>the</strong> middle of <strong>the</strong> area along <strong>the</strong><br />

mown strip, and vegetation was recorded <strong>in</strong> each 1 m 2 along <strong>the</strong> transect<br />

<strong>in</strong> early June, before <strong>the</strong> first mow<strong>in</strong>g. The cover of all species was<br />

estimated visually. At <strong>the</strong> same time a species list was compiled for<br />

<strong>the</strong> whole mown strip. The vegetation records were repeated four and<br />

seven years after <strong>the</strong> mow<strong>in</strong>g had been stopped. Target species were<br />

def<strong>in</strong>ed as those characteristic of <strong>the</strong> Mol<strong>in</strong>io-Arrhena<strong>the</strong>retea class<br />

(Ellenberg et al. 1992).<br />

Results<br />

Rapid changes <strong>in</strong> species composition and cover of constituent<br />

species were observed follow<strong>in</strong>g both <strong>the</strong> re-establishment of regular<br />

mow<strong>in</strong>g <strong>in</strong> 1989 and its cessation after 5 years (Tab. 1). Phalaris<br />

arund<strong>in</strong>acea, <strong>the</strong> dom<strong>in</strong>ant species at <strong>the</strong> start of <strong>the</strong> experiment,<br />

slightly <strong>in</strong>creased <strong>in</strong> dom<strong>in</strong>ance after <strong>the</strong> first season of cutt<strong>in</strong>g, but<br />

Fig. 1. <br />

Grasslands 39


2,0<br />

-0,5<br />

-0,5<br />

2001<br />

1989<br />

Year<br />

1998<br />

1990<br />

1991<br />

1993<br />

1992<br />

1994<br />

2,5<br />

Conclusions<br />

Both <strong>restoration</strong> and degradation of <strong>the</strong> alluvial meadow under<br />

study occurred very rapidly. It took just four years to restore a typical<br />

managed alluvial meadow from a degraded one. After <strong>the</strong> cessation<br />

of mow<strong>in</strong>g, both <strong>the</strong> cover of constituent species and species numbers<br />

after seven years returned nearly exactly back to <strong>the</strong> values before<br />

<strong>the</strong> experiment started (Tab. 1), degradation thus be<strong>in</strong>g only slightly<br />

slower than <strong>restoration</strong>. Rapid <strong>restoration</strong> was obviously supported<br />

by <strong>the</strong> fact that regularly managed meadows of comparable species<br />

composition occurred only 150 m upstream of <strong>the</strong> experimental site,<br />

where all <strong>the</strong> newly established meadow species were recorded. Propagules<br />

of <strong>the</strong> species were probably transported by regular flood<strong>in</strong>g.<br />

The rapid degradation was obviously accelerated by <strong>the</strong> fact that <strong>the</strong><br />

experimental strip was narrow (5 m wide), and <strong>the</strong> clonal dom<strong>in</strong>ants<br />

of <strong>the</strong> surround<strong>in</strong>g degraded meadows, i.e. Phalaris arund<strong>in</strong>acea and<br />

Urtica dioica, spread vegetatively very easily from <strong>the</strong> marg<strong>in</strong>s of <strong>the</strong><br />

experimental strip.<br />

Fig. 2. <br />

<br />

<strong>the</strong>n decreased very rapidly. However, after <strong>the</strong> cessation of mow<strong>in</strong>g,<br />

P. arund<strong>in</strong>acea was also able to atta<strong>in</strong> its previous dom<strong>in</strong>ance rapidly.<br />

Urtica dioica, <strong>the</strong> prevalent species at drier elevations, started to decrease<br />

immediately, and nearly disappeared (average cover 0.001%)<br />

<strong>in</strong> <strong>the</strong> last year of <strong>the</strong> experiment. The typical dom<strong>in</strong>ant of managed<br />

alluvial meadows <strong>in</strong> <strong>the</strong> area, Alopecurus pratensis, <strong>in</strong>creased up to <strong>the</strong><br />

fourth year of <strong>the</strong> experiment, <strong>the</strong>n stabilised before decreas<strong>in</strong>g after<br />

<strong>the</strong> cessation of mow<strong>in</strong>g. Many typical meadow species appeared after<br />

two seasons of mow<strong>in</strong>g while o<strong>the</strong>rs established <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g two<br />

years. Most of <strong>the</strong>se species disappeared aga<strong>in</strong> after <strong>the</strong> cessation of<br />

mow<strong>in</strong>g. The greatest <strong>in</strong>crease <strong>in</strong> species number was recorded between<br />

<strong>the</strong> second and third year of <strong>the</strong> experiment (Tab. 1). Dur<strong>in</strong>g<br />

<strong>the</strong> experiment, <strong>the</strong> number of species <strong>in</strong>creased nearly threefold. A<br />

similar trend was found <strong>in</strong> <strong>the</strong> case of species density, which <strong>in</strong>creased<br />

by twofold <strong>in</strong> only two years. The number of target species peaked <strong>in</strong><br />

<strong>the</strong> fourth year of <strong>the</strong> experiment, and when mow<strong>in</strong>g was stopped, it<br />

decreased aga<strong>in</strong>.<br />

Results of <strong>the</strong> Detrended Correspondence Analysis ord<strong>in</strong>ation of<br />

samples (Fig. 2) <strong>in</strong>dicate that <strong>the</strong> greatest change <strong>in</strong> vegetation took<br />

place <strong>in</strong> <strong>the</strong> second year of <strong>the</strong> experiment (1990). After <strong>the</strong> cessation<br />

of mow<strong>in</strong>g (1994), it took only 4 years for <strong>the</strong> vegetation to become<br />

close to that of <strong>the</strong> first year of <strong>the</strong> experiment. The first axis (eigenvalue<br />

0.508) represents management, while <strong>the</strong> second axis (eigenvalue<br />

0.052) is partly related to time.<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Re-establishment of mow<strong>in</strong>g management is recommended for<br />

<strong>the</strong> entire floodpla<strong>in</strong>, which is nowadays largely neglected. If this cannot<br />

be performed, it should at least be <strong>in</strong>troduced <strong>in</strong> several large,<br />

ra<strong>the</strong>r than many small, portions of <strong>the</strong> floodpla<strong>in</strong>. The management<br />

must be regular – if <strong>in</strong>terrupted for even a few years, rapid degradation<br />

can be expected aga<strong>in</strong>.<br />

Acknowledgements<br />

The study was supported by grant GAČR P505/11/0256.<br />

References<br />

Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W. & Paulißen D.<br />

(1992): Zeigerwerte von Pflanzen <strong>in</strong> Mitteleuropa. Ed. 2. – Scripta<br />

Geobotanica 18: 1–258.<br />

Prach K. (2007): Alluvial meadows under chang<strong>in</strong>g management:<br />

Their degradation and <strong>restoration</strong>. – In: Okruszko T., Maltby E.,<br />

Szatylowicz J., Sviatek D. & Kotowski W. (eds), Wetlands: Monitor<strong>in</strong>g,<br />

modell<strong>in</strong>g and management, pp. 265–271, Taylor and<br />

Francis, London.<br />

Prach K., Jeník J. & Large A.R.G. (1996): Floodpla<strong>in</strong> ecology and<br />

management. The Lužnice River <strong>in</strong> <strong>the</strong> Třeboň Biosphere Reserve,<br />

Central Europe. – SPB Academic Publish<strong>in</strong>g, Amsterdam.<br />

Tab. 1. <br />

<br />

1989 1990 1991 1992 1993 1994 1998 2001<br />

Alopecurus pratensis 14.4 20.3 21.8 26.5 33.1 30.4 23.5 11.6<br />

Phalaris arund<strong>in</strong>acea 28.0 35.1 9.5 4.4 0.7 0.9 32.8 37.0<br />

Urtica dioica 18.4 7.8 2.6 0.2 0.1 0.0 1.8 13.6<br />

Average species density per 1 m 2 4.0 7.3 8.9 6.9 8.1 8.2 5.0 4.5<br />

Number of species <strong>in</strong> sampl<strong>in</strong>g plots 23 35 55 60 62 57 27 27<br />

Number of target species 4 5 16 20 22 20 7 7<br />

Total number of species along <strong>the</strong> transect 28 48 61 71 79 70 31 29<br />

40 Grasslands


Fig. 3. <br />

Grasslands 41


Restoration management of wetland meadows <strong>in</strong> <strong>the</strong> Podblanicko region<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

SE part of <strong>the</strong> Central Bohemia Region<br />

49°30'–49°52' N, 14°30'–15°10' E; altitude 280–630 m<br />

PLA (Blaník – 8 sites), NR (5 sites), SCI (4 sites)<br />

Various types of wet meadows, where optimal with a range of well-developed communities follow<strong>in</strong>g <strong>the</strong><br />

water gradient: transition mires and quak<strong>in</strong>g bogs (Caricion canescenti-nigrae), humid meadows (Calthion<br />

palustris), Mol<strong>in</strong>ia meadows (Mol<strong>in</strong>ion caeruleae) and Nardus grasslands (Violion can<strong>in</strong>ae)<br />

63 ha (28 sites)<br />

Regional Authority of <strong>the</strong> Central Bohemia Region, Regional Authority of <strong>the</strong> Vysoč<strong>in</strong>a Region, landscape<br />

management programmes, Operational Programme Environment, own resources<br />

Initially €1,000/ha (elim<strong>in</strong>ation of trees and shrubs on 42 ha), annually €800/ha (mow<strong>in</strong>g 1–2 times on 63<br />

ha, <strong>in</strong>cl. mosaic mow<strong>in</strong>g at selected locations)<br />

Initial conditions<br />

Meadows with rare plant species used to be a relatively common<br />

part of <strong>the</strong> landscape until <strong>the</strong> 1960s. The meadows were managed<br />

extensively <strong>in</strong> <strong>the</strong> time before that (Zelený 1976). The follow<strong>in</strong>g <strong>in</strong>tensification<br />

of agricultural production often led to adjustments of <strong>the</strong><br />

water regime at <strong>the</strong> sites as well as to eutrophication and biodiversity<br />

decl<strong>in</strong>e. Some representative meadows were usually preserved only<br />

at <strong>the</strong> periphery of a village territory. In <strong>the</strong> past twenty years, <strong>the</strong>se<br />

remnants of wet meadows have been threatened by lack of management.<br />

The meadows are <strong>in</strong>habited by protected species, for example<br />

Broad-leaved Marsh-orchid (Dactylorhiza majalis), Small Lousewort<br />

(Pedicularis sylvatica), Round-leaved Sundew (Drosera rotundifolia),<br />

Common Bogbean (Menyan<strong>the</strong>s trifoliata), Grass-of-Parnassus (Parnassia<br />

palustris), Viper’s-Grass (Scorzonera humilis), Marsh C<strong>in</strong>quefoil<br />

(Potentilla palustris), Globe-Flower (Trollius altissimus), and<br />

Marsh Gentian (Gentiana pneumonan<strong>the</strong>).<br />

S<strong>in</strong>ce <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of its activities, <strong>the</strong> <strong>Czech</strong> Union for Nature<br />

Conservation (CUNC), Local Chapter Vlašim, has focused on <strong>the</strong> <strong>restoration</strong><br />

and ma<strong>in</strong>tenance management of wetland meadows. Under<br />

<strong>the</strong> Landtrust for <strong>the</strong> Natural and Cultural Heritage of <strong>the</strong> Podblanicko<br />

Region, it has carried out several activities, <strong>in</strong>cl. monitor<strong>in</strong>g of sites,<br />

cooperation with landowners and implement<strong>in</strong>g measures of its own.<br />

S<strong>in</strong>ce 1990, <strong>restoration</strong> measures have been gradually implemented<br />

at 28 sites. Ano<strong>the</strong>r 10 sites are be<strong>in</strong>g monitored for <strong>the</strong> presence of<br />

Fig. 1. <br />

<br />

42 Grasslands


are and protected species. This means that also sites where <strong>restoration</strong><br />

measures have not been carried out or prepared are monitored.<br />

One of <strong>the</strong> monitored species is Dactylorhiza majalis, whose presence<br />

<strong>in</strong>dicates well-preserved aquatic conditions. Its abundance corresponds<br />

with <strong>the</strong> presence or absence of management.<br />

Abiotic conditions<br />

The sites have waterlogged or peated soils. There are also places<br />

with stagnant surface water, occurr<strong>in</strong>g ei<strong>the</strong>r naturally or <strong>in</strong> artificially<br />

created pools. Some sites have a water regime disturbed by different<br />

alterations (open dra<strong>in</strong>age channels, pipe dra<strong>in</strong>age systems) which restrict<br />

expansion of <strong>the</strong> target species.<br />

Objectives<br />

Restoration and stabilisation of <strong>the</strong> wetland biodiversity of meadows<br />

<strong>in</strong> <strong>the</strong> Podblanicko region, <strong>in</strong>clud<strong>in</strong>g ma<strong>in</strong>tenance of populations<br />

of rare species.<br />

Restoration measures<br />

1990–2000 Assessment of <strong>the</strong> status of wet meadow sites, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> presence of particular species. Establish<strong>in</strong>g<br />

site ownership and contact<strong>in</strong>g <strong>the</strong> owners. Cleanups<br />

(cutt<strong>in</strong>g shrubs and trees, reduc<strong>in</strong>g scrub areas,<br />

mow<strong>in</strong>g once a year) at 10 pilot sites.<br />

2001–2005 Cleanups (cutt<strong>in</strong>g shrubs and trees, reduc<strong>in</strong>g scrub<br />

areas, mow<strong>in</strong>g once a year) at most localities,<br />

ma<strong>in</strong>tenance management (mow<strong>in</strong>g once a year)<br />

at most localities. At 13 sites pools for amphibians<br />

were created. Most of <strong>the</strong> landowners of <strong>the</strong> localities<br />

were contacted. S<strong>in</strong>ce it was not always possible to<br />

obta<strong>in</strong> consent of <strong>the</strong> landowners with carry<strong>in</strong>g out<br />

management for <strong>the</strong> entire area of <strong>the</strong> sites, some<br />

parts of <strong>the</strong> sites rema<strong>in</strong>ed without management or<br />

were mown once every two years.<br />

2006–2011 Regular annual mow<strong>in</strong>g management at <strong>the</strong> sites: at<br />

<strong>the</strong> end of June and July at sites of low and medium<br />

altitude, <strong>in</strong> August at higher altitudes. A second cut<br />

takes place at selected locations <strong>in</strong> October. Mow<strong>in</strong>g<br />

is carried out with brushcutters or hand-guided<br />

mowers with a cutter bar. The cut biomass is manually<br />

raked up <strong>in</strong> piles and <strong>the</strong>n mechanically loaded<br />

onto a lorry for transport to a compost<strong>in</strong>g facility.<br />

Also specific forms of management have been realised at <strong>the</strong><br />

sites – clean<strong>in</strong>g gullies, mosaic mow<strong>in</strong>g <strong>in</strong> selected plots and deliberately<br />

leav<strong>in</strong>g selected sites unmown <strong>in</strong> certa<strong>in</strong> years. Monitor<strong>in</strong>g of<br />

<strong>the</strong> abundance of selected species and area distribution of species has<br />

been carried out at selected locations.<br />

Results<br />

After implementation of cleanup management, <strong>the</strong> population of<br />

Dactylorhiza majalis usually responds sooner or later with an <strong>in</strong>crease<br />

<strong>in</strong> number of recorded flower<strong>in</strong>g <strong>in</strong>dividuals (Fig. 3). Flower<strong>in</strong>g <strong>in</strong>dividuals<br />

orig<strong>in</strong>ate partly from surviv<strong>in</strong>g <strong>in</strong>dividuals at <strong>the</strong> site (not<br />

flower<strong>in</strong>g because of shad<strong>in</strong>g and be<strong>in</strong>g covered by plant litter), possibly<br />

also from <strong>the</strong> seed bank. The <strong>in</strong>crease later slows down.<br />

The observed abundance of flower<strong>in</strong>g Dactylorhiza majalis <strong>in</strong>dividuals<br />

at <strong>the</strong> monitored sites grew from 0 to approximately 1000 <strong>in</strong>dividuals<br />

over <strong>the</strong> period 2006–2011. At <strong>the</strong> restored and long-managed<br />

locations <strong>the</strong> marsh-orchid populations are stable (cf. Dykyjová<br />

2003), with fluctuations <strong>in</strong> <strong>the</strong> number of flower<strong>in</strong>g <strong>in</strong>dividuals accord<strong>in</strong>g<br />

to <strong>the</strong> course of <strong>the</strong> grow<strong>in</strong>g season or sometimes with a slight<br />

Fig. 2. <br />

-<br />

<br />

<br />

<strong>in</strong>crease. At locations with recently resumed mow<strong>in</strong>g this fluctuation<br />

is stronger. In contrast, <strong>the</strong> number of flower<strong>in</strong>g <strong>in</strong>dividuals gradually<br />

decreases at sites where no management takes place (lack of <strong>in</strong>terest<br />

<strong>in</strong> management by <strong>the</strong> landowners).<br />

0 0<br />

2<br />

5<br />

2004 2005 2006 2007 2008 2009 2010<br />

Fig. 3. <br />

<br />

<br />

O<strong>the</strong>r lessons learned and future prospects<br />

The development of <strong>the</strong> Dactylorhiza majalis populations at <strong>the</strong><br />

monitored sites shows that management is a necessary condition<br />

for <strong>the</strong> existence of this species at a site. After mow<strong>in</strong>g (preferably <strong>in</strong><br />

phases) has been re<strong>in</strong>troduced, <strong>the</strong> orchid’s fur<strong>the</strong>r spread is limited<br />

by <strong>the</strong> water regime alterations realised <strong>in</strong> <strong>the</strong> past (dra<strong>in</strong><strong>in</strong>g ditches,<br />

dra<strong>in</strong>age systems). Removal of dra<strong>in</strong>age systems and resum<strong>in</strong>g waterlogg<strong>in</strong>g<br />

usually requires expensive separate projects.<br />

20<br />

25<br />

28<br />

Grasslands 43


Public support<br />

The management of <strong>the</strong> locations <strong>in</strong> Blanik PLA (7) is supported<br />

by <strong>the</strong> Blanik PLA Authority, management of nature reserves <strong>in</strong><br />

<strong>the</strong> Central Bohemian Region (2) by <strong>the</strong> Regional Authority of <strong>the</strong><br />

Central Bohemian Region, management of a nature reserve <strong>in</strong> <strong>the</strong><br />

Vysoč<strong>in</strong>a Region (1) by <strong>the</strong> Regional Authority of <strong>the</strong> Vysoč<strong>in</strong>a Region,<br />

and management of <strong>the</strong> o<strong>the</strong>r sites by <strong>the</strong> Nature Conservation<br />

Authority of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, local authorities, and landowners of<br />

<strong>the</strong> sites. The actual cleanups and follow<strong>in</strong>g management is carried<br />

out by CNUC Vlašim members, volunteers, and also <strong>the</strong> landowners<br />

<strong>the</strong>mselves. Landowners are key partners <strong>in</strong> favour of long-term cont<strong>in</strong>uity<br />

of site management and it is essential that <strong>the</strong>y understand <strong>the</strong><br />

importance of <strong>the</strong>ir site for nature conservation.<br />

Acknowledgements<br />

Collection of <strong>the</strong> documentary data was f<strong>in</strong>anced from <strong>the</strong> CNUC<br />

programme Biodiversity Protection, supported by <strong>the</strong> M<strong>in</strong>istry of <strong>the</strong><br />

Environment <strong>in</strong> 2010.<br />

References<br />

Dykyjová D. (2003): Ekologie středoevropských orchidejí (Ecology of<br />

<strong>the</strong> central European orchids). – Kopp, České Budějovice.<br />

Zelený V. (1976): Chráněné a méně známé rostl<strong>in</strong>y Podblanicka (Protected<br />

and less known plants of Podblanicko). – Středočeské nakladatelství<br />

a knihkupectví, Praha.<br />

Fig. 4. <br />

44 Grasslands


Recreation of species rich grasslands <strong>in</strong> <strong>the</strong> Bílé Karpaty Mounta<strong>in</strong>s<br />

Location<br />

Bílé Karpaty Mts., sou<strong>the</strong>ast <strong>Czech</strong> <strong>Republic</strong>, near <strong>the</strong> border with Slovakia<br />

48°50'–49°05' N, 17°19'–17°55' E; altitude 250–610 m<br />

Protection status PLA, UNESCO Biosphere Reserve, SCI (2)<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

<br />

The ma<strong>in</strong> grassland type <strong>in</strong> <strong>the</strong> area <strong>in</strong>cludes semi-natural, semi-dry grasslands (subatlantic Bromion erecti<br />

or subcont<strong>in</strong>ental Cirsio-Brachypodion p<strong>in</strong>nati)<br />

500 ha (34 sites)<br />

Landscape management programmes, SAPARD, Agri-environmental schemes<br />

800 €/ha<br />

Initial conditions<br />

In <strong>the</strong> second half of <strong>the</strong> 20 th century several hundred hectares of<br />

grassland <strong>in</strong> <strong>the</strong> area were converted to arable land. Due to changes<br />

<strong>in</strong> agriculture after 1989, farmers became aware of <strong>the</strong> need to restore<br />

grasslands on <strong>the</strong> large arable fields. Some fields were left to spontaneous<br />

succession, but <strong>the</strong> majority has been turned <strong>in</strong>to grassland us<strong>in</strong>g<br />

commercial clover-grass seed mixtures. However, <strong>the</strong>se mixtures are<br />

prepared with high production <strong>in</strong> m<strong>in</strong>d and are not tailor-made to<br />

suit specific local conditions. They lack most of <strong>the</strong> common grassland<br />

herbs, some of which are medic<strong>in</strong>al and nutritionally important<br />

to animals. Th is problem, as well as concerns about loss of genetic<br />

and species diversity, was <strong>the</strong> reason why <strong>in</strong> <strong>the</strong> early 1990s an environmental<br />

NGO, Local Chapter Bílé Karpaty of <strong>the</strong> <strong>Czech</strong> Union for<br />

Nature Conservation, started develop<strong>in</strong>g a regional grass-herb seed<br />

mixture <strong>in</strong> cooperation with <strong>the</strong> Bílé Karpaty Protected Landscape<br />

Area Authority and <strong>the</strong> Grassland Research Station, Zubří.<br />

Abiotic conditions<br />

Soil chemical analyses (sampled to a depth of approx. 5 cm) <strong>in</strong>dicated<br />

neutral or slightly basic soils (pH 6.12–8.86) and a ra<strong>the</strong>r variable<br />

nutrient content partly caused by management of <strong>the</strong> previous<br />

arable land. Organic matter content varied between 7.33 and 16.08%,<br />

total N between 1309 and 3828 mg.kg -1 , and available phosphate between<br />

16 and 161 mg.kg -1 . In terms of climate, <strong>the</strong> mean annual temperature<br />

is 7–9 °C, and <strong>the</strong> mean annual precipitation 500–800 mm.<br />

Objectives<br />

Creation of species-rich hay meadows, <strong>in</strong>creas<strong>in</strong>g biodiversity,<br />

improv<strong>in</strong>g of hay quality, reduction of erosion, improv<strong>in</strong>g of scenery.<br />

Restoration measures<br />

1993–1995 Seeds of common grassland species were collected<br />

from species-rich White Carpathian meadows and<br />

reproduced <strong>in</strong> seedbeds at several local farms and<br />

at <strong>the</strong> Grassland Research Station at Zubří.<br />

1999–2006 A comb<strong>in</strong>e harvester was used to harvest local<br />

grasses, especially Bromus erectus.<br />

2007–present Seeds (ma<strong>in</strong>ly grasses) have been harvested with a<br />

brush harvester, which was constructed accord<strong>in</strong>g<br />

to a model developed by <strong>the</strong> British company<br />

Emorsgate Seeds.<br />

1999–present A regional species mixture has been used, conta<strong>in</strong><strong>in</strong>g<br />

85–90% grasses, 3–5% legumes and 7–10%<br />

o<strong>the</strong>r herbs (weight percentage). Accord<strong>in</strong>g to<br />

availability, 20–30 species are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong><br />

mixture every year. The optimal seed rate is 17–20<br />

kg.ha -1 . Until 2009, annually about 40–50 hectares<br />

were regrassed <strong>in</strong> <strong>the</strong> area by local farmers.<br />

1999–2004,<br />

2009<br />

Succession after regrass<strong>in</strong>g was monitored (vascular<br />

plants, soil fauna) <strong>in</strong> experimental permanent<br />

plots at a site called Výzkum (Jongepierová et al.<br />

2007, Jongepierová 2008, Mitchley et al. 2012).<br />

2009 Large-scale monitor<strong>in</strong>g of vascular plant succession<br />

was carried out at 34 regrassed sites (Prach et<br />

al. 2012).<br />

Management measures after sow<strong>in</strong>g<br />

— Mow<strong>in</strong>g twice a year at least two years after regrass<strong>in</strong>g to control<br />

weeds, once a year <strong>the</strong>reafter.<br />

— Early cutt<strong>in</strong>g (June) to reduce grasses and encourage herbs.<br />

— Autumn graz<strong>in</strong>g to encourage biodiversity.<br />

— Plant<strong>in</strong>g of trees, ma<strong>in</strong>ly oak (Quercus petraea), lime (Tilia cordata),<br />

and pear-tree (Pyrus pyraster) to improve scenery and fur<strong>the</strong>r<br />

<strong>in</strong>crease biodiversity.<br />

Methods<br />

In 2009, <strong>the</strong> vegetation of 34 regrassed sites was analysed by mak<strong>in</strong>g<br />

three phytosociological relevés per site and compar<strong>in</strong>g <strong>the</strong>se with<br />

<strong>the</strong> vegetation of ancient, species-rich grasslands nearby (Fig. 2).<br />

Fig. 1. <br />

Grasslands 45


egional seed mixtures, <strong>the</strong> trends were essentially similar to <strong>the</strong> largescale<br />

study, i.e. restored plots developed a species composition head<strong>in</strong>g<br />

towards <strong>the</strong> composition of <strong>the</strong> reference sites.<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Until recently a late cut was recommended for recreated meadows<br />

and this was said to enhance <strong>the</strong> diversity of herbs <strong>in</strong> <strong>the</strong> grasslands.<br />

However, a prelim<strong>in</strong>ary analysis of <strong>the</strong> data acquired to date<br />

has shown that successful grassland <strong>restoration</strong> by means of regional<br />

grass-herb mixtures (as well as o<strong>the</strong>r ways of <strong>restoration</strong>) requires an<br />

early cut.<br />

In <strong>the</strong> future, transfer of green hay may also be considered a suitable<br />

<strong>restoration</strong> measure.<br />

Public support<br />

Interest of farmers <strong>in</strong> <strong>the</strong> regrass<strong>in</strong>g of o<strong>the</strong>r sites.<br />

Fig. 2. -<br />

-<br />

<br />

<br />

<br />

<br />

<br />

Results<br />

In total, 373 vascular plant species were recorded at <strong>the</strong> regrassed<br />

sites and 20 permanent reference grasslands. A total of 102 species<br />

were classified as target species, <strong>the</strong> rema<strong>in</strong>der be<strong>in</strong>g ei<strong>the</strong>r weeds or<br />

common grassland species.<br />

Forty-four of <strong>the</strong> target species were sown at <strong>the</strong> restored sites<br />

and all, except one (Helian<strong>the</strong>mum grandiflorum subsp. obscurum),<br />

established (98%). Twenty-seven species established spontaneously,<br />

while 31 target species have not been found at <strong>the</strong> restored sites yet.<br />

Altoge<strong>the</strong>r, 248 species were recorded at <strong>the</strong> restored sites. However,<br />

only four species reached cover values at least equal to those at <strong>the</strong><br />

reference sites (Bromus erectus, Festuca rubra, Holcus lanatus, and<br />

Trisetum flavescens – all sown grasses). The majority of <strong>the</strong> target species,<br />

both sown and spontaneously established, were present at <strong>the</strong><br />

restored sites but so far only at low cover values. The two most successful<br />

spontaneously established target species were Carl<strong>in</strong>a vulgaris<br />

and Fragaria viridis. Also some rare and endangered species arrived<br />

spontaneously at <strong>the</strong> restored sites, e.g. Astragalus danicus and Gentiana<br />

cruciata (Prach et al. 2012).<br />

In a recent study (Mitchley et al. 2012), evaluat<strong>in</strong>g 10 years of a<br />

field experiment at a site called Výzkum <strong>in</strong>clud<strong>in</strong>g plots sown with<br />

Fig. 4. <br />

Acknowledgements<br />

The study was supported by <strong>the</strong> follow<strong>in</strong>g grants: GAČR<br />

P504/10/0501, P505-11-0256 and RVO67985939.<br />

References<br />

Jongepierová I. (ed.) (2008): Louky Bílých Karpat. Grasslands of <strong>the</strong><br />

White Carpathian Mounta<strong>in</strong>s. – ZO Č SOP Bílé Karpaty, Veselí<br />

nad Moravou.<br />

Jongepierová I., Mitchley J. & Tzanopoulos J. (2007): A field experiment<br />

to recreate species rich hay meadows us<strong>in</strong>g regional seed<br />

mixtures. – Biological Conservation 139: 297–305.<br />

Mitchley J., Jongepierová I. & Fajmon K. (2012): Regional seed mixtures<br />

for <strong>the</strong> re-creation of species-rich meadows <strong>in</strong> <strong>the</strong> White<br />

Carpathian Mounta<strong>in</strong>s: results of a 10-yr experiment. – Applied<br />

Vegetation Science 15: 253–263.<br />

Prach K., Jongepierová I. & Řehounková K. (2012): Large-scale <strong>restoration</strong><br />

of dry grasslands on ex-arable land us<strong>in</strong>g a regional seed<br />

mixture: establishment of target species. – Restoration Ecology<br />

Doi: 10.1111/j.1526-100X.2012.00872.x<br />

Fig. 3. <br />

46 Grasslands


Graz<strong>in</strong>g of dry grasslands <strong>in</strong> <strong>the</strong> Bohemian Karst<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Bohemian Karst (Český kras) between Prague and Beroun<br />

49°52'–50°00' N, 14°02'–14°21' E; altitude 199–499 m<br />

PLA, NR (2), SCI<br />

Dry grasslands belong<strong>in</strong>g to <strong>the</strong> Festucion valesiacae alliance; transitions to <strong>the</strong> Alysso-Festucion pallentis<br />

and Seslerio-Festucion pallentis alliances, and to <strong>the</strong> Bromion erecti alliance<br />

25 ha<br />

Landscape management programmes<br />

€700/ha/yr (graz<strong>in</strong>g)<br />

Initial conditions<br />

The Bohemian Karst landscape has been occupied by human<br />

settlements cont<strong>in</strong>uously for <strong>the</strong> last 7000 years (Stolz & Matoušek<br />

2006). Human settlements have always been connected to livestock<br />

graz<strong>in</strong>g, which has significantly shaped <strong>the</strong> landscape (Poschlod &<br />

WallisDeVries 2002). Due to <strong>the</strong> relatively low yield of dry grasslands<br />

on shallow soils over limestone, sheep and goat graz<strong>in</strong>g has been common<br />

<strong>in</strong> <strong>the</strong> Bohemian Karst, as <strong>the</strong>y tolerate lower-quality fodder and<br />

rocky terra<strong>in</strong>.<br />

Graz<strong>in</strong>g has ma<strong>in</strong>ta<strong>in</strong>ed open vegetation patches even <strong>in</strong> periods<br />

of closed canopy forest, and thus supported plant and animal species<br />

conf<strong>in</strong>ed to this type of habitat. From <strong>the</strong> conservation po<strong>in</strong>t of view,<br />

graz<strong>in</strong>g has played a positive role <strong>in</strong> <strong>the</strong> ma<strong>in</strong>tenance of species diversity.<br />

In <strong>the</strong> 20 th century, <strong>the</strong> extent of graz<strong>in</strong>g livestock decreased<br />

significantly <strong>in</strong> <strong>the</strong> Bohemian Karst, ma<strong>in</strong>ly after World War II, from<br />

roughly 10,000 to 100 goats and sheep (Novák & Tlapák 1974). Along<br />

with this, landscape changes occurred, whereby large open patches<br />

developed <strong>in</strong>to woodland, ei<strong>the</strong>r through succession (<strong>in</strong> remote and<br />

unprofitable places), or due to tree plant<strong>in</strong>g.<br />

The rema<strong>in</strong><strong>in</strong>g patches of grasslands are degrad<strong>in</strong>g due to <strong>in</strong>creas<strong>in</strong>g<br />

cover of dom<strong>in</strong>ant grasses and sedges at <strong>the</strong> expense of less<br />

competitive species, and plant and <strong>in</strong>vertebrate species diversity is decreas<strong>in</strong>g,<br />

small bare soil patches are disappear<strong>in</strong>g, litter is accumulat<strong>in</strong>g,<br />

and microhabitat diversity is decl<strong>in</strong><strong>in</strong>g.<br />

Fig. 1. <br />

Grasslands 47


Objectives<br />

Restoration and ma<strong>in</strong>tenance of high-quality dry grassland habitats<br />

and of <strong>the</strong> scenery formed by a mosaic of various forest and open<br />

grassland vegetation.<br />

Management measures<br />

2005(2006)–2011: small-scale rotational graz<strong>in</strong>g (Pavlů et al.<br />

2003) <strong>in</strong> electrically fenced areas with mixed herds of sheep and goats<br />

(at a ratio of 3:1) dur<strong>in</strong>g April to October. The herd <strong>in</strong>cluded 100–130<br />

animals per site. The presence of goats is important for suppress<strong>in</strong>g<br />

shrubs and trees, and also for graz<strong>in</strong>g taller flower<strong>in</strong>g grasses.<br />

At each site <strong>the</strong> herd spent a few weeks once or twice dur<strong>in</strong>g <strong>the</strong><br />

graz<strong>in</strong>g season. The fences were moved every 2–7 days, when <strong>the</strong> tussocks<br />

were found to be grazed strongly. Graz<strong>in</strong>g pressure changed<br />

dur<strong>in</strong>g <strong>the</strong> season accord<strong>in</strong>g to biomass production. Dur<strong>in</strong>g <strong>the</strong> graz<strong>in</strong>g,<br />

ungrazed strips (located <strong>in</strong> different places for each graz<strong>in</strong>g cycle)<br />

were left to help reproduce plants and <strong>in</strong>vertebrates.<br />

Methods<br />

Before <strong>the</strong> re-<strong>in</strong>troduction of graz<strong>in</strong>g, permanent plots (1 × 1 m)<br />

were established for vegetation monitor<strong>in</strong>g. Grazed plots were always<br />

paired with control plots, protected with a cage aga<strong>in</strong>st graz<strong>in</strong>g. Eight<br />

pairs of plots were monitored at two sites, 11 pairs at one site. In each<br />

of <strong>the</strong>se plots, <strong>the</strong> percentage cover of each plant species was recorded<br />

every spr<strong>in</strong>g.<br />

The monitor<strong>in</strong>g of <strong>in</strong>vertebrates was carried out for Lepidoptera<br />

as a representative group; us<strong>in</strong>g transect monitor<strong>in</strong>g for diurnal species<br />

(Heřman & Vrabec 2010) and light sources at fi xed po<strong>in</strong>ts for<br />

nocturnal species (additionally by attract<strong>in</strong>g <strong>the</strong>m to baits or syn<strong>the</strong>tic<br />

pheromones and by monitor<strong>in</strong>g immature stages; data evaluation<br />

still <strong>in</strong> process).<br />

For long-term monitor<strong>in</strong>g of lepidopteran populations, primarily<br />

<strong>in</strong>dicator species clearly associated with each habitat and be<strong>in</strong>g important<br />

species <strong>in</strong> regional nature conservation were selected. These<br />

were Grayl<strong>in</strong>g (Hipparchia semele), with probably <strong>the</strong> most abundant<br />

populations of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> study area, Safflower<br />

Skipper (Pyrgus carthami), <strong>the</strong> lichen moth Paidia rica, and <strong>the</strong><br />

owlet moth Euxoa vitta.<br />

<br />

After six years of management, <strong>the</strong> impact of graz<strong>in</strong>g on species<br />

number and species composition of <strong>the</strong> permanent plots is statistically<br />

significant. The species number is higher <strong>in</strong> grazed plots at all<br />

three sites. Species <strong>in</strong>crease is most visible <strong>in</strong> grazed plots at Šanův<br />

kout (Fig. 4), <strong>the</strong> site with <strong>the</strong> lowest mean number of species per<br />

plot. Vegetation <strong>in</strong> grazed and ungrazed plots has taken significantly<br />

different courses s<strong>in</strong>ce <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of management. This difference<br />

is reflected <strong>in</strong> <strong>the</strong> observed graz<strong>in</strong>g response of particular species (Fig.<br />

6). Positive graz<strong>in</strong>g response is shown <strong>in</strong> typical dry grassland species<br />

whose common traits <strong>in</strong>clude a small height, tussock or rosette forms,<br />

and an annual life cycle (Carex humilis, Festuca valesiaca, Potentilla<br />

arenaria, Scabiosa ochroleuca, Arenaria serpyllifolia, Salvia pratensis,<br />

Arabis hirsuta, Thlaspi perfoliatum, Thymus pulegioides, and Veronica<br />

praecox). On <strong>the</strong> o<strong>the</strong>r hand, species <strong>in</strong> <strong>the</strong> control plots are better<br />

competitors of grasslands with a denser sward. This group <strong>in</strong>cludes<br />

more grasses and taller forbs (Bothriochloa ischaemum, Sesleria caerulea,<br />

Brachypodium p<strong>in</strong>natum, Bromus erectus, Knautia arvensis, Artemisia<br />

campestris, Stachys recta, Teucrium chamaedrys). Some Fabaceae<br />

species (e.g. Lotus corniculatus, Securigera varia) also grow better<br />

<strong>in</strong> <strong>the</strong> control plots, because <strong>the</strong>y are often grazed preferentially <strong>in</strong><br />

grazed plots, and <strong>the</strong>ir survival is <strong>the</strong>refore more threatened than that<br />

of non-legumes.<br />

Results<br />

Fig. 2. -<br />

<br />

Fig. 3. -<br />

<br />

<br />

Dur<strong>in</strong>g <strong>the</strong> period 2005–2011 a total of 62 butterfly species were<br />

recorded. Nearly one third (18 species, i.e. 29%) are species important<br />

<strong>in</strong> nature conservation – i.e. under legislative protection or <strong>in</strong>cluded<br />

<strong>in</strong> <strong>the</strong> national red list (Farkač et al. 2005).<br />

The impact of graz<strong>in</strong>g management is only one out of a number<br />

of factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> diversity, as can be seen <strong>in</strong> Fig. 5 (<strong>the</strong> clear<br />

deviation <strong>in</strong> 2010 ma<strong>in</strong>ly caused by wet wea<strong>the</strong>r).<br />

Extensive and mosaic graz<strong>in</strong>g represents <strong>the</strong> optimal form of<br />

management for 29 of <strong>the</strong> recorded butterfly species and is <strong>the</strong>refore a<br />

suitable <strong>in</strong>strument to both revitalise and preserve <strong>the</strong>ir populations.<br />

For example, <strong>the</strong> Lulworth Skipper (Thymelicus acteon) <strong>in</strong>creased<br />

from a s<strong>in</strong>gle record <strong>in</strong> 2009 to n<strong>in</strong>e <strong>in</strong>dividuals recorded <strong>in</strong> 2011.<br />

Conclusions<br />

The graz<strong>in</strong>g management re<strong>in</strong>troduced <strong>in</strong> 2005 and 2006 significantly<br />

contributed to <strong>restoration</strong> and ma<strong>in</strong>tenance of <strong>the</strong> dry grass-<br />

48 Grasslands


Zlatý kůň<br />

45<br />

Šanův kout<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2006 2007 2009 2010 2011<br />

Fig. 4. <br />

<br />

<br />

<br />

Fig. 5. <br />

<br />

<br />

Fig. 6. <br />

<br />

<br />

Grasslands 49


lands and raised or ma<strong>in</strong>ta<strong>in</strong>ed a high species richness by <strong>in</strong>creas<strong>in</strong>g<br />

microhabitat heterogeneity on a small scale. Graz<strong>in</strong>g is <strong>the</strong>refore an<br />

appropriate management tool and <strong>the</strong> current level of graz<strong>in</strong>g <strong>in</strong>tensity<br />

is adequate. As many studies have po<strong>in</strong>ted out, extremes of graz<strong>in</strong>g<br />

<strong>in</strong>tensity (both high and low) lead to decl<strong>in</strong>e <strong>in</strong> species number, ei<strong>the</strong>r<br />

through overgraz<strong>in</strong>g or dom<strong>in</strong>ance of a few species (Milchunas et al.<br />

1988, Dostálek & Frantík 2008). An important fact from <strong>the</strong> methodological<br />

po<strong>in</strong>t of view was that <strong>in</strong>ter-annual variation <strong>in</strong> graz<strong>in</strong>g<br />

strongly <strong>in</strong>fluenced vegetation dynamics, so that reliable conclusions<br />

could not have been drawn earlier: <strong>the</strong> effect of graz<strong>in</strong>g could not have<br />

been confirmed after just three years of monitor<strong>in</strong>g (Mayerová et al.<br />

2010).<br />

The <strong>in</strong>ter-annual variation is also seen <strong>in</strong> <strong>the</strong> case of <strong>in</strong>creas<strong>in</strong>g<br />

butterfly diversity observed between <strong>the</strong> first and <strong>the</strong> most recent season.<br />

Evaluat<strong>in</strong>g <strong>the</strong> response to graz<strong>in</strong>g management is ra<strong>the</strong>r complicated<br />

due to adult mobility, a delay <strong>in</strong> response to host plant occurrence,<br />

etc. However, due to <strong>the</strong> stable or even <strong>in</strong>creas<strong>in</strong>g abundance<br />

observed <strong>in</strong> <strong>in</strong>dicator species, it can be stated that adequate graz<strong>in</strong>g<br />

management has a positive <strong>in</strong>fluence on butterflies. Even more pronounced<br />

results are expected <strong>in</strong> <strong>the</strong> longer term.<br />

References<br />

Dostálek J. & Frantík T. (2008): Dry grassland plant diversity conservation<br />

us<strong>in</strong>g low <strong>in</strong>tensity sheep and goat graz<strong>in</strong>g management:<br />

case study <strong>in</strong> Prague (<strong>Czech</strong> <strong>Republic</strong>). – Biodiversity and Conservation<br />

17: 1439–1454.<br />

Farkač J., Král D. & Škorpík M. (eds) (2005): Červený seznam<br />

ohrožených druhů České republiky. Bezobratlí. Red list of threatened<br />

species <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Invertebrates. – Agentura<br />

ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Heřman P. & Vrabec V. (2010): Denní motýli (Lepidoptera: Rhopalocera)<br />

pastvou udržovaných ploch CHKO Český kras (Diurnal<br />

butterflies (Lepidoptera: Rhopalocera) of sites managed<br />

by graz<strong>in</strong>g <strong>in</strong> Bohemian Karst Protected Landscape Area). – In:<br />

Konvička M. & Beneš J. (eds), V. Lepidopterologické kolokvium,<br />

Sborník abstraktů z konference 26. listopadu 2010, pp. 18–19, Entomologický<br />

ústav Biologického centra Akademie věd ČR, České<br />

Budějovice.<br />

Mayerová H., Č iháková K., Florová K., Kladivová A., Šlechtová A.,<br />

Trnková E. & Münzbergová Z. (2010): Vliv pastvy ovcí a koz na<br />

vegetaci suchých trávníků v CHKO Český kras (Effect of sheep<br />

and goat graz<strong>in</strong>g on dry grassland vegetation <strong>in</strong> Bohemian Karst<br />

Protected Landscape Area). – Příroda 29: 51–72.<br />

Milchunas D.G., Sala O.E. & Lauenroth W.K. (1988): A generalized<br />

model of <strong>the</strong> effects of graz<strong>in</strong>g by large herbivores on grassland<br />

community structure. – The American Naturalist 132: 87–106.<br />

Novák A. & Tlapák J. (1974): Historie lesů v Chráněné kraj<strong>in</strong>né oblasti<br />

Český kras (History of forests <strong>in</strong> Bohemian Karst Protected Landscape<br />

Area). – Bohemia Centralis 3: 9–40.<br />

Pavlů V., Hejcman M., Pavlů L. & Gaisler J. (2003): Effect of rotational<br />

and cont<strong>in</strong>uous graz<strong>in</strong>g on vegetation of upland grassland <strong>in</strong> <strong>the</strong><br />

Jizerské hory Mts, <strong>Czech</strong> <strong>Republic</strong>. – Folia Geobotanica 38: 21–34.<br />

Poschlod P. & WallisDeVries M.F. (2002): The historical and socioeconomic<br />

perspective of calcareous grasslands – lessons from <strong>the</strong><br />

distant and recent past. – Biological Conservation 104: 361–376.<br />

Stolz D. & Matoušek V. (eds) (2006): Berounsko a Hořovicko v pravěku<br />

a raném středověku (Beroun and Hořovice area <strong>in</strong> prehistorical<br />

and early medieval times). – Elce Book Publish<strong>in</strong>g, Hořovice.<br />

Fig. 7. <br />

50 Grasslands


Resumption of graz<strong>in</strong>g management on abandoned upland grasslands<br />

<strong>in</strong> <strong>the</strong> Jizera Mounta<strong>in</strong>s<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Experimental area<br />

NW part of <strong>the</strong> Jizera Mts., north <strong>Czech</strong> <strong>Republic</strong><br />

50°50' N, 15°06' E; altitude 420 m<br />

PLA<br />

Predom<strong>in</strong>antly semi-natural grasslands (Arrhena<strong>the</strong>rion elatioris)<br />

5 ha<br />

Initial conditions<br />

After <strong>the</strong> expulsion of German <strong>in</strong>habitants from <strong>the</strong> area <strong>in</strong> 1946<br />

a mosaic landscape management with grassland and arable land was<br />

ma<strong>in</strong>ta<strong>in</strong>ed here. Large-scale management was <strong>in</strong>troduced <strong>in</strong> <strong>the</strong><br />

1960s, but a large area of arable land rema<strong>in</strong>ed. However, <strong>in</strong> <strong>the</strong> 1970s<br />

(contrary to <strong>the</strong> general trend <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>) most arable land<br />

was sown with commercial grass mixtures and <strong>the</strong>n <strong>in</strong>tensively managed<br />

by graz<strong>in</strong>g and cutt<strong>in</strong>g. After 1989, because of cattle reduction<br />

(to half), most grasslands were abandoned. As a result, grasslands degraded<br />

and became dom<strong>in</strong>ated by Aegopodium podagraria, Galium<br />

album, Anthriscus sylvestris, Cirsium arvense, Elytrigia repens, and<br />

Alopecurus pratensis. No shrub encroachment was recorded.<br />

Abiotic conditions<br />

The site lies on granite bedrock and medium deep brown soil<br />

(Cambisol) with <strong>the</strong> follow<strong>in</strong>g attributes: pH (KCl) = 5.45, Cox =<br />

4.5%, available P = 28 mg.kg −1 , available K = 67 mg.kg −1 , available Mg<br />

= 58 mg.kg −1 (Mehlich 3). The mean annual precipitation is 803 mm<br />

and <strong>the</strong> mean annual temperature is 7.2 °C (Liberec Meteorological<br />

Station).<br />

Objectives<br />

Study of successional development of an abandoned grassland after<br />

<strong>in</strong>troduction of <strong>in</strong>tensive and extensive graz<strong>in</strong>g management.<br />

Restoration measures<br />

1998 Establish<strong>in</strong>g of graz<strong>in</strong>g experiment on grassland<br />

unmanaged for five years.<br />

1998–2011 Monitor<strong>in</strong>g of successional development of <strong>the</strong><br />

grassland after <strong>in</strong>troduction of management.<br />

Management regimes <strong>in</strong> <strong>the</strong> experiment<br />

Intensive graz<strong>in</strong>g, extensive graz<strong>in</strong>g, unmanaged control (Pavlů et<br />

al. 2006a, 2006b, 2007, 2008, 2009).<br />

Results<br />

Already <strong>in</strong> <strong>the</strong> first year after graz<strong>in</strong>g had been re<strong>in</strong>troduced, an<br />

<strong>in</strong>crease of live vascular plant biomass was recorded while <strong>the</strong> amount<br />

of dead material significantly decl<strong>in</strong>ed. The number of meadow and<br />

pasture plant species rose from <strong>the</strong> second year of management onwards<br />

(16 plant species.m -2 at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> experiment, 22<br />

plant species.m -2 <strong>in</strong> <strong>the</strong> third year) at <strong>the</strong> expense of ruderal species.<br />

A higher sward density was recorded from <strong>the</strong> third year of management<br />

(Pavlů et al. 2006b). The relation between diversification of <strong>the</strong><br />

structure and graz<strong>in</strong>g <strong>in</strong>tensity became evident only <strong>in</strong> <strong>the</strong> fourth year<br />

of <strong>the</strong> experiment (Pavlů et al. 2007).<br />

Plant species richness was similar under both graz<strong>in</strong>g <strong>in</strong>tensities,<br />

but it was <strong>the</strong> lowest <strong>in</strong> unmanaged grasslands. Weedy species such as<br />

Aegopodium podagraria, Anthriscus sylvestris, Cirsium arvense, Elytrigia<br />

repens and <strong>the</strong> meadow species Alopecurus pratensis and Galium<br />

album had <strong>the</strong> highest abundance <strong>in</strong> <strong>the</strong> unmanaged control (Fig. 3)<br />

(Pavlů et al. 2008). The most abundant species <strong>in</strong> both <strong>the</strong> <strong>in</strong>tensively<br />

and extensively grazed treatments were: Agrostis capillaris, Festuca<br />

rubra agg., Phleum pratense, Taraxacum spp., Trifolium repens, and<br />

Ranunculus repens (Pavlů et al. 2007).<br />

The ma<strong>in</strong> difference between <strong>in</strong>tensive and extensive graz<strong>in</strong>g<br />

management was seen <strong>in</strong> <strong>the</strong> proportions of short and tall sward<br />

patches, while <strong>the</strong> proportion of moderate-height patches was similar<br />

under both graz<strong>in</strong>g <strong>in</strong>tensities (Ludvíková et al. 2012). Floristic composition<br />

<strong>in</strong> patches of <strong>the</strong> same sward height depended upon graz<strong>in</strong>g<br />

<strong>in</strong>tensity. Moderately tall and tall sward patches under a given graz<strong>in</strong>g<br />

<strong>in</strong>tensity had a similar botanical composition. The vegetation of short<br />

sward patches differed considerably from that of o<strong>the</strong>r patches under<br />

Fig. 1. <br />

Fig. 2. <br />

Grasslands 51


especially under <strong>in</strong>tensive graz<strong>in</strong>g (Pavlů et al. 2006b). Graz<strong>in</strong>g management<br />

can substitute for mow<strong>in</strong>g management but not completely,<br />

due to selective graz<strong>in</strong>g, trampl<strong>in</strong>g and nutrient redistribution (faeces,<br />

ur<strong>in</strong>e). Plant species of <strong>the</strong> Cynosurion alliance are more often present<br />

under <strong>in</strong>tensive graz<strong>in</strong>g, but very rarely under extensive graz<strong>in</strong>g. The<br />

tendency of thorny shrubs to sprout is higher under extensive graz<strong>in</strong>g<br />

(trampl<strong>in</strong>g) than <strong>in</strong> unmanaged grassland. The result is that <strong>the</strong><br />

desirable mosaic structure does not only have a higher plant species<br />

richness, but also offers animal species shelter, feed<strong>in</strong>g and nest<strong>in</strong>g<br />

opportunities.<br />

Public support<br />

Interest of farmers <strong>in</strong> graz<strong>in</strong>g management under different <strong>in</strong>tensities<br />

and <strong>the</strong>ir effect on sward structure.<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> follow<strong>in</strong>g grants: MZe 0002700604,<br />

MŽP VaV SP/2D3/179/07, GAČR 526/03/0528, 521/08/1131.<br />

Fig. 3. <br />

<br />

<br />

-<br />

-<br />

<br />

<br />

<br />

<br />

extensive graz<strong>in</strong>g, whereas under <strong>in</strong>tensive graz<strong>in</strong>g <strong>the</strong> differences between<br />

short, <strong>in</strong>termediate and tall sward patches were small.<br />

The highest thorny shrub encroachment (especially Rosa spp.)<br />

was revealed under long-term extensive graz<strong>in</strong>g. It was less <strong>in</strong> <strong>in</strong>tensively<br />

grazed areas due to graz<strong>in</strong>g pressure and <strong>in</strong> abandoned areas<br />

because of worse conditions for shrub and tree establishment (Fig. 4).<br />

Plant species typical of pastures (Cynosurion cristati) are more often<br />

present under long-term <strong>in</strong>tensive graz<strong>in</strong>g, but very rare under extensive<br />

graz<strong>in</strong>g (Pavlů et al. 2007).<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Prelim<strong>in</strong>ary results show that resumption of graz<strong>in</strong>g management<br />

significantly changes <strong>the</strong> botanical composition of a degraded sward.<br />

The rate of pasture and meadow species gradually <strong>in</strong>creases at <strong>the</strong> expense<br />

of ruderal species. A sward with a high plant species density<br />

has been created s<strong>in</strong>ce <strong>the</strong> third year after management resumption,<br />

References<br />

Ludvíková V., Pavlů V., Pavlů L. & Gaisler J. (submitted): Structure of<br />

sward-height patches under <strong>in</strong>tensive and extensive graz<strong>in</strong>g management<br />

<strong>in</strong> Central Europe. – Acta Oecologica.<br />

Pavlů V., Gaisler J., Hejcman M. & Pavlů L. (2008): Effect of different<br />

graz<strong>in</strong>g <strong>in</strong>tensity on weed control under conditions of organic<br />

farm<strong>in</strong>g. – Journal of Plant Diseases and Protection, Special Issue<br />

XXI: 441–446.<br />

Pavlů V., Hejcman M. & Mikulka J. (2009): Cover estimation versus<br />

density count<strong>in</strong>g <strong>in</strong> species rich pasture under different graz<strong>in</strong>g<br />

<strong>in</strong>tensity. – Environmental Monitor<strong>in</strong>g and Assessment 156:<br />

419–424.<br />

Pavlů V., Hejcman M., Pavlů L. & Gaisler J. (2007): Restoration of<br />

graz<strong>in</strong>g management and its effect on vegetation <strong>in</strong> an upland<br />

grassland. – Applied Vegetation Science 10: 375–382.<br />

Pavlů V., Hejcman M., Pavlů L., Gaisler J. & Nežerková P. (2006a): Effect<br />

of cont<strong>in</strong>uous graz<strong>in</strong>g on forage quality, quantity and animal<br />

performance. – Agriculture, Ecosystems and Environment 113:<br />

349–355.<br />

Pavlů V., Hejcman M., Pavlů L., Gaisler J., Nežerková P. & Meneses L.<br />

(2006b): Changes <strong>in</strong> plant densities <strong>in</strong> a mesic species-rich grassland<br />

after impos<strong>in</strong>g different graz<strong>in</strong>g management. – Grass and<br />

Forage Science 61: 42–51.<br />

Number of shrubs per ha<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2003 2005 2007 2009 2003 2005 2007 2009 2003 2005 2007 2009<br />

Extensive graz<strong>in</strong>g Intensive graz<strong>in</strong>g Unmanaged control<br />

Rosa sp.<br />

Crataegus sp.<br />

Salix caprea<br />

Corylus<br />

avellana<br />

Fig. 4. <br />

52 Grasslands


Restor<strong>in</strong>g heterogeneity <strong>in</strong> submontane meadows for <strong>the</strong> butterfly<br />

Euphydryas aur<strong>in</strong>ia<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

West <strong>Czech</strong> <strong>Republic</strong>, near <strong>the</strong> border with Germany<br />

50°27'–49°53' N, 12°5'–13°17' E; altitude 420–970 m<br />

PLA (Slavkovský les), Hradiště Military Tra<strong>in</strong><strong>in</strong>g Area, NR (30), SCI (18), critically endangered species<br />

Semi-natural submontane grasslands – predom<strong>in</strong>antly oligotrophic wet meadows: Intermittently wet meadows<br />

(Mol<strong>in</strong>ion caeruleae) and Wet Cirsium meadows (Calthion palustris)<br />

398 ha (101 sites)<br />

Landscape management programmes, Agri-environmental schemes, Regional Office of Karlovy Vary Region<br />

Mosaic mow<strong>in</strong>g €800–920/ha<br />

Initial conditions<br />

The Marsh Fritillary (Euphydryas aur<strong>in</strong>ia, Rottenburg, 1775), a<br />

species protected under <strong>the</strong> Habitats Directive (92/43/EEC), has decl<strong>in</strong>ed<br />

rapidly across most of Europe, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>,<br />

due to a loss of semi-natural grasslands. At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> 21st<br />

century, only seven sites were known to <strong>Czech</strong> conservationists. Intensive<br />

surveys have <strong>in</strong>creased <strong>the</strong> number of sites to 101, elucidated<br />

<strong>the</strong> <strong>in</strong>tolerance of <strong>the</strong> species to eutrophication (Konvička et al. 2003),<br />

its sensitivity to <strong>in</strong>tensive mow<strong>in</strong>g – particularly <strong>in</strong> late summer/early<br />

autumn (Hula et al. 2004) – and evaluated <strong>the</strong> status of all colonies<br />

(Zimmermann et al. 2011). It has become clear that E. aur<strong>in</strong>ia requires<br />

managed, but highly heterogeneous sward conditions. It is threatened<br />

by both successional encroachment by tall grass and scrub comb<strong>in</strong>ed<br />

with dense litter accumulation (neglect), and by too frequent biomass<br />

removal by mow<strong>in</strong>g of <strong>the</strong> entire site all at once (overmanagement).<br />

Grassland management must <strong>the</strong>refore balance between too<br />

little (neglect) and too much (overmanag<strong>in</strong>g). Whilst <strong>in</strong> <strong>the</strong> past<br />

small-scale farm<strong>in</strong>g ma<strong>in</strong>ta<strong>in</strong>ed a diverse mosaic of habitats over vast<br />

stretches of land with<strong>in</strong> which <strong>the</strong> species always found sites suitable<br />

for its development, modern land use has restricted its distribution to<br />

isolated habitat patches. Grassland management which does not respect<br />

<strong>the</strong> need for heterogeneity <strong>in</strong> <strong>the</strong> result<strong>in</strong>g ecological conditions<br />

may seriously threaten conservation targets (Konvička et al. 2008).<br />

Abiotic conditions<br />

Most sites are nutrient-poor grasslands situated <strong>in</strong> a ra<strong>the</strong>r cold,<br />

submontane climate, on acidic soils.<br />

Objectives<br />

Support<strong>in</strong>g threatened species via a more sensitive, site-specific<br />

approach to its habitat. Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g species-rich grasslands, <strong>in</strong>creas<strong>in</strong>g<br />

biodiversity, improv<strong>in</strong>g landscape connectivity and scenic value.<br />

Historical context<br />

Prior to 1960s Traditional management of grasslands as part of<br />

a f<strong>in</strong>e-gra<strong>in</strong>ed mosaic of land use (hay meadows,<br />

litter meadows, pastures, arable fields), <strong>in</strong>terrupted<br />

by <strong>the</strong> expulsion of ethnic Germans <strong>in</strong> 1946<br />

and partial resettlement of <strong>the</strong> area.<br />

Establishment of large military tra<strong>in</strong><strong>in</strong>g areas.<br />

A narrow strip along <strong>the</strong> <strong>Czech</strong>–German border<br />

rema<strong>in</strong>ed depopulated.<br />

1960s–1989 Double effect of “agricultural collectivisation”,<br />

<strong>in</strong>clud<strong>in</strong>g on <strong>the</strong> one hand consolidation of allotments,<br />

plough<strong>in</strong>g of baulks, large-scale grassland<br />

reclamation, establishment of <strong>in</strong>tensive dairy<br />

farms and even conversion of mounta<strong>in</strong> meadows<br />

(up to 800 m <strong>in</strong> altitude) to arable fields, and on<br />

<strong>the</strong> o<strong>the</strong>r hand, abandonment of marg<strong>in</strong>al land<br />

with subsequent successional changes.<br />

Complete loss of oligotrophic meadows was<br />

prevented by protection of parts of <strong>the</strong> area as<br />

balnaeologic water sources for (e.g. reduced use<br />

of agro-chemicals, local prevention of dra<strong>in</strong>age)<br />

for nearby spas, establishment of two freshwater<br />

reservoirs, designation of <strong>the</strong> Slavkovský les<br />

PLA, and establishment of <strong>the</strong> Hradiště Military<br />

Tra<strong>in</strong><strong>in</strong>g Area (disturbance by military activities<br />

prevent<strong>in</strong>g vegetation succession).<br />

1990–2001 In <strong>the</strong> years follow<strong>in</strong>g <strong>the</strong> downfall of Communism,<br />

much of <strong>the</strong> land <strong>in</strong> mounta<strong>in</strong>ous and<br />

submontane conditions was abandoned. Parts of<br />

previously ploughed fields were re-seeded with<br />

grass mixtures and converted to hay meadows,<br />

while o<strong>the</strong>rs were used as year-round cattle<br />

pastures.<br />

2001–present Monitor<strong>in</strong>g <strong>the</strong> status of all known sites of <strong>the</strong><br />

Marsh Fritillary, along with annual census of<br />

larval nests.<br />

Fig. 1. <br />

Grasslands 53


2002–2007 Intensive local surveys, monitor<strong>in</strong>g of all known<br />

colonies. Increas<strong>in</strong>g knowledge of <strong>the</strong> species<br />

habitat requirements and evidence of its vulnerability<br />

caused by uniform mow<strong>in</strong>g of <strong>the</strong><br />

grasslands.<br />

Accession to <strong>the</strong> EU <strong>in</strong>creased f<strong>in</strong>ancial support<br />

for grassland management (Agri-environmental<br />

schemes). However, payment provisions, requir<strong>in</strong>g<br />

repeated mow<strong>in</strong>g, have a destructive effect on<br />

<strong>the</strong> habitat of <strong>the</strong> butterfly on farmland.<br />

Present Most sites not located on farmland are managed<br />

by local conservation authorities or groups,<br />

respect<strong>in</strong>g <strong>the</strong> need for environmentally-friendly,<br />

mosaic site management.<br />

The management of sites on farmland is gradually<br />

improv<strong>in</strong>g thanks to modifications of conditions<br />

<strong>in</strong> Agri-environmental schemes, which allow for<br />

patchy mow<strong>in</strong>g varied <strong>in</strong> space and time.<br />

and left to succession, with stagnat<strong>in</strong>g or even decreas<strong>in</strong>g local E. aur<strong>in</strong>ia<br />

numbers (Fig. 3A). The last one third of sites, mostly managed<br />

under <strong>in</strong>appropriately designed Agri-environmental schemes, is still<br />

managed too <strong>in</strong>tensively, aga<strong>in</strong> caus<strong>in</strong>g decreas<strong>in</strong>g butterfly numbers<br />

(Fig. 3C).<br />

Moreover, long neglected grasslands can be restored us<strong>in</strong>g mosaic<br />

management approaches, as documented by cases of spontaneous<br />

recolonisation of temporarily ext<strong>in</strong>ct populations, such as <strong>the</strong> one<br />

shown <strong>in</strong> Fig. 2 (Zimmermann et al. 2010, 2011).<br />

Restor<strong>in</strong>g heterogeneous (patchwork) management <strong>in</strong> submontane<br />

humid grasslands probably benefits o<strong>the</strong>r sensitive <strong>in</strong>sect species<br />

as well, <strong>in</strong>clud<strong>in</strong>g o<strong>the</strong>r butterflies (e.g. Melitaea diam<strong>in</strong>a, Boloria<br />

aquilonaris) and moths (Rhyparia purpurata, Lithacodia uncula). Its<br />

positive effect on vertebrates is demonstrated by <strong>the</strong> fact that Euphydryas<br />

aur<strong>in</strong>ia sites serve as nest<strong>in</strong>g grounds for birds such as Common<br />

Snipe (Gall<strong>in</strong>ago gall<strong>in</strong>ago), Corn Crake (Crex crex) and Common<br />

Crane (Grus grus).<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> follow<strong>in</strong>g grants and projects:<br />

Karlovy Vary District – D723/2007, monitor<strong>in</strong>g of Natura 2000 species<br />

(Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>), MSMT<br />

LC-6073 and 6215648905, GACR P505/10/2167 and 206/08/H044,<br />

Institute of Entomology CAS – Z50070508, Faculty of Science USB<br />

– MSM 6007665801.<br />

Fig. 2. <br />

-<br />

<br />

Management measures<br />

— More sensitive mow<strong>in</strong>g of sites where <strong>the</strong> butterfly occurs, while<br />

leav<strong>in</strong>g some patches temporarily uncut until <strong>the</strong> next season<br />

(meadows), or by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g lower graz<strong>in</strong>g livestock densities,<br />

while temporarily exclud<strong>in</strong>g graz<strong>in</strong>g.<br />

— Gradual modification of Agri-environmental scheme provisions<br />

<strong>in</strong> <strong>the</strong> broad environs of <strong>the</strong> sites (leav<strong>in</strong>g temporarily unmown<br />

patches, temporal variation <strong>in</strong> mow<strong>in</strong>g dates).<br />

— Introduction of alternative farm<strong>in</strong>g methods which imitate traditional<br />

extensive methods: (1) strip mow<strong>in</strong>g (suitable for larger<br />

areas where 10–20% of <strong>the</strong> area is left uncut, <strong>the</strong> position of <strong>the</strong><br />

strips be<strong>in</strong>g altered with each mow<strong>in</strong>g term), (2) mosaic mow<strong>in</strong>g<br />

(suitable for small areas <strong>in</strong>accessible to mechanisation), while<br />

rotat<strong>in</strong>g temporarily uncut patches and elim<strong>in</strong>at<strong>in</strong>g competitive<br />

species.<br />

— Individual (site-specific) approach for each locality.<br />

References<br />

Hula V., Konvička M., Pavlíčko A. & Fric Z. (2004): Marsh Fritillary<br />

(Euphydryas aur<strong>in</strong>ia) <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>: monitor<strong>in</strong>g, metapopulation<br />

structure, and conservation of an endangered butterfly.<br />

– Entomologica Fennica 15: 231−241.<br />

Konvička M., Beneš J., Čížek O., Kopeček F., Konvička O. & Víťaz L.<br />

(2008): How too much care kills species: Grassland reserves, agrienvironmental<br />

schemes and ext<strong>in</strong>ction of Colias myrmidone butterfly<br />

from its former stronghold. – Journal of Insect Conservation<br />

12: 519–525.<br />

Konvička M., Hula V. & Fric Z. (2003): Habitat of pre-hibernat<strong>in</strong>g larvae<br />

of <strong>the</strong> endangered butterfly Euphydryas aur<strong>in</strong>ia (Lepidoptera:<br />

Nymphalidae): What can be learned from vegetation composition<br />

and architecture? – European Journal of Entomology 100:<br />

313–322.<br />

Zimmermann K., Blažková P., Číž ek O., Fric Z., Hula V., Kepka P.,<br />

Novotný D., Slámová I. & Konvička M. (2011): Adult demography<br />

<strong>in</strong> <strong>the</strong> Marsh fritillary butterfly, Euphydryas aur<strong>in</strong>ia (Rottenburg,<br />

1775) <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>: patterns across sites and seasons. –<br />

European Journal of Entomology 108: 243–253.<br />

Zimmermann K., Hula V., Fric Z. & Konvička M. (2010): Příběh<br />

evropsky významného druhu hnědáska chrastavcového: Devět<br />

let monitor<strong>in</strong>gu a ochrany v západních Čechách (A butterfly of<br />

Community <strong>in</strong>terest, <strong>the</strong> Marsh fritillary: N<strong>in</strong>e years of monitor<strong>in</strong>g<br />

and conservation <strong>in</strong> Western Bohemia). – In: Brabec J. (ed.),<br />

Přírodní fenomény a zajímavosti západních Čech, pp. 85–99,<br />

Mezi Lesy, Prostiboř.<br />

Results<br />

Currently, about one third (area and number of sites) of E. aur<strong>in</strong>ia<br />

colonies <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> is be<strong>in</strong>g managed by conservation<br />

groups, us<strong>in</strong>g sensitive approaches as strip- or mosaic mow<strong>in</strong>g,<br />

leav<strong>in</strong>g parts of meadows temporarily uncut. These uncut patches<br />

ensure a high survival rate of larval nests, and subsequent <strong>in</strong>crease<br />

of local densities (Fig. 3B). Ano<strong>the</strong>r one third of sites are unmanaged<br />

54 Grasslands


450<br />

400<br />

350<br />

300<br />

250<br />

B<br />

200<br />

150<br />

100<br />

50<br />

C<br />

0<br />

A<br />

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011<br />

2012<br />

Fig. 3. -<br />

<br />

<br />

<br />

<br />

Grasslands 55


Optimis<strong>in</strong>g management at Gentianella praecox subsp. bohemica sites<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Southwest and south <strong>Czech</strong> <strong>Republic</strong><br />

48°49'–49°24' N, 13°22'–14°51' E; elevation 414–870 m<br />

PLA (Blanský les – 1 site), NP (Šumava – 1 site), NR (9 sites), SCI (all 13 sites)<br />

Broad spectrum of grassland types classified as Subatlantic broad-leaved dry grasslands (Bromion erecti),<br />

Extensive hay meadows (Arrhena<strong>the</strong>rion elatioris), Species-rich Nardus grasslands (Violion can<strong>in</strong>ae), locally<br />

also dry grasslands on acidic soils (Koelerio-Phleion phleoidis)<br />

6.8 ha <strong>in</strong> total (13 sites)<br />

Regional Authority of <strong>the</strong> South Bohemian Region, Regional Authority of <strong>the</strong> Plzeň Region, landscape management<br />

programmes, Operational Programme Environment<br />

Initially €40,000 (elim<strong>in</strong>ation of shrubs and trees, site levell<strong>in</strong>g, mow<strong>in</strong>g or graz<strong>in</strong>g, and turf disturbance);<br />

annually €10,000 (mow<strong>in</strong>g once to twice or rotational graz<strong>in</strong>g, turf disturbance)<br />

Initial conditions<br />

Gentianella praecox subsp. bohemica is an endemic to <strong>the</strong> Bohemian<br />

massif and a <strong>Czech</strong> subendemic. Its historic distribution area<br />

<strong>in</strong>cludes <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (most of <strong>the</strong> territory except W and<br />

NW Bohemia and SE and E Moravia), north Austria, <strong>the</strong> W part of<br />

Lower Bavaria and sou<strong>the</strong>rnmost Poland. It is a strict biennial, which<br />

has been observed to decl<strong>in</strong>e radically <strong>in</strong> site number and population<br />

size (Königer et al. 2012). These changes are particularly connected<br />

with an overall decrease <strong>in</strong> pasture area and area of grassland<br />

enclaves, changes <strong>in</strong> agricultural practice, and habitat fragmentation.<br />

S<strong>in</strong>ce 2000 <strong>the</strong> taxon has been recorded at only 113 sites <strong>in</strong> its entire<br />

distribution area (70 of <strong>the</strong>m <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). At 23 of <strong>the</strong>m,<br />

however, not a s<strong>in</strong>gle flower<strong>in</strong>g plant has been recorded <strong>in</strong> <strong>the</strong> past<br />

five years.<br />

Our study focuses on SW and S Bohemia, <strong>in</strong>clud<strong>in</strong>g 50 recent localities<br />

(Fig. 1), where population abundance and site management<br />

have been monitored for more than 10 years. Assessment of <strong>the</strong> recovery<br />

of <strong>the</strong> populations was never<strong>the</strong>less carried out at only 13 sites,<br />

where high-quality cleanups were realized and suitable management<br />

was ma<strong>in</strong>ta<strong>in</strong>ed at an optimal level for at least four years.<br />

The monitored sites had various start<strong>in</strong>g conditions, not only<br />

<strong>in</strong> terms of <strong>the</strong> condition of <strong>the</strong> habitat, but also of <strong>the</strong> Gentianella<br />

praecox subsp. bohemica populations. Th ree sites were more or less<br />

regularly mown without turf disturbance; four were farmed very irregularly,<br />

which had led to a strong accumulation of liv<strong>in</strong>g and dead<br />

biomass; six sites were overgrown by shrubs and trees or by planted<br />

p<strong>in</strong>es (see Fig. 5). The average number of flower<strong>in</strong>g plants three years<br />

5<br />

8<br />

6<br />

13<br />

6<br />

appropriate, more than 5 years<br />

appropriate, less than 5 years<br />

appropriate <strong>in</strong> part, irregular<br />

<strong>in</strong>appropriate<br />

no management<br />

elim<strong>in</strong>ated<br />

Fig. 2. <br />

<br />

before <strong>restoration</strong> was zero at three sites, up to 20 at three, 20 to 100<br />

at four, and more than 100 at three sites. Based on studies of population-biological<br />

features (summarised by Brabec et al. 2011, Brabec &<br />

Zmeškalová 2011, Bucharová et al. 2012), it was considered useful to<br />

add more or less regular turf disturbance to <strong>the</strong> traditionally recommended<br />

regular farm<strong>in</strong>g of <strong>the</strong> sites by means of mow<strong>in</strong>g or graz<strong>in</strong>g.<br />

10<br />

Fig. 1. <br />

<br />

<br />

Abiotic conditions<br />

Chemical analyses of <strong>the</strong> soils showed a wide range of abiotic<br />

conditions at <strong>the</strong> monitored 13 sites. At a depth of ca. 5 cm <strong>the</strong> soil<br />

reaction varied from acidic (pH 4.7) to slightly basic (pH 7.7), which<br />

56 Grasslands


is correlated with <strong>the</strong> contents of Ca (661–7898 mg.kg -1 ) and Mg (52–<br />

1204 mg.kg -1 ) ions. The sites are poor to moderately rich <strong>in</strong> nutrients:<br />

total carbon content varied from 0.9 to 11.9%, nitrogen from 0.1 to<br />

0.8%, exchangeable phosphorus from 2.8 to 19.3 mg.kg -1 .<br />

Objectives<br />

Recovery and stabilisation of present Gentianella praecox subsp.<br />

bohemica populations.<br />

Restoration measures<br />

2000–2005 First experimental study of <strong>the</strong> impact of various<br />

types of management (no management, mow<strong>in</strong>g,<br />

mow<strong>in</strong>g and disturbance) and tim<strong>in</strong>g (June,<br />

October–November). Recommendations to nature<br />

conservation authorities <strong>in</strong>cluded <strong>in</strong> action plan<br />

documents (Brabec 2003).<br />

2005–2008 Large-scale cleanup (9 cases) or optimisation (3<br />

cases) measures at various sites. In one case, a site<br />

had already been cleaned up <strong>in</strong> 1995 (0.1 ha). The<br />

cleanup <strong>in</strong>cluded cutt<strong>in</strong>g of most shrubs and trees,<br />

whereby stumps were partly or completely pulled<br />

out; complete mow<strong>in</strong>g and clean<strong>in</strong>g of <strong>the</strong> site, turf<br />

disturbance by harrow<strong>in</strong>g or rak<strong>in</strong>g (see Fig. 5–8), <strong>in</strong><br />

one case also levell<strong>in</strong>g with light mach<strong>in</strong>es.<br />

2006–2011 Yearly repeated, optimised farm<strong>in</strong>g of <strong>the</strong> sites.<br />

Mesic grasslands: first cut May–June, second one October/November,<br />

turf disturbance by harrow<strong>in</strong>g or<br />

rak<strong>in</strong>g up litter, or by perform<strong>in</strong>g a vertical cut at <strong>the</strong><br />

end of October, <strong>in</strong> November or <strong>in</strong> early spr<strong>in</strong>g (not<br />

later than mid-April).<br />

Dry grasslands: one to three years after <strong>the</strong> cleanup<br />

mow<strong>in</strong>g twice a year (May–June, October/November)<br />

and annual turf disturbance; follow<strong>in</strong>g, a transition<br />

to one cut a year ei<strong>the</strong>r <strong>in</strong> May–June or October/November<br />

and every o<strong>the</strong>r year turf disturbance<br />

by harrow<strong>in</strong>g or rak<strong>in</strong>g up litter, or by perform<strong>in</strong>g a<br />

vertical cut at <strong>the</strong> end of October, <strong>in</strong> November or <strong>in</strong><br />

early spr<strong>in</strong>g (not later than mid-April).<br />

1999–2011 Yearly monitor<strong>in</strong>g of all known recent populations of<br />

Gentianella praecox subsp. bohemica.<br />

2011 Endorsement of Gentianella praecox subsp. bohemica<br />

Action Plan (see www.zachranneprogramy.cz),<br />

compilation of management pr<strong>in</strong>ciples (Brabec &<br />

Zmeškalová 2011) – emphasis on <strong>the</strong> importance of<br />

turf disturbance and regularity of management.<br />

Fig. 3. <br />

Results<br />

Population recovery was assessed at 13 sites. As shown <strong>in</strong> Fig. 4,<br />

site <strong>restoration</strong> and <strong>in</strong>troduction of optimal management <strong>in</strong>clud<strong>in</strong>g<br />

turf disturbance led to a rapid (mostly several fold) <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

number of flower<strong>in</strong>g plants <strong>in</strong> <strong>the</strong> first three years <strong>in</strong> 10 cases. At two<br />

sites, where not more than one flower<strong>in</strong>g plant per year appeared <strong>in</strong> a<br />

five-year period before <strong>the</strong> <strong>in</strong>tervention, <strong>the</strong> populations could not be<br />

recovered. In one case <strong>the</strong> number of flower<strong>in</strong>g plants first decreased<br />

slightly, after which <strong>the</strong> population began to <strong>in</strong>crease slightly.<br />

log (number of flower<strong>in</strong>g plants)<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

1 2<br />

Fig. 4. <br />

-<br />

-<br />

<br />

<br />

<br />

O<strong>the</strong>r lessons learned and future prospects<br />

The previous recommended management of Gentianella praecox<br />

subsp. bohemica sites most often <strong>in</strong>cluded regular mow<strong>in</strong>g (leav<strong>in</strong>g a<br />

relatively tall stand was often recommended <strong>in</strong> order not to damage<br />

young plants) or extensive graz<strong>in</strong>g. However, when restor<strong>in</strong>g, stabilis<strong>in</strong>g<br />

and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g sites, cutt<strong>in</strong>g as low as possible comb<strong>in</strong>ed with<br />

rak<strong>in</strong>g up and remov<strong>in</strong>g all hay carefully, or <strong>in</strong>tensive rotational graz<strong>in</strong>g<br />

is necessary. The aim is to disturb <strong>the</strong> turf and create small gaps<br />

before <strong>the</strong> time of seed germ<strong>in</strong>ation, which is each year at <strong>the</strong> turn of<br />

April and May. The management must not be carried out at <strong>the</strong> time<br />

of growth, flower<strong>in</strong>g and seed ripen<strong>in</strong>g of <strong>the</strong> gentians, i.e. roughly<br />

from July to mid-October. Conversely, <strong>in</strong>tensive farm<strong>in</strong>g (mow<strong>in</strong>g<br />

twice a year, rotational graz<strong>in</strong>g) from mid-October to <strong>the</strong> end of June<br />

<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g year is ideal. Although management <strong>in</strong> autumn and<br />

spr<strong>in</strong>g partly leads to disturbance of plant development (cutt<strong>in</strong>g off<br />

followed by compensational branch<strong>in</strong>g) and to direct destruction of<br />

rosette seedl<strong>in</strong>gs, at <strong>the</strong> same time it lowers competition and enables<br />

germ<strong>in</strong>ation of seed from <strong>the</strong> short-term or long-term seedbank,<br />

which compensates for <strong>the</strong>se losses by up to tenfold. As demonstrated<br />

<strong>in</strong> experimental studies (Brabec et al. 2011, Bucharová et al. 2012),<br />

germ<strong>in</strong>ation of seed from <strong>the</strong> seedbank is <strong>the</strong> most important factor<br />

<strong>in</strong> <strong>the</strong> life cycle phase of this biennial taxon and at <strong>the</strong> same time <strong>the</strong><br />

one best to be <strong>in</strong>fluenced by farm<strong>in</strong>g.<br />

Public support<br />

The management of <strong>the</strong> 13 sites is organised by five different nature<br />

conservation bodies. As of 2011 all activities are coord<strong>in</strong>ated by<br />

<strong>the</strong> Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> as part of <strong>the</strong><br />

species action plan for this gentian. The actual cleanup and management<br />

is carried out by various actors – landowners (2 cases), tenants<br />

(1), private farmers (4), specialised fi rms (4), and NGOs (2). Espe-<br />

time<br />

3<br />

Grasslands 57


cially when start<strong>in</strong>g regular management or optimis<strong>in</strong>g management,<br />

also work by volunteers at <strong>the</strong> sites was very important. This mostly<br />

<strong>in</strong>cluded additional turf disturbance, but <strong>in</strong> two cases volunteers carried<br />

out <strong>the</strong> whole cleanup on <strong>the</strong>ir own and managed <strong>the</strong> site (with<br />

consent of <strong>the</strong> landowner) for three years.<br />

Acknowledgements<br />

This work was supported by <strong>the</strong> grants GA UK 268/1999/B BIO/<br />

PřF, MŠMT VaV 2B06178 and Nature Conservation Agency of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>.<br />

References<br />

Brabec J. (2003): Studie hořečku mnohotvarého č eského (Gentianella<br />

praecox ssp. bohemica) jako podklad pro záchranný program<br />

taxonů rodu Gentianella v Č R (Study of Gentianella praecox<br />

ssp. bohemica as a basis for an action plan of Gentianella taxa <strong>in</strong><br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). – Ms.; f<strong>in</strong>al report, M<strong>in</strong>isterstvo životního<br />

prostředí ČR, Praha.<br />

Brabec J., Bucharová A. & Štefánek M. (2011): Vliv obhospodařování<br />

na ž ivotní cyklus hořečku mnohotvarého č eského (Gentianella<br />

praecox subsp. bohemica) (Impact of management on <strong>the</strong> lifecycle<br />

of Gentianella praecox subsp. bohemica). – Příroda 31: 85–109.<br />

Brabec J. & Zmeškalová J. (eds) (2011): Zásady péče o lokality hořečku<br />

mnohotvarého českého (Pr<strong>in</strong>ciples of management of Gentianella<br />

praecox subsp. bohemica sites). – Agentura ochrany přírody a<br />

kraj<strong>in</strong>y ČR and Muzeum Cheb, p. o. Karlovarského kraje, Praha.<br />

Bucharová A., Brabec J. & Münzbergová Z. (2012): Effect of land use<br />

and climate change on future fate of populations of an endemic<br />

species of central Europe. – Biological Conservation 145: 39–47.<br />

Königer J., Rebernig C.A., Brabec J., Kiehl K. & Greimler J. (2012):<br />

Spatial and temporal determ<strong>in</strong>ants of genetic structure <strong>in</strong> Gentianella<br />

bohemica. – Ecology and Evolution 2: 636–648.<br />

Fig. 5. <br />

<br />

<br />

Fig. 6. <br />

Fig. 7. <br />

Fig. 8. <br />

<br />

58 Grasslands


Restoration of sands as part of <strong>the</strong> Action Plan for Dianthus arenarius<br />

subsp. bohemicus<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Kleneč NR, near <strong>the</strong> town of Roudnice nad Labem, northwest <strong>Czech</strong> <strong>Republic</strong><br />

50°23' N, 14°15' E; altitude 200–220 m<br />

NR, SCI, critically endangered species<br />

Open vegetation of <strong>in</strong>land sand dunes (Corynephorion canescentis)<br />

0.55 ha<br />

Landscape management programmes, EEA F<strong>in</strong>ancial Mechanism and Norwegian F<strong>in</strong>ancial Mechanism<br />

€44,320 (3-year total)<br />

Initial conditions<br />

Bohemian Sand P<strong>in</strong>k (Dianthus arenarius subsp. bohemicus) is a<br />

heliophilous species grow<strong>in</strong>g <strong>in</strong> communities of open sand and grasslands<br />

on sandy soil. The subspecies is a critically endangered, endemic<br />

taxon occurr<strong>in</strong>g at only two localities <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. An essential<br />

condition for successful establishment of seedl<strong>in</strong>gs and <strong>the</strong>ir<br />

fur<strong>the</strong>r development is open (disturbed) substrate, s<strong>in</strong>ce <strong>the</strong> species is<br />

not able to withstand <strong>the</strong> competition of grasses and o<strong>the</strong>r competitive<br />

species of undisturbed habitats.<br />

The ma<strong>in</strong> causes of threat to Dianthus arenarius subsp. bohemicus<br />

are (1) successional changes due to land use change, especially abandonment<br />

of traditional management methods, and (2) tree plant<strong>in</strong>gs<br />

of Scots P<strong>in</strong>e (P<strong>in</strong>us sylvestris) and Black Locust (Rob<strong>in</strong>ia pseudacacia)<br />

at Sand P<strong>in</strong>k sites from <strong>the</strong> 1940s.<br />

Fig. 2. -<br />

<br />

Various measures with <strong>the</strong> aim of preserv<strong>in</strong>g one of <strong>the</strong> two Dianthus<br />

arenarius subsp. bohemicus populations have been carried<br />

out at Kleneč s<strong>in</strong>ce <strong>the</strong> end of <strong>the</strong> 1980s, when <strong>the</strong> condition of <strong>the</strong><br />

site was already critical with no more than approx. 200 old tufts of<br />

<strong>the</strong> plant. Activities realised <strong>in</strong>cluded both direct re<strong>in</strong>forcement of<br />

<strong>the</strong> population by add<strong>in</strong>g plants grown <strong>in</strong> culture (orig<strong>in</strong>at<strong>in</strong>g from<br />

seeds collected at Kleneč) and by direct seed<strong>in</strong>g. Habitat management<br />

was carried out as well, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> elim<strong>in</strong>ation of shrubs, trees and<br />

competitive grasses, topsoil disturbance and mow<strong>in</strong>g (<strong>in</strong> accordance<br />

with <strong>the</strong> management plan of <strong>the</strong> site), but without significant success.<br />

In <strong>the</strong> late 1990s, only two hundred old plant tufts were left and it<br />

was uncerta<strong>in</strong> whe<strong>the</strong>r <strong>the</strong> species could be preserved for <strong>the</strong> <strong>Czech</strong><br />

flora.<br />

Fig. 1. <br />

<br />

Abiotic conditions<br />

The physical composition of <strong>the</strong> substrate is one of <strong>the</strong> most important<br />

ecological factors for successful development of Dianthus arenarius<br />

subsp. bohemicus populations. When gravel-sand is covered by<br />

a layer of humus, growth of competitive grasses is facilitated, caus<strong>in</strong>g<br />

senescence and gradual decl<strong>in</strong>e of <strong>the</strong> sand P<strong>in</strong>k population. This humus<br />

layer was formed dur<strong>in</strong>g years without graz<strong>in</strong>g or mow<strong>in</strong>g, and<br />

facilitated self-seed<strong>in</strong>g trees and shrubs to colonise <strong>the</strong> habitat.<br />

Chemical analyses (to a depth of ca. 5 cm) <strong>in</strong>dicated strongly acidic<br />

to very strongly acidic soils (pH 3.43–5.38), depend<strong>in</strong>g on <strong>the</strong> depth<br />

of <strong>the</strong> humus layer. Organic matter content varied between 0.62 and<br />

5.3%, total N between 0.58 and 0.261%, and phosphates between 3.8<br />

and 44.8 mg.kg -1 (Macurová et al. 2008).<br />

Grasslands 59


Objectives<br />

Creat<strong>in</strong>g suitable conditions for <strong>the</strong> development of Dianthus arenarius<br />

subsp. bohemicus and its population at Kleneč.<br />

Restoration measures<br />

1999 The humus layer was removed to a depth of 20–40 cm<br />

reach<strong>in</strong>g <strong>the</strong> gravel-sand substrate <strong>in</strong> a section of about<br />

1,500 m 2 . This <strong>in</strong>tervention was proposed ra<strong>the</strong>r <strong>in</strong>tuitively<br />

and opened a way to save Dianthus arenarius subsp. bohemicus<br />

for <strong>the</strong> world flora. Many seedl<strong>in</strong>gs appeared on <strong>the</strong><br />

bare sand substrate <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g years.<br />

2008 The Dianthus arenarius subsp. bohemicus Action Plan<br />

was approved by <strong>the</strong> <strong>Czech</strong> M<strong>in</strong>istry of <strong>the</strong> Environment,<br />

which enabled f<strong>in</strong>ancial support for follow<strong>in</strong>g <strong>restoration</strong><br />

measures.<br />

Pedological survey (Macurová et al. 2008), focus<strong>in</strong>g on<br />

<strong>the</strong> stratigraphy of <strong>in</strong>dividual layers, was carried out. This<br />

survey allowed for selection of <strong>the</strong> most suitable places to<br />

remove <strong>the</strong> humus layer <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g years.<br />

2009 Mechanical removal of <strong>the</strong> humus layer was repeated <strong>in</strong><br />

ano<strong>the</strong>r section of about 1,500 m 2 next to <strong>the</strong> first, already<br />

restored one. This measure was performed at <strong>the</strong> turn of<br />

<strong>the</strong> summer and autumn, accord<strong>in</strong>g to <strong>the</strong> demands of <strong>the</strong><br />

<strong>in</strong>sect fauna found at <strong>the</strong> locality <strong>in</strong> a survey (2008–2009),<br />

because <strong>in</strong> this period <strong>the</strong> <strong>in</strong>sects are active and can leave<br />

an area if it is disturbed.<br />

2010 The humus layer was removed from ano<strong>the</strong>r two smaller<br />

sections with a total area of about 2,500 m 2 .<br />

Management measures<br />

<br />

— Mosaic mow<strong>in</strong>g twice a year accord<strong>in</strong>g to <strong>in</strong>sect fauna demands,<br />

i.e. <strong>the</strong> area is not mown <strong>in</strong> one go, but is divided <strong>in</strong>to four-metre<br />

wide strips of which every o<strong>the</strong>r one is mown four weeks later<br />

than <strong>the</strong> first one.<br />

— Remov<strong>in</strong>g competitive tree sapl<strong>in</strong>gs.<br />

— Disturb<strong>in</strong>g <strong>the</strong> soil surface (not <strong>in</strong> <strong>the</strong> restored area).<br />

<br />

When <strong>the</strong> humus layer is removed down to <strong>the</strong> gravel-sand substrate,<br />

no management is needed for 5 years after <strong>restoration</strong>. No later<br />

than 10 years afterwards, regular management (mow<strong>in</strong>g, remov<strong>in</strong>g<br />

tree seedl<strong>in</strong>gs, disturbances) must beg<strong>in</strong>.<br />

When <strong>the</strong> humus layer is deeper than <strong>the</strong> removed surface, mow<strong>in</strong>g<br />

should start <strong>the</strong> first year after <strong>restoration</strong>.<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

200<br />

830<br />

1400<br />

2100<br />

1999 2005 2008 2011<br />

Fig. 4. <br />

Fig. 5. <br />

<br />

After <strong>restoration</strong> of <strong>the</strong> habitat <strong>in</strong> 2009 and 2010, seeds of Dianthus<br />

arenarius subsp. bohemicus were sown <strong>in</strong> a planned experimental<br />

design, after which germ<strong>in</strong>ation and survival rate all quadrats were<br />

monitored three times dur<strong>in</strong>g <strong>the</strong> season. The dataset from this experiment<br />

will be used for population modell<strong>in</strong>g <strong>in</strong> 2012.<br />

Results<br />

Monitor<strong>in</strong>g of Dianthus arenarius subsp. bohemicus (see Fig. 3)<br />

shows that <strong>the</strong> <strong>restoration</strong> measures have resulted <strong>in</strong> an <strong>in</strong>crease <strong>in</strong><br />

its population size. Before <strong>restoration</strong> all sow<strong>in</strong>g experiments were<br />

unsuccessful, after <strong>the</strong> <strong>restoration</strong> sow<strong>in</strong>g success was almost 5%<br />

(expressed as <strong>the</strong> ratio of number of one-year old seedl<strong>in</strong>gs to sown<br />

seeds, Špalová 2010).<br />

References<br />

Bělohoubek J. (2008): Action Plan for <strong>the</strong> Bohemian Sand P<strong>in</strong>k (Dianthus<br />

arenarius subsp. bohemicus (Novák) O. Schwarz). – Agentura<br />

ochrany přírody a kraj<strong>in</strong>y ČR, Ústí nad Labem. (Available at:<br />

http://www.nature.cz/publik_syst2/files/hvozdik_aj.pdf)<br />

Macurová H., Janderková J., Sedláček J. & Petruš J. (2008): Základní<br />

rozbory půdy a pedologické poměry v NPP Kleneč (Basic soil<br />

analysis and pedological conditions <strong>in</strong> Kleneč NNM). – Ms.; f<strong>in</strong>al<br />

report, Agentura ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Špalová Z. (2010): Populační dynamika druhu Dianthus arenarius<br />

subsp. bohemicus z roku 2010 (Population dynamics of Dianthus<br />

arenarius subsp. bohemicus <strong>in</strong> 2010). – Ms.; f<strong>in</strong>al report, Agentura<br />

ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Fig. 3. <br />

<br />

<br />

60 Grasslands


Restoration of <strong>the</strong> alp<strong>in</strong>e tundra ecosystem above <strong>the</strong> timberl<strong>in</strong>e <strong>in</strong> <strong>the</strong><br />

Giant Mounta<strong>in</strong>s<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Giant Mounta<strong>in</strong>s (Krkonoše Mts.), ridges above <strong>the</strong> timberl<strong>in</strong>e, north <strong>Czech</strong> <strong>Republic</strong>, near <strong>the</strong> border with<br />

Poland<br />

50°41'–50°48' N, 15°29'–15°47' E; altitude 1250–1600 m<br />

NP, UNESCO Biosphere Reserve, SCI, SPA<br />

Mosaics of different types of alp<strong>in</strong>e non-forest vegetation, mostly made up of native P<strong>in</strong>us mugo scrub<br />

(P<strong>in</strong>ion mugo), alp<strong>in</strong>e grasslands (Nardo strictae-Caricion bigelowii, Nardion strictae and Calamagrostion<br />

villosae), alp<strong>in</strong>e and subalp<strong>in</strong>e dwarf-shrub vegetation (Loiseleurio procumbentis-Vacc<strong>in</strong>ion and Genisto<br />

pilosae-Vacc<strong>in</strong>ion) and subalp<strong>in</strong>e tall-herb vegetation (Adenostylion alliariae and Dryopterido filicis-maris-<br />

Athyrion distentifolii)<br />

43 ha<br />

Operational Programme Environment, landscape management programmes<br />

€4,800–22,000/ha, depend<strong>in</strong>g on technology and accessibility of <strong>the</strong> locality<br />

Initial conditions<br />

Mounta<strong>in</strong> P<strong>in</strong>e (P<strong>in</strong>us mugo) stands are among <strong>the</strong> most important<br />

vegetation types of <strong>the</strong> Giant Mounta<strong>in</strong>s. Native and planted P<strong>in</strong>us<br />

mugo shrubs cover 1500 ha and 680 ha of <strong>the</strong> mounta<strong>in</strong> ridges, respectively.<br />

P<strong>in</strong>e sapl<strong>in</strong>gs were planted dur<strong>in</strong>g two periods (1879–1913<br />

and 1952–1992) on an area of 550 ha above <strong>the</strong> timberl<strong>in</strong>e and 125 ha<br />

below <strong>the</strong> timberl<strong>in</strong>e, respectively. The aim was to return mounta<strong>in</strong><br />

ridge ecosystems back to <strong>the</strong>ir orig<strong>in</strong>al state, which (accord<strong>in</strong>g to foresters)<br />

had been affected by human impact for several centuries (see<br />

e.g. Lokvenc 1995, Lokvenc 2002).<br />

Results of research <strong>in</strong>to <strong>the</strong> local tundra ecosystem (Soukupová<br />

et al. 1995, Štursa et al. 2010) suggest that <strong>the</strong> dense, regularly placed<br />

P<strong>in</strong>us mugo plantations dat<strong>in</strong>g from <strong>the</strong> second half of <strong>the</strong> 20 th century<br />

are considerably different from natural P<strong>in</strong>us mugo cover, e.g.<br />

<strong>the</strong> plantations are dense and have a regular spatial and age structure<br />

(Vaněk 1999, 2004, Soukupová et al. 2002), and that <strong>the</strong> plantations<br />

have negative effects on site conditions. Most significantly, <strong>the</strong> area<br />

of open tundra dim<strong>in</strong>ishes, and many plant and animal species occurr<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong>se open areas decl<strong>in</strong>e or disappear. Planted P<strong>in</strong>us mugo<br />

shrubs also cause damage to geomorphological phenomena, e.g. levell<strong>in</strong>g<br />

of <strong>the</strong> natural microrelief of frost-sorted soils. The plantations<br />

also affect microclimatic conditions (for examples, see e.g. Sekyra et<br />

al. 2002).<br />

These studies not only led to <strong>the</strong> end of artificial plantations <strong>in</strong><br />

1992, but also to a new management plan aimed at <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong><br />

new plantations <strong>in</strong>to <strong>the</strong> tundra environment and thus ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> geobiodiversity of this unique site (Harčarik 2007). The plan proposes<br />

a reduction <strong>in</strong> cover of 10–90% on 180 ha of <strong>the</strong> most recent<br />

P<strong>in</strong>us mugo plantations accord<strong>in</strong>g to microlocality and e.g. condition<br />

of <strong>the</strong> plantations, ruderalisation, and presence of native P<strong>in</strong>us<br />

mugo shrubs. Approximately 110 ha of <strong>the</strong>se plantations should not<br />

be changed (Harčarik 2007).<br />

Fig. 1. <br />

Grasslands 61


Objectives<br />

— Mimic <strong>the</strong> natural structure of P<strong>in</strong>us mugo stands by selective removal<br />

of recent P<strong>in</strong>us mugo plantations.<br />

— Restore natural processes (e.g. microclimate dynamics, snow distribution).<br />

— Ma<strong>in</strong>ta<strong>in</strong> or even restore <strong>the</strong> geobiodiversity of <strong>the</strong> tundra ecosystem.<br />

Restoration measures<br />

1982 Removal of approximately 1 ha of P<strong>in</strong>us mugo plantations<br />

(Štursa, pers. comm.)<br />

1994 Removal of 0.72 ha of <strong>the</strong> plantations <strong>in</strong> monitor<strong>in</strong>g<br />

plots.<br />

1997 Reduction of P<strong>in</strong>us mugo plantations on 1 ha.<br />

2005–2008 Reduction of P<strong>in</strong>us mugo plantations at Pančavská<br />

louka (3 ha) aimed not only at restor<strong>in</strong>g <strong>the</strong> habitat<br />

itself but also at test<strong>in</strong>g <strong>the</strong> most suitable <strong>restoration</strong><br />

technology (i.e. with m<strong>in</strong>imum environmental<br />

impact, e.g. manual work, low-noise mach<strong>in</strong>ery).<br />

2010–2011 Reduction <strong>in</strong> cover of 10–90 % on 37.7 ha of P<strong>in</strong>us<br />

mugo plantations at Pančavská louka and Labská<br />

louka.<br />

Management monitor<strong>in</strong>g<br />

— 1997, 1999, 2009 and 2010 – monitor<strong>in</strong>g of changes <strong>in</strong> microrelief<br />

of <strong>the</strong> tundra soils on Mt. Studniční hora.<br />

— S<strong>in</strong>ce 2005 – monitor<strong>in</strong>g of spontaneous succession <strong>in</strong>clud<strong>in</strong>g<br />

Mounta<strong>in</strong> Arnica (Arnica montana) at Pančavská louka <strong>in</strong> places<br />

where P<strong>in</strong>us mugo was removed.<br />

— S<strong>in</strong>ce 2011 – monitor<strong>in</strong>g of spatial distribution of P<strong>in</strong>us mugo and<br />

selected endangered plant species <strong>in</strong> permanent plots at Pančavská<br />

louka and Labská louka (established <strong>in</strong> <strong>the</strong> years 1995 and 1998).<br />

Results<br />

At localities where P<strong>in</strong>us mugo plantations were reduced, plots<br />

have been established to monitor e.g. changes <strong>in</strong> microrelief of tundra<br />

soils, shift of “float<strong>in</strong>g” stones, microclimate changes, and succession<br />

after P<strong>in</strong>us mugo removal. Prelim<strong>in</strong>ary results confirm a relatively<br />

rapid colonisation of <strong>the</strong> microsites opened by P<strong>in</strong>us mugo removal<br />

with natural vegetation from <strong>the</strong> vic<strong>in</strong>ity. This <strong>in</strong>cludes some rare or<br />

endangered species, e.g. Hieracium alp<strong>in</strong>um agg., Arnica montana<br />

and Carex bigelowii (Fig. 5). The data show changes <strong>in</strong> abundance of<br />

Hieracium alp<strong>in</strong>um agg. and Arnica montana <strong>in</strong> <strong>the</strong> permanent plots<br />

at Pančavská louka. The abundance of Hieracium alp<strong>in</strong>um agg. was<br />

re-estimated <strong>in</strong> 2011, ten years after its first monitor<strong>in</strong>g (Pašťálková<br />

2006), six years after <strong>the</strong> P<strong>in</strong>us mugo removal. The abundance of Arnica<br />

montana has been estimated yearly s<strong>in</strong>ce it colonised <strong>the</strong> plots<br />

after P<strong>in</strong>us mugo removal. Synantropic species have not spread to <strong>the</strong><br />

open microsites at any of <strong>the</strong> monitored localities.<br />

O<strong>the</strong>r lessons learned and future prospects<br />

We have exam<strong>in</strong>ed <strong>the</strong> most ‘nature-friendly’ management measures<br />

dur<strong>in</strong>g <strong>the</strong> reduction of P<strong>in</strong>us mugo shrubs realised so far. It is<br />

confirmed that reduction of after-war P<strong>in</strong>us mugo plantations <strong>in</strong> <strong>the</strong><br />

proposed extent can be realised and economically justified. Th is is<br />

true despite <strong>the</strong> large proportion of manual work and use of costly<br />

technologies (transfer of part of <strong>the</strong> P<strong>in</strong>us mugo biomass by helicopter,<br />

woodchipp<strong>in</strong>g, etc.).<br />

Figs. 2, 3, 4. -<br />

<br />

62 Grasslands


about <strong>the</strong> project by <strong>the</strong> public. Information and thorough explanation<br />

of <strong>the</strong> reasons why <strong>the</strong> project was realised conv<strong>in</strong>ced most of <strong>the</strong><br />

visitors about its necessity and mean<strong>in</strong>gfulness. We hope that this will<br />

rema<strong>in</strong> true also <strong>in</strong> future.<br />

Acknowledgements<br />

Data collection and analysis were fi nanced by <strong>the</strong> follow<strong>in</strong>g<br />

funds: WWF Grant No. MMO3, MŽP Č R GA 1573/94, MŽP ČR<br />

VaV/620/4/97, MŽP VaV/610/3/00.<br />

Fig. 5. <br />

<br />

<br />

<br />

Public support<br />

It has been clear from <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g that reduction of P<strong>in</strong>us mugo<br />

plantations is a controversial activity <strong>in</strong> <strong>the</strong> eyes of <strong>the</strong> public. Therefore<br />

<strong>the</strong> aims of <strong>the</strong> project need to be expla<strong>in</strong>ed thoroughly. The<br />

ma<strong>in</strong> management work has been situated <strong>in</strong> <strong>the</strong> Core Zone of <strong>the</strong><br />

Krkonoše NP, where no human <strong>in</strong>tervention is preferred. Moreover,<br />

<strong>the</strong> Core Zone has <strong>the</strong> strictest rules for visitors. The situation is even<br />

more complicated because of <strong>the</strong> <strong>in</strong>digenous nature of P<strong>in</strong>us mugo <strong>in</strong><br />

<strong>the</strong> Giant Mts. However, long discussions with foresters <strong>in</strong> <strong>the</strong> preparatory<br />

phase of <strong>the</strong> management plan have led to general understand<strong>in</strong>g<br />

and acceptance of <strong>the</strong> project among experts. Realisation of<br />

<strong>the</strong> measures <strong>in</strong> <strong>the</strong> years 2010–2011 also helped test<strong>in</strong>g <strong>the</strong> op<strong>in</strong>ion<br />

Fig. 6. <br />

<br />

<br />

References<br />

Harčarik J. (2007): Management výsadeb kleče na přírodovědně hodnotných<br />

lokalitách v Krkonoších (Management of P<strong>in</strong>us mugo<br />

plantations at biologically valuable sites <strong>in</strong> <strong>the</strong> Krkonoše Mts.). –<br />

Opera Corcontica 44: 363–369.<br />

Lokvenc T. (1995): Analýza antropogenně podmíněných změn<br />

porostů dřev<strong>in</strong> klečového stupně v Krkonoších (Analysis of anthropogenic<br />

changes <strong>in</strong> P<strong>in</strong>us mugo stands <strong>in</strong> <strong>the</strong> Krkonoše Mts.).<br />

– Opera Corcontica 32: 99–114.<br />

Lokvenc T. (2002): History of <strong>the</strong> Giant Mts.’ dwarf p<strong>in</strong>e (P<strong>in</strong>us mugo<br />

Turra ssp. pumilio Franco). – Opera Corcontica 38: 21–42.<br />

Pašťálková H. (2006): Vegetační dynamika v porostech kleče horské<br />

v Krkonoších (Vegetation dynamics of P<strong>in</strong>us mugo stands <strong>in</strong> <strong>the</strong><br />

Krkonoše Mts.). – Ms.; Ph.D. <strong>the</strong>sis, Správa Krkonošského národního<br />

parku, Vrchlabí.<br />

Sekyra J., Kociánová M., Štursová H., Kalenská J., Dvořák I. & Svoboda<br />

M. (2002): Frost phenomena <strong>in</strong> relationship to mounta<strong>in</strong><br />

p<strong>in</strong>e. – Opera Corcontica 39: 69–114.<br />

Soukupová L., Frantík T. & Jeník J. (2002): Grasslands versus krummholz<br />

<strong>in</strong> arctic-alp<strong>in</strong>e tundra of <strong>the</strong> Giant Mounta<strong>in</strong>s. – Opera Corcontica<br />

38: 63–76.<br />

Soukupová L., Kociánová M., Jeník J. & Sekyra J. (eds) (1995): Arcticalp<strong>in</strong>e<br />

tundra <strong>in</strong> <strong>the</strong> Krkonoše, <strong>the</strong> Sudetes. – Opera Corcontica<br />

32: 5–88.<br />

Štursa J., Jeník J. & Kociánová M. (2010): Geo-ekologické srovnání<br />

tundry ve středoevropských Krkonoších a subarktickém pohoří<br />

Abisko (Švédsko) (Geo-ecological comparison of tundra <strong>in</strong> <strong>the</strong><br />

central European Krkonoše Mts. and <strong>the</strong> subarctic Abisko range<br />

(Sweden)). – Opera Corcontica 47: 7–28.<br />

Vaněk J. (ed.) (1999): Ovlivnění tundrových geobiocenóz Krkonoš<br />

vysokohorským zalesňováním (Impact of afforestation on tundra<br />

geobiocenoses of <strong>the</strong> Krkonoše Mts.). – Ms.; f<strong>in</strong>al report of<br />

MŽP ČR VaV/620/4/97, Správa Krkonošského národního parku,<br />

Vrchlabí).<br />

Vaněk J. (ed.) (2004): Komplexní analýza dlouhodobých změn<br />

krkonošské tundry (Comprehensive analysis of long-term<br />

changes of <strong>the</strong> Krkonoše tundra). – Ms.; f<strong>in</strong>al report of MŽP ČR<br />

VaV/610/3/00, Správa Krkonošského národního parku, Vrchlabí).<br />

Grasslands 63


Wetlands and streams


Introduction<br />

<br />

Restoration of <strong>the</strong> natural character of wetlands and streams and<br />

<strong>the</strong>ir ecological functions <strong>in</strong> <strong>the</strong> landscape is a grow<strong>in</strong>g trend (e.g.<br />

Verdonschot & Nijboer 2002, Palmer et al. 2005, Dudgeon et al. 2006).<br />

The ma<strong>in</strong> drivers of this trend are <strong>the</strong> serious consequences of disturbed<br />

ecological structure and processes, which have an impact on<br />

landscape hydrology, nutrient cycles and biodiversity. Moreover, <strong>the</strong>se<br />

impacts directly affect <strong>the</strong> lives of humans, for example by <strong>in</strong>creas<strong>in</strong>g<br />

<strong>the</strong> frequency of extreme flood events.<br />

The history of human impacts on streams and wetlands <strong>in</strong> <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong> is similar to <strong>the</strong> situation <strong>in</strong> <strong>the</strong> rest of Europe <strong>in</strong><br />

many aspects. S<strong>in</strong>ce <strong>the</strong> Middle Ages, <strong>the</strong> natural character of streams<br />

and rivers has been changed by <strong>the</strong> construction of weirs and races,<br />

and large obstacles have been removed from riverbeds (Cílek 2002,<br />

Just et al. 2005). River eng<strong>in</strong>eer<strong>in</strong>g works ma<strong>in</strong>ly deal<strong>in</strong>g with large<br />

watercourses boomed <strong>in</strong> <strong>the</strong> 19 th century. At that time, <strong>the</strong> first flood<br />

control works and works to make <strong>the</strong> Elbe and Moldau rivers navigable<br />

were carried out. Also <strong>the</strong> first regulation works of small streams<br />

and related dra<strong>in</strong>age aimed at acquir<strong>in</strong>g more agricultural land appeared<br />

(Just et al. 2005). As early as <strong>the</strong> 1940s, subsurface pipes were<br />

<strong>in</strong>troduced, later becom<strong>in</strong>g <strong>the</strong> most frequent dra<strong>in</strong>age method of agricultural<br />

land <strong>in</strong> Bohemia (Vašků 2011).<br />

Both stream regulation and o<strong>the</strong>r <strong>in</strong>terventions <strong>in</strong> <strong>the</strong> landscape<br />

hydrology cont<strong>in</strong>ued with grow<strong>in</strong>g <strong>in</strong>tensity <strong>in</strong> <strong>the</strong> 20 th century. Dur<strong>in</strong>g<br />

<strong>the</strong> second half, <strong>the</strong>se measures were supported by socialist farm<strong>in</strong>g<br />

methods caus<strong>in</strong>g fur<strong>the</strong>r extensive changes <strong>in</strong> <strong>the</strong> landscape. This<br />

was <strong>the</strong> ma<strong>in</strong> period of large-scale dra<strong>in</strong>age and small stream regu-<br />

Fig. 1. <br />

<br />

Fig. 2. <br />

lation l<strong>in</strong>ked with collectivisation and <strong>in</strong>tensification of farm<strong>in</strong>g. All<br />

<strong>the</strong>se <strong>in</strong>terventions culm<strong>in</strong>ated <strong>in</strong> <strong>the</strong> 1970s and 80s, when <strong>the</strong>y also<br />

reached marg<strong>in</strong>al and less productive regions. Thus, many valuable<br />

natural sites were destroyed (Just et al. 2005), often without produc<strong>in</strong>g<br />

<strong>the</strong> expected economic benefits. Most of <strong>the</strong>se activities (e.g. largescale<br />

dra<strong>in</strong>age) were reduced or ceased after <strong>the</strong> political changes at<br />

<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> 1990s. However, <strong>the</strong> technical approach, both to<br />

watercourse management and <strong>the</strong> role of wetlands <strong>in</strong> <strong>the</strong> landscape,<br />

is still deeply entrenched, especially with water management authorities<br />

and <strong>the</strong> agricultural sector, mak<strong>in</strong>g changes slow. This has become<br />

evident, for example, after <strong>the</strong> extreme floods affect<strong>in</strong>g <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

dur<strong>in</strong>g <strong>the</strong> last 20 years (1997, 2002), when strictly technical<br />

flood prevention was promoted aga<strong>in</strong>.<br />

Due to this development, <strong>the</strong> current state of watercourses and<br />

wetlands <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> is unfavourable and about a quarter<br />

of agricultural land is dra<strong>in</strong>ed by subsurface pipes. In 1995, more than<br />

a million hectares of land dra<strong>in</strong>ed this way was registered (1,064,999<br />

ha, Kulhavý et al. 2006). An additional 450 thousand hectares were<br />

probably dra<strong>in</strong>ed but rema<strong>in</strong>ed unregistered for various reasons. Only<br />

350 thousand hectares of wetlands have rema<strong>in</strong>ed undra<strong>in</strong>ed from <strong>the</strong><br />

orig<strong>in</strong>al extent of about 1300 thousand ha recorded <strong>in</strong> <strong>the</strong> 1950s (Just<br />

et al. 2005). In 1989 a total of 14,167 km of regulated small streams<br />

and 11,712 km of dra<strong>in</strong>age channels (both open and piped) were registered<br />

(Vašků 2011). The total length of watercourses (76,000 km),<br />

particularly larger streams and rivers, has been reduced by one third,<br />

and regulated watercourses now account for about 21 thousand km<br />

(Simon et al. 2008). Natural large watercourses have become rare and<br />

almost unknown <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (Prach et al. 2003).<br />

The extensive changes <strong>in</strong> <strong>the</strong> aquatic environment between <strong>the</strong><br />

ends of <strong>the</strong> 19 th and 20 th centuries clearly exceeded <strong>the</strong> level of susta<strong>in</strong>ability.<br />

Besides a considerable loss of natural values and biodiversity,<br />

<strong>the</strong>se changes have led to an acceleration of both ord<strong>in</strong>ary and flood<br />

discharge from <strong>the</strong> landscape, a rise <strong>in</strong> flood risk and damage caused<br />

by extreme fl oods, reduc<strong>in</strong>g groundwater resources and <strong>in</strong>creased<br />

impacts of dry periods, and also to <strong>in</strong>creased nutrient wash-off from<br />

soils and deteriorated self-purification processes <strong>in</strong> <strong>the</strong> landscape<br />

(Just et al. 2005). Awareness of <strong>the</strong> need for <strong>restoration</strong> as a corrective<br />

tool is now apparent, not only among experts or special-<strong>in</strong>terest<br />

groups, but also <strong>the</strong> public.<br />

Wetlands and streams 67


Restoration of streams and <strong>the</strong>ir floodpla<strong>in</strong>s<br />

The ma<strong>in</strong> goal of stream and river <strong>restoration</strong> is improvement<br />

of <strong>the</strong>ir ecological state and renewal of functions lost after technical<br />

regulations. In many cases, such a renewal proceeds spontaneously<br />

by renaturalisation – e.g. by gradual fill<strong>in</strong>g of <strong>the</strong> bed with washed-off<br />

material, encroachment of vegetation and decay<strong>in</strong>g technical water<br />

works. Although a long-term process, spontaneous renaturalisation<br />

may have a significant overall <strong>restoration</strong> effect, if not <strong>in</strong>terrupted by<br />

repeated servic<strong>in</strong>g (Just et al. 2005). It ra<strong>the</strong>r works <strong>in</strong> small streams<br />

with a simple <strong>in</strong>frastructure (e.g. <strong>in</strong> channelised but not re<strong>in</strong>forced<br />

beds), however sudden post-flood processes can also affect larger watercourses.<br />

Even though spontaneous renaturalisation is important <strong>in</strong> regenerat<strong>in</strong>g<br />

<strong>the</strong> landscape and needs support, a natural state of most<br />

watercourses and <strong>the</strong>ir floodpla<strong>in</strong>s can only be achieved by technical<br />

measures, <strong>in</strong>itiat<strong>in</strong>g and allow<strong>in</strong>g for natural processes. This is particularly<br />

necessary <strong>in</strong> strongly affected streams (with strongly deepened,<br />

re<strong>in</strong>forced beds) and <strong>in</strong> nearly all larger regulated watercourses.<br />

Successful <strong>restoration</strong> should not merely result <strong>in</strong> rehabilitation of<br />

<strong>the</strong> natural stream geomorphology, but also <strong>in</strong> renewal of its dynamics,<br />

<strong>in</strong>clud<strong>in</strong>g floods and bed formation, reconnection of <strong>the</strong> stream<br />

with its floodpla<strong>in</strong>, and <strong>in</strong>crease <strong>in</strong> diversity along <strong>the</strong> entire river corridor.<br />

Subsequently biodiversity should be improved, natural functions<br />

and ecosystem services of freshwaters regenerated (see e.g. Haslam<br />

2008), and water retention of <strong>the</strong> landscape <strong>in</strong>creased by natural<br />

processes without any additional costs.<br />

Stream <strong>restoration</strong> became a reality <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> <strong>in</strong> 1992<br />

thanks to establishment of <strong>the</strong> national River System Restoration Programme<br />

by <strong>the</strong> M<strong>in</strong>istry of <strong>the</strong> Environment. In <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g, <strong>restoration</strong><br />

efforts encountered many problems, amongst o<strong>the</strong>rs misapprehension<br />

by some watercourse authorities. Experience from more<br />

progressive European countries were not fully applied here and even<br />

<strong>the</strong> idea of remov<strong>in</strong>g re<strong>in</strong>forcements <strong>in</strong> streams was hardly accepted<br />

dur<strong>in</strong>g <strong>the</strong> first years of <strong>restoration</strong>. F<strong>in</strong>ances were seldom <strong>in</strong>vested <strong>in</strong><br />

stream course <strong>restoration</strong> but commonly used for <strong>the</strong> (re)construction<br />

of small reservoirs, mostly ponds. This approach was often reprehensible,<br />

because technical reservoirs ra<strong>the</strong>r than natural habitats<br />

were restored this way.<br />

Although nation-wide support of stream <strong>restoration</strong> was declared<br />

by <strong>the</strong> state already <strong>in</strong> <strong>the</strong> 1990s (State Nature Conservation and<br />

Landscape Protection Programme, 1998), real stream course <strong>restoration</strong><br />

first appeared around 2000. Especially <strong>the</strong> <strong>restoration</strong> of <strong>the</strong> small<br />

Borová stream was a milestone <strong>in</strong> our understand<strong>in</strong>g of <strong>restoration</strong><br />

as an important flood control measure. At this site, <strong>the</strong> former channelised,<br />

artificial bed was replaced by a new near-natural, meander<strong>in</strong>g<br />

stream. This restored streambed resisted <strong>the</strong> follow<strong>in</strong>g extreme onehundred-year<br />

flood (2001) with just small morphological changes and<br />

moreover, <strong>the</strong> flood peak at <strong>the</strong> end of <strong>the</strong> stream profile was about<br />

20% lower than expected before <strong>restoration</strong> (Matoušek 2002). Ano<strong>the</strong>r<br />

important work of that time was <strong>the</strong> <strong>restoration</strong> of floodpla<strong>in</strong> forests<br />

at <strong>the</strong> confluence of <strong>the</strong> Morava and Dyje rivers <strong>in</strong> south Moravia.<br />

Although regular spr<strong>in</strong>g flood<strong>in</strong>g was rehabilitated here by a ra<strong>the</strong>r<br />

Figs. 3, 4, 5, 6. <br />

-<br />

<br />

68 Wetlands and streams


Figs. 7, 8. <br />

technical reconstruction of channels <strong>in</strong> <strong>the</strong> forest, <strong>the</strong> whole complex<br />

of re-flooded forests reta<strong>in</strong>ed about 60 million m 3 of water dur<strong>in</strong>g <strong>the</strong><br />

extreme flood <strong>in</strong> 1997 and thus significantly contributed to a reduction<br />

of flood damage downstream (Prach et al. 2003).<br />

More projects deal<strong>in</strong>g with stream course <strong>restoration</strong> have been<br />

realised s<strong>in</strong>ce 2000, but design of shallow streambeds with a low flow<br />

rate has been promoted only rarely. On <strong>the</strong> contrary, over-dimensioned<br />

(result<strong>in</strong>g from fears that too small streambeds cannot hold<br />

enough water), less diverse and too tidy streambeds were <strong>the</strong> norm<br />

at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g. Only later, spontaneous vegetation succession was<br />

supported and some basic rules were accepted, such as: (i) no <strong>restoration</strong><br />

without removal of re<strong>in</strong>forcements, and (ii) <strong>restoration</strong> of a<br />

broad river corridor is better than mere streambed <strong>restoration</strong>. Locally,<br />

municipalities played an important role <strong>in</strong> acquir<strong>in</strong>g <strong>the</strong> land<br />

needed for more comprehensive stream <strong>restoration</strong> <strong>in</strong>clud<strong>in</strong>g strips of<br />

adjacent alluvial wetlands. Their <strong>in</strong>terest was however <strong>in</strong> many cases<br />

conditioned by pond build<strong>in</strong>g or reconstruction.<br />

Ano<strong>the</strong>r milestone was <strong>the</strong> year 2007, when important subsidies<br />

were facilitated through <strong>the</strong> Operational Programme Environment<br />

(from <strong>the</strong> group of EU funds). Although at <strong>the</strong> start, due to badly set<br />

f<strong>in</strong>ancial rules, <strong>the</strong> same faults of support<strong>in</strong>g pond <strong>restoration</strong> were<br />

made as before, <strong>the</strong> proportion of real stream course <strong>restoration</strong> has<br />

grown. A positive effect of <strong>the</strong> EU Water Framework Directive is also<br />

evident. Water management authorities are <strong>in</strong>volved now, and <strong>restoration</strong><br />

measures are already <strong>in</strong>corporated <strong>in</strong> <strong>the</strong>ir plans.<br />

Thanks to this, <strong>the</strong> first proposals to restore larger watercourses<br />

are be<strong>in</strong>g made, although <strong>the</strong> authorities are still limited by problems<br />

with acquir<strong>in</strong>g <strong>the</strong> necessary land and by unresolved rules for <strong>the</strong> use<br />

of areas restored outside <strong>the</strong> actual streambed. Aga<strong>in</strong> a pioneer role<br />

has been played by <strong>the</strong> South Bohemian Region, where <strong>the</strong> Moldau<br />

Catchment authority has restored a section of <strong>the</strong> Polečnice stream<br />

near Kájov, a larger watercourse with a ra<strong>the</strong>r dynamic flow regime.<br />

Also a large project aimed at restor<strong>in</strong>g a long section of <strong>the</strong> Stropnice<br />

stream at Nové Hrady is be<strong>in</strong>g prepared. Simultaneously smaller projects<br />

are be<strong>in</strong>g realised, e.g. <strong>restoration</strong> of <strong>the</strong> Černý potok stream (described<br />

<strong>in</strong> <strong>the</strong> case study “Restoration of <strong>the</strong> Černý potok stream”) <strong>in</strong><br />

<strong>the</strong> Krušné hory Mts. and rehabilitation of an <strong>in</strong>appropriately dra<strong>in</strong>ed<br />

area with a capillary stream at Domašín near Vlašim (2011).<br />

An important part of <strong>the</strong>se <strong>restoration</strong> projects, from <strong>the</strong> viewpo<strong>in</strong>t<br />

of biodiversity, is secur<strong>in</strong>g <strong>the</strong> passability of <strong>the</strong> stream for<br />

migrat<strong>in</strong>g organisms. The Operational Programme Environment<br />

has f<strong>in</strong>anced a range of structures support<strong>in</strong>g <strong>the</strong> cont<strong>in</strong>uity of watercourses<br />

with fish bypasses (e.g. at weirs on <strong>the</strong> Blanice rivers at<br />

Vlašim). An example of a fish bypass construction and its impact on<br />

<strong>the</strong> biodiversity of <strong>the</strong> watercourse is described <strong>in</strong> <strong>the</strong> case study “Revitalis<strong>in</strong>g<br />

effects of a near-natural bypass at a migration barrier on <strong>the</strong><br />

Blanice river”. A new element <strong>in</strong> <strong>restoration</strong> projects is <strong>the</strong> build<strong>in</strong>g of<br />

near-natural streambeds <strong>in</strong> towns and villages aimed at flood control,<br />

planned <strong>in</strong> e.g. <strong>the</strong> Moldau floodpla<strong>in</strong> <strong>in</strong> Prague-Karlín and Prague-<br />

Libeň, and on <strong>the</strong> Blanice river <strong>in</strong> Vlašim.<br />

It can be concluded that <strong>restoration</strong> of small stream courses,<br />

ma<strong>in</strong>ly aimed at re<strong>in</strong>stat<strong>in</strong>g <strong>the</strong> natural geomorphology and stream<br />

route, currently prevails <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. These are often local<br />

Fig. 9. <br />

<br />

Wetlands and streams 69


projects deal<strong>in</strong>g with sections of just a few hundred metres (ma<strong>in</strong>ly<br />

older projects) or <strong>in</strong> <strong>the</strong> best case a few kilometres. It is a positive po<strong>in</strong>t<br />

that, especially <strong>in</strong> <strong>the</strong> latest projects, knowledge about river morphology<br />

is <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g applied, whereby <strong>the</strong> orig<strong>in</strong>al route, as well<br />

as <strong>the</strong> shape of <strong>the</strong> streambed, is restored by shallow<strong>in</strong>g bottoms, and<br />

by diversify<strong>in</strong>g banks, bottoms, <strong>the</strong> natural substrate (<strong>in</strong>clud<strong>in</strong>g small<br />

geomorphological elements) and stream gradients. Restoration works<br />

on larger rivers which <strong>in</strong>clude conspicuous geomorphological elements<br />

(e.g. eroded riverbanks, sand- and gravel-banks or islets) are,<br />

just as <strong>restoration</strong> of complete floodpla<strong>in</strong>s, still rare.<br />

Usually, only a little amount of large woody debris is left <strong>in</strong> <strong>the</strong><br />

beds of restored streams or it is fixed due to fears for <strong>the</strong> damage it<br />

could cause dur<strong>in</strong>g floods. These components not only <strong>in</strong>fluence <strong>the</strong><br />

diversity as a whole, but also functional processes l<strong>in</strong>ked to water retention<br />

and <strong>the</strong> capture of nutrients and <strong>the</strong>ir return <strong>in</strong>to <strong>the</strong> system<br />

(Prach et al. 2003, Giller & Malmqvist 2008, Bukaveckas 2007).<br />

A very important aspect of watercourse <strong>restoration</strong> is natural<br />

flood<strong>in</strong>g. Even if many <strong>restoration</strong> projects <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> renew<br />

<strong>the</strong> natural course of a streambed, natural dynamics and flood<strong>in</strong>g<br />

were until recently reduced by various measures (e.g. re<strong>in</strong>forc<strong>in</strong>g<br />

banks or strongly deepen<strong>in</strong>g <strong>the</strong> streambed), but due to ownership<br />

problems with <strong>the</strong> surround<strong>in</strong>g land, flood<strong>in</strong>g has not been dealt with.<br />

However, fl ood<strong>in</strong>g contributes to water retention of <strong>the</strong> river landscape<br />

and decreases flood waves (Langhammer & Vilímek 2004). It is<br />

also an important mechanism <strong>in</strong> captur<strong>in</strong>g nutrients and sediments,<br />

and ma<strong>in</strong>ta<strong>in</strong>s <strong>the</strong> dynamics, habitat biodiversity and floodpla<strong>in</strong> biodiversity<br />

(Prach et al. 2003).<br />

A shortcom<strong>in</strong>g of <strong>the</strong> practice so far is that <strong>restoration</strong> works are<br />

still badly coord<strong>in</strong>ated and flood control is usually conceived strictly<br />

technically. At several sites, natural elements spontaneously created<br />

after extreme floods were even removed aga<strong>in</strong> (e.g. Litavka river 2002).<br />

The attention of water management and nature conservation<br />

should not be directed to costly <strong>restoration</strong> projects only. They should<br />

be comprehensive, directed at limit<strong>in</strong>g negative <strong>in</strong>fluences with<strong>in</strong><br />

<strong>the</strong> entire catchment and more frequent use of spontaneous renaturalisation<br />

processes. The po<strong>in</strong>t is that <strong>the</strong>re is a broad scope of various<br />

‘lighter’ and more economical measures support<strong>in</strong>g natural processes<br />

between costly <strong>restoration</strong> projects and spontaneous renaturalisation<br />

of watercourses.<br />

At present it is hardly stressed that <strong>restoration</strong> of a watercourse<br />

and its surround<strong>in</strong>gs may, besides improv<strong>in</strong>g landscape and fl ood<br />

control, also have a positive socio-economic effect by attract<strong>in</strong>g<br />

visitors and tourists, especially around larger towns and <strong>in</strong> lowlands<br />

where agriculture has elim<strong>in</strong>ated all near-natural ecosystems. This has<br />

been observed after f<strong>in</strong>ish<strong>in</strong>g large <strong>restoration</strong> projects as well after<br />

spontaneous renaturalisation caused by <strong>the</strong> heavy floods of 1997 and<br />

2002.<br />

Restoration of o<strong>the</strong>r wetlands <strong>in</strong> <strong>the</strong> landscape<br />

Appreciation for wetlands and <strong>the</strong>ir landscape functions is gradually<br />

grow<strong>in</strong>g also <strong>in</strong> our country, result<strong>in</strong>g <strong>in</strong> wetland <strong>restoration</strong><br />

projects be<strong>in</strong>g more frequently implemented dur<strong>in</strong>g <strong>the</strong> past two<br />

decades. The available subsidy programmes such as <strong>the</strong> River System<br />

Restoration Programme, landscape management programmes and<br />

<strong>the</strong> current EU funds have played an important part <strong>in</strong> this process.<br />

Fig. 10. <br />

70 Wetlands and streams


Figs. 11, 12. <br />

<br />

<br />

Among <strong>restoration</strong> projects focus<strong>in</strong>g on wetlands <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>, partial renewal or regeneration of exist<strong>in</strong>g wetland habitats<br />

prevail. These projects often <strong>in</strong>clude local <strong>restoration</strong> of small natural<br />

water bodies or pools as appropriate habitats support<strong>in</strong>g amphibians<br />

and o<strong>the</strong>r wetland fauna of still, shallow waters.<br />

In many cases this approach is also used when restor<strong>in</strong>g later successional<br />

stages of alluvial pools terrestrialised due to isolation from<br />

<strong>the</strong> stream and regular flood pulses. Monitor<strong>in</strong>g <strong>in</strong> <strong>the</strong> Litovelské Pomoraví<br />

region has showed that restored habitats are quickly colonised<br />

and <strong>in</strong>crease <strong>the</strong> diversity of water <strong>in</strong>vertebrates <strong>in</strong> <strong>the</strong> area (Šmaková<br />

& Rulík 2000). Construction or renewal of shallow pools is also frequently<br />

<strong>in</strong>cluded <strong>in</strong> nature-friendly <strong>restoration</strong> of some stone quarries<br />

and sandpits (<strong>in</strong> e.g. <strong>the</strong> Moravian Karst and <strong>the</strong> Třeboň Bas<strong>in</strong>). These<br />

<strong>restoration</strong> measures are ma<strong>in</strong>ly important for <strong>the</strong>ir support of rare<br />

species or communities and general improvement of biodiversity. A<br />

positive effect on <strong>the</strong> local hydrology is evident as well. Ano<strong>the</strong>r very<br />

frequent type of project is <strong>the</strong> <strong>restoration</strong> of wetland habitats l<strong>in</strong>ked<br />

with man-made structures, such as natural littorals and marshes<br />

around ponds, and <strong>the</strong> bottoms of polders <strong>in</strong> flood areas. Besides state<br />

<strong>in</strong>stitutions (Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>) also<br />

several NGOs (namely <strong>the</strong> <strong>Czech</strong> Union for Nature Conservation)<br />

participate <strong>in</strong> restor<strong>in</strong>g shallow pools.<br />

<br />

Especially <strong>in</strong> recent years, thanks to suitable subsidies (landscape<br />

management programmes, Agri-environmental schemes), meadow<br />

fens are commonly and ra<strong>the</strong>r successfully restored by re<strong>in</strong>troduc<strong>in</strong>g<br />

management (most often manual mow<strong>in</strong>g and shrub removal).<br />

These measures are primarily aimed at support<strong>in</strong>g valuable communities<br />

and species richness of mostly slightly to moderately disturbed<br />

sites, often situated <strong>in</strong> national parks, protected landscape areas and<br />

nature reserves. Restoration by suppress<strong>in</strong>g competitive plant species<br />

and later successional stages with shrubs and trees is ma<strong>in</strong>ly applied<br />

to various wet Cirsium meadows, Filipendula grasslands, acidic mossrich<br />

fen meadows, wet Mol<strong>in</strong>ia grasslands, cont<strong>in</strong>ental <strong>in</strong>undated<br />

meadows, and also tufa spr<strong>in</strong>gs and <strong>in</strong>land salt marshes (Hájková et<br />

al. 2009). Although <strong>the</strong>se projects do usually not deal with hydrologically<br />

destroyed wetlands and do not <strong>in</strong>clude rehabilitation of <strong>the</strong><br />

water regime, <strong>the</strong>y are extremely important for biodiversity. Detailed<br />

examples are given <strong>in</strong> <strong>the</strong> case studies ‘Experimental <strong>restoration</strong> and<br />

subsequent degradation of an alluvial meadow’ and ‘Restoration<br />

management of wetland meadows <strong>in</strong> <strong>the</strong> Podblanicko region’ <strong>in</strong> <strong>the</strong><br />

‘Grassland’ section.<br />

More important for <strong>the</strong> overall water regime <strong>in</strong> <strong>the</strong> landscape<br />

are projects restor<strong>in</strong>g natural hydrological conditions of area-wide<br />

dra<strong>in</strong>ed, strongly degraded wetlands <strong>in</strong> agricultural landscapes. These<br />

projects are however less frequent, <strong>the</strong> ma<strong>in</strong> limitations be<strong>in</strong>g land<br />

ownership and persist<strong>in</strong>g <strong>in</strong>tensive farm<strong>in</strong>g on dra<strong>in</strong>ed land. Also<br />

registered dra<strong>in</strong><strong>in</strong>g equipment (especially dra<strong>in</strong>pipes), which has to<br />

be ma<strong>in</strong>ta<strong>in</strong>ed accord<strong>in</strong>g to law, is a complication. Attempts to restore<br />

<strong>the</strong> water regime of wetlands on farmland moreover conflicts with<br />

farmers’ <strong>in</strong>terests supported by o<strong>the</strong>r landscape management subsidies<br />

(Agri-environmental schemes), paradoxically also <strong>in</strong> nature reserves.<br />

In spite of that, several projects aimed at complete removal<br />

of dra<strong>in</strong>pipes on farmland have recently been realised, many of <strong>the</strong>m<br />

connected to <strong>the</strong> <strong>restoration</strong> of small channelised streams and agricultural<br />

landscapes (e.g. Domašín near Vlašim, Ploučnice river).<br />

Fig. 13. <br />

<br />

<br />

Wetlands and streams 71


Mires are restored relatively often <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Although<br />

not very common, <strong>the</strong>y receive great attention thanks to <strong>the</strong>ir<br />

high biodiversity value. Yet, mire <strong>restoration</strong> may <strong>in</strong>clude <strong>the</strong> ra<strong>the</strong>r<br />

complicated rehabilitation of strongly damaged <strong>in</strong>dustrially exploited<br />

raised bogs (see case study ‘Restoration of <strong>the</strong> m<strong>in</strong>ed peatbog Soumarský<br />

Most’), but also <strong>the</strong> recovery of non-exploited sites mostly<br />

degraded by dra<strong>in</strong><strong>in</strong>g (case study ‘Restoration of dra<strong>in</strong>ed mires <strong>in</strong> <strong>the</strong><br />

Šumava National Park’). In both cases <strong>the</strong> key measure to be taken is<br />

restor<strong>in</strong>g <strong>the</strong> natural water regime (rais<strong>in</strong>g <strong>the</strong> groundwater level and<br />

stabilis<strong>in</strong>g it, restor<strong>in</strong>g natural dra<strong>in</strong><strong>in</strong>g, and reta<strong>in</strong><strong>in</strong>g sufficient water<br />

<strong>in</strong> dry periods) <strong>in</strong> order to restart <strong>the</strong> peat-form<strong>in</strong>g process and re<strong>in</strong>state<br />

<strong>the</strong> ecological functions and structures of <strong>the</strong> mire. Restor<strong>in</strong>g<br />

mires is best realised as part of water regime remediation <strong>in</strong> a catchment,<br />

not separately. It is also important for <strong>the</strong>se habitats to ma<strong>in</strong>ta<strong>in</strong><br />

<strong>the</strong> environment at an appropriate low trophy and carry <strong>the</strong> work out<br />

sensitively by exceptionally us<strong>in</strong>g heavy mach<strong>in</strong>ery. In addition to <strong>the</strong><br />

positive impacts on biodiversity and landscape hydrology, mire <strong>restoration</strong><br />

is also important from <strong>the</strong> viewpo<strong>in</strong>t of <strong>the</strong> carbon cycle and<br />

release of greenhouse gases (Charman 2002).<br />

In <strong>the</strong> past 20 years a range of successful peatbog <strong>restoration</strong> projects<br />

have been carried out <strong>in</strong> <strong>the</strong> Šumava Range, <strong>the</strong> Ore Mounta<strong>in</strong>s,<br />

<strong>the</strong> Jizera Mounta<strong>in</strong>s, Třeboňsko, Slavkovský les and <strong>the</strong> Giant Mounta<strong>in</strong>s<br />

(Lanta et al. 2006).<br />

In conclusion, many watercourse and wetland <strong>restoration</strong> projects<br />

have been realised <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> over <strong>the</strong> past 20 years, although<br />

<strong>the</strong>ir proportion is still very low <strong>in</strong> relation to <strong>the</strong> total area of<br />

disturbed and degraded sections and areas. One of <strong>the</strong> reasons for this<br />

is that, although such projects help <strong>the</strong> landscape as well as <strong>the</strong> human<br />

society to function <strong>in</strong> a sound way, <strong>the</strong>ir impact on <strong>the</strong> <strong>in</strong>volved landowners<br />

or <strong>the</strong> local community is not immediately positive. Moreover,<br />

assessments of <strong>the</strong> pros and cons are often disputed and cannot<br />

always be quantified for a lack of concrete data. Comb<strong>in</strong><strong>in</strong>g ecosystem<br />

services and assess<strong>in</strong>g <strong>the</strong>m <strong>in</strong> a holistic way would certa<strong>in</strong>ly be beneficial.<br />

The total benefit expressed also <strong>in</strong> economic (f<strong>in</strong>ancial) figures<br />

might <strong>the</strong>n be evident and conv<strong>in</strong>c<strong>in</strong>g to decision-makers (Turner et<br />

al. 2008, Pithart et al. 2010).<br />

References<br />

Bukaveckas P. (2007): Effect of channel <strong>restoration</strong> on water velocity,<br />

transient storage, and nutrient uptake <strong>in</strong> a channelized stream. –<br />

Environmental Science & Technology 41: 1570–1576.<br />

Charman D. (2002): Peatlands and environmental change. – John<br />

Wiley & Sons Ltd., Chichester.<br />

Cílek V. (2002): Kraj<strong>in</strong>y vnější a vnitřní (Internal and external landscape).<br />

– Dokořán, Praha.<br />

Dudgeon D., Arth<strong>in</strong>gton A.H., Gessner M.O., Kawabata Z.-I., Knowler<br />

D.J., Lévêque C., Naiman R.J., Prieur-Richard A.-H., Soto D.,<br />

Stiassny M.L.J. & Sullivan C.A. (2006): Freshwater biodiversity:<br />

importance, threats, status and conservation challenges. – Biological<br />

Reviews 81: 163–182.<br />

Giller P.S. & Malmqvist B. (2008): The biology of streams and rivers. –<br />

Oxford University Press, New York.<br />

Hájková P., Hájek M. & K<strong>in</strong>trová K. (2009): How can we effectively<br />

restore species richness and natural composition of a Mol<strong>in</strong>ia<strong>in</strong>vaded<br />

fen? – Journal of Applied Ecology 46: 417–425.<br />

Haslam H.W. (2008): The riverscape and <strong>the</strong> river. – Cambridge University<br />

Press, New York.<br />

Just T., Matoušek V., Dušek M., Fischer D. & Karlík P. (2005):<br />

Vodohospodářské revitalizace a jejich uplatnění v ochraně před<br />

povodněmi (Restoration of watercourses and <strong>the</strong>ir application <strong>in</strong><br />

flood control). – 3. ZO ČSOP Hořovicko, Praha.<br />

Kulhavý Z., Soukup M., Doležal F. & Čmelík M. (2006): Zemědělské<br />

odvodnění drenáží. Racionalizace využívání, údržby a oprav (Agricultural<br />

dra<strong>in</strong><strong>in</strong>g. Rationalis<strong>in</strong>g its use, ma<strong>in</strong>tenance and repair).<br />

– Výzkumný ústav meliorací a ochrany půdy, Praha.<br />

Langhammer J. & Vilímek V. (2004): Vliv antropogenních změn na<br />

průběh a následky povodní (Impact of anthropogenic changes<br />

on <strong>the</strong> course and consequences of floods). – In: Herber V. (ed.),<br />

Sborník 20. Výroční konference fyzickogeografické sekce ČGS,<br />

Přírodovědecká fakulta MU, Brno.<br />

Lanta V., Mach J. & Holcová V. (2006): The effect of dam construction<br />

on <strong>the</strong> <strong>restoration</strong> succession of spruce mires <strong>in</strong> <strong>the</strong> Giant Mounta<strong>in</strong>s<br />

(<strong>Czech</strong> <strong>Republic</strong>). – Annales Botanici Fennici 43: 260–268.<br />

Fig. 14. <br />

72 Wetlands and streams


Fig. 15. <br />

Matoušek V. (2002): Stoletá povodeň na revitalizovaném potoce<br />

Borová (One-hundred-year flood on <strong>the</strong> restored Borová stream).<br />

– Vodní hospodářství 52/10: 5–11, příloha VTEI.<br />

Palmer M.A., Bernhardt E.S., Allan J.D., Alexander G., Brooks S., Carr<br />

J., Clayton S., Dahm C.N., Shah J.F., Galat D.L., Gloss S., Goodw<strong>in</strong><br />

P., Hart D.D., Hassett B., Jenk<strong>in</strong>son R., Kondolf G.M., Lave<br />

R., Meyer J.L., O’Donnell T.K., Pagano L. & Sudduth E. (2005):<br />

Standards for ecologically successful river <strong>restoration</strong>. – Journal<br />

of Applied Ecology 42: 208–217.<br />

Pithart D., Křováková K., Žaloudík J., Dostál T., Valentová J., Valenta<br />

P., Weyskrabová J. & Dušek J. (2010): Ecosystem services of natural<br />

fl oodpla<strong>in</strong> segment – Lužnice River, <strong>Czech</strong> <strong>Republic</strong>. – In:<br />

Brebie C. (ed.), Flood recovery, <strong>in</strong>novation and response II, pp.<br />

129–139, WIT Press, Southampton (UK).<br />

Prach K., Pithart D. & Francírková T. (2003): Ekologické funkce a<br />

hospodaření v říčních nivách (<strong>Ecological</strong> function<strong>in</strong>g and management<br />

<strong>in</strong> river floodpla<strong>in</strong>s). – Botanický ústav AV ČR, Třeboň.<br />

Simon O., Fiala D., Kožený P. & Fricová K. (2008): Zdroj, transformace<br />

a transport přirozeného POC – jako ekosystémová služba<br />

přirozené říční nivy? (Resources, transformation and transport of<br />

<strong>the</strong> natural particulate organic carbon – ecosystem service of <strong>the</strong><br />

alluvium?). – In: Pithart D., Benedová Z. & Křováková K. (eds),<br />

Ekosystémové služby říční nivy, Sborník příspěvků z konference<br />

28.–30. 4. 2008 Třeboň, pp. 191–199, Ústav systémové biologie a<br />

ekologie AV ČR, v.v.i., Vodní hospodářství, Třeboň.<br />

Šmaková A. & Rulík M. (2000): Vývoj oživení v nově vytvořených<br />

tůních v CHKO Litovelské Pomoraví (Succession of biota <strong>in</strong> <strong>the</strong><br />

new created pools <strong>in</strong> <strong>the</strong> Litovelské Pomoraví PLA). – In: Pithart<br />

D. (ed.), Sborník příspěvků z konference „Ekologie aluviálních<br />

tůní a říčních ramen“, Lužnice u Třeboně, 2.–3. 3. 2000, pp. 132–<br />

134, Botanický ústav AV ČR, Třeboň.<br />

Turner R.K., Georgiou K. & Fisher B. (2008): Valu<strong>in</strong>g ecosystem services.<br />

The case of multi-functional wetlands. – Earthscan, London.<br />

Vašků 2011: Zlo zvané meliorace (An evil called reclamation). –<br />

Vesmír 90: 440–444.<br />

Verdonschot P.F.M. & Nijboer R.C. (2002): Towards a decision support<br />

system for stream <strong>restoration</strong> <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands: An overview<br />

of <strong>restoration</strong> projects and future needs. – Hydrobiologia<br />

478: 131–148.<br />

Wetlands and streams 73


Restoration of <strong>the</strong> Černý potok stream, Krušné hory Mts.<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Černá louka NR, Krušné hory Mts., northwest <strong>Czech</strong> <strong>Republic</strong>, along <strong>the</strong> border with Germany<br />

50°44'4" N, 13°53'26" E, 690–760 m<br />

NR, Ramsar Site (Krusnohorska Mounta<strong>in</strong>s mires), SCI, SPA<br />

<br />

Meadow wetlands and spr<strong>in</strong>gs, fens (Montio-Cardam<strong>in</strong>etea and Scheuchzerio palustris-Caricetea nigrae), wet<br />

and mesophilous meadows (Mol<strong>in</strong>io-Arrhena<strong>the</strong>retea), water courses<br />

Ca. 7.4 ha; 4 km of restored stream sections<br />

Free State of Saxony, Operational Programme Environment<br />

Costs 2001–2003: €52,000; 2008–2010: €264,000<br />

Initial conditions<br />

Waterlogg<strong>in</strong>g is an important factor determ<strong>in</strong><strong>in</strong>g <strong>the</strong> character of<br />

<strong>the</strong> habitats <strong>in</strong> Černá louka NR. The ma<strong>in</strong> watercourse <strong>in</strong> <strong>the</strong> area is<br />

<strong>the</strong> Černý potok stream over a length of 1.9 km, which is supplied by<br />

water from ano<strong>the</strong>r four tributaries. After World War II, <strong>the</strong> entire<br />

landscape was considerably changed. Former German <strong>in</strong>habitants<br />

were expelled and <strong>the</strong> new settlers usually did not cont<strong>in</strong>ue <strong>in</strong> <strong>the</strong> former<br />

traditional land use.<br />

The most harmful impact on <strong>the</strong> present Nature Reserve was<br />

large-scale dra<strong>in</strong>age <strong>in</strong>stalled dur<strong>in</strong>g reclamation of mostly grassland<br />

<strong>in</strong> <strong>the</strong> 1960s to <strong>the</strong> 1980s. As a result, both <strong>the</strong> Černý potok stream<br />

and its tributaries were channelised and deepened. Subsurface dra<strong>in</strong>age<br />

pipes on several dozen hectares led to <strong>the</strong> channelised stream<br />

courses. Surface dra<strong>in</strong>age and peat cutt<strong>in</strong>g <strong>in</strong> <strong>the</strong> peatbog situated <strong>in</strong><br />

<strong>the</strong> headwater of <strong>the</strong> Černý potok also negatively <strong>in</strong>fluenced <strong>the</strong> area,<br />

result<strong>in</strong>g <strong>in</strong> subsequent gradual degradation of mires and o<strong>the</strong>r wetland<br />

habitats.<br />

Changes <strong>in</strong> <strong>the</strong> natural stream courses, degradation of stream<br />

habitats as well as considerable changes <strong>in</strong> natural hydrology were <strong>the</strong><br />

ma<strong>in</strong> motivations for work<strong>in</strong>g out a <strong>restoration</strong> project. Restoration<br />

works orig<strong>in</strong>ally started as partial re-establishment of small shallow<br />

pools and adjustments of <strong>the</strong> channels, but f<strong>in</strong>ally led to a comprehensive<br />

project aimed at restor<strong>in</strong>g <strong>the</strong> natural hydrology <strong>in</strong> <strong>the</strong> entire<br />

Nature Reserve.<br />

The area of <strong>in</strong>terest is an important site for many rare and endangered<br />

plants (e.g. Menyan<strong>the</strong>s trifoliata, P<strong>in</strong>guicula vulgaris) and<br />

animals (e.g. shore-birds, amphibians) of wetlands (Ondráček 2006).<br />

It was necessary to take <strong>the</strong> conservation of <strong>the</strong>se species <strong>in</strong>to account<br />

dur<strong>in</strong>g <strong>the</strong> <strong>restoration</strong> works.<br />

Abiotic conditions<br />

The terra<strong>in</strong> is moderately slop<strong>in</strong>g with an average gradient of ca.<br />

3%. The bedrock consists of old rock of <strong>the</strong> crystall<strong>in</strong>e complex, particularly<br />

orthogneiss, granulites and migmatites, with rhyolite ve<strong>in</strong>s.<br />

Fig. 1. <br />

74 Wetlands and streams


The crystall<strong>in</strong>e complex is <strong>in</strong> <strong>the</strong> fl oodpla<strong>in</strong> covered by quaternary,<br />

ma<strong>in</strong>ly clayey-stony slope sediments with a topsoil layer of 0.15 m on<br />

average. Annual precipitation varies from 700 to 900 mm (long-term<br />

mean precipitation be<strong>in</strong>g ca. 850 mm). The mean annual fl ow rate<br />

<strong>in</strong> <strong>the</strong> Černý potok stream upstream of <strong>the</strong> left tributary (Mokřadní<br />

potok) is 24.5 l.s -1 , <strong>the</strong> mean annual flow rate of this tributary is 7.2<br />

l.s -1 (Anonymus 2009).<br />

Objectives<br />

Comprehensive remediation of <strong>the</strong> hydrology of <strong>the</strong> area, <strong>in</strong>itiation<br />

of natural, dynamic re-development of <strong>the</strong> stream channel and<br />

cessation of degradation processes <strong>in</strong> valuable habitats. These <strong>restoration</strong><br />

measures are <strong>the</strong> ma<strong>in</strong> prerequisite for biodiversity protection<br />

<strong>in</strong>clud<strong>in</strong>g both stabilisation of local populations and spontaneous<br />

return of important wetland species, e.g. Snipe (Gall<strong>in</strong>ago gall<strong>in</strong>ago).<br />

Also expected are flood control elements, e.g. reduction of <strong>the</strong> outflow<br />

velocity and retardation and flatten<strong>in</strong>g of flood waves.<br />

Restoration measures<br />

1998–2001 Elaboration of project study and documentation for<br />

partial <strong>restoration</strong>.<br />

2001–2003 Partial <strong>restoration</strong> by EPS Servis, s.r.o., <strong>in</strong>clud<strong>in</strong>g<br />

construction of 26 pools, partial adjustments of <strong>the</strong><br />

regulated streambed and <strong>restoration</strong> of two sections<br />

of natural streambed.<br />

2006–2007 Development of <strong>in</strong>vestment plan for comprehensive<br />

<strong>restoration</strong>.<br />

2008 Assignment and development of project documentation<br />

(Terén Design, s.r.o., Nature Conservation<br />

Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>).<br />

2009–2010 Realisation of comprehensive <strong>restoration</strong> project<br />

for <strong>the</strong> Černý potok stream and its tributaries (EPS<br />

Servis, s.r.o.).<br />

The project was based on common pr<strong>in</strong>ciples of stream <strong>restoration</strong>.<br />

The ma<strong>in</strong> aim of <strong>the</strong> <strong>restoration</strong> was to decrease <strong>the</strong> volume of<br />

<strong>the</strong> restored streambeds especially by reduc<strong>in</strong>g <strong>the</strong>ir depth. O<strong>the</strong>r important<br />

criteria <strong>in</strong>cluded re-establishment of a natural gradient, nearnatural<br />

proportions of <strong>the</strong> stream cross-section, and natural variety<br />

<strong>in</strong> current and calm riffles (Just 2003, Doll et al. 2003, Just et al. 2005,<br />

Bernard et al. 2007).<br />

Modifications with<strong>in</strong> <strong>the</strong> channelised streambed were not sufficient<br />

to respect all <strong>the</strong>se criteria, <strong>the</strong>refore new streambeds were proposed<br />

and constructed. They were reconnected with <strong>the</strong> rema<strong>in</strong>s of<br />

<strong>the</strong> orig<strong>in</strong>al stream course or directed freely to <strong>the</strong> alluvial meadows.<br />

The volume of <strong>the</strong> new beds was designed at 30-day design flows (or<br />

max. one-year flows). The new beds were shaped with a rectangular<br />

profile or as broad “bas<strong>in</strong>s” with a mean depth of ca. 0.2 m, locally up<br />

to 0.5 m. The width of <strong>the</strong> stream near <strong>the</strong> bottom varied from 0.6 to 1<br />

m upstream and downstream end of <strong>the</strong> restored section, respectively.<br />

The width range was fl exible, reflect<strong>in</strong>g surface, soil and geological<br />

conditions. The longitud<strong>in</strong>al profile of <strong>the</strong> new stream sections corresponded<br />

as much as possible with <strong>the</strong> natural surface gradient. The<br />

appropriate slope was achieved by re-establish<strong>in</strong>g stream meander<strong>in</strong>g<br />

(dependent on local conditions) and particularly by <strong>in</strong>clud<strong>in</strong>g<br />

near-natural current sections (e.g. rapids, stones, sills and low steps)<br />

between calmer pool-like sections. The new bed of <strong>the</strong> ma<strong>in</strong> left tributary<br />

of <strong>the</strong> Černý potok was designed <strong>in</strong> similar dimensions (depth<br />

0.2 m, bottom width 0.6 m). In <strong>the</strong> o<strong>the</strong>r two smaller tributaries, water<br />

freely runn<strong>in</strong>g out of <strong>the</strong> channelised streambed <strong>in</strong>to <strong>the</strong> alluvium was<br />

proposed. This method had already been tested at <strong>the</strong> site before <strong>restoration</strong><br />

and, although at a small scale <strong>the</strong>n, it has turned out to work<br />

well. At <strong>the</strong> same time, <strong>the</strong> deepened and channelised streambeds<br />

were blocked by dams to halt artificial dra<strong>in</strong>age of <strong>the</strong> site.<br />

Results<br />

Changes <strong>in</strong> <strong>the</strong> area of <strong>in</strong>terest after <strong>restoration</strong> are summarised<br />

<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:<br />

Restored habitats<br />

Restored stream sections (<strong>in</strong>clud<strong>in</strong>g adjustment of<br />

channelised streambeds and mak<strong>in</strong>g water flow <strong>in</strong>to<br />

<strong>the</strong> alluvium)<br />

Natural overflow <strong>in</strong> case of Q100 floods (along meander<strong>in</strong>g<br />

segment <strong>in</strong> <strong>the</strong> alluvium)<br />

Pools with marshes (restored or created marsh<br />

habitats)<br />

Both new and restored marshes with still or runn<strong>in</strong>g<br />

waters<br />

4,030 m<br />

74,000 m 2<br />

9,630 m 2<br />

43,000 m 2<br />

The <strong>restoration</strong> was assessed with respect to <strong>the</strong> impact on flow<br />

rate. The courses of flood waves <strong>in</strong> <strong>the</strong> Černý potok stream before and<br />

after <strong>restoration</strong> were compared us<strong>in</strong>g <strong>the</strong> two dimensional hydrodynamic<br />

SRH-2D model (Lai 2008). Only a small effect of <strong>the</strong> stream<br />

<strong>restoration</strong> on <strong>the</strong> peak flow was found with <strong>the</strong> exception of less frequent<br />

floods (N1, N2 and N5 peak flows were reduced by only 50–80<br />

l.s -1 ). On <strong>the</strong> o<strong>the</strong>r hand, a very significant effect was recorded on <strong>the</strong><br />

delay of <strong>the</strong> flood wave. In a model of a restored stream section of<br />

ca. 1 km <strong>in</strong> length, <strong>the</strong> delay was up to 2 hours for <strong>the</strong> 1-year flood<br />

compared to <strong>the</strong> regulated stream and a considerable 20 m<strong>in</strong>utes for<br />

a 100-year flood. As a consequence, <strong>the</strong> peak flow downstream can<br />

be reduced due to delayed peak flows from <strong>the</strong> tributaries (Just et al.<br />

2005). Also dynamic meander<strong>in</strong>g of <strong>the</strong> restored streambed is be<strong>in</strong>g<br />

studied, but long-term monitor<strong>in</strong>g is necessary to obta<strong>in</strong> statistically<br />

significant results.<br />

Fig. 2. <br />

Wetlands and streams 75


Figs. 3, 4. <br />

The effect of <strong>restoration</strong> on <strong>the</strong> local fauna and flora was monitored<br />

as well (Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, <strong>Czech</strong><br />

Union for Nature Conservation, Local Chapter Teplice – Fergunna,<br />

2007–2011) but only prelim<strong>in</strong>ary results are available at present because<br />

of a relatively short post-<strong>restoration</strong> phase. The abundance of<br />

some amphibians has considerably <strong>in</strong>creased <strong>in</strong> <strong>the</strong> constructed pools<br />

(e.g. hundreds of <strong>in</strong>dividuals of frog species, e.g. Bufo bufo, Rana<br />

temporaria, and dozens of <strong>in</strong>dividuals of Triturus vulgaris). A more<br />

frequent occurrence of some bird species of waterlogged meadows<br />

and marshes (such as Crex crex and Gall<strong>in</strong>ago gall<strong>in</strong>ago) was recorded<br />

ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> restored wetland habitats created by conduct<strong>in</strong>g small<br />

tributaries to <strong>the</strong> floodpla<strong>in</strong>. In 2011 about 20 dragonfly species were<br />

recorded. The local population of <strong>the</strong> endangered plant species Menyan<strong>the</strong>s<br />

trifoliata has <strong>in</strong>creased <strong>in</strong> <strong>the</strong> floodpla<strong>in</strong>.<br />

O<strong>the</strong>r lessons learned and future perspectives<br />

The described <strong>restoration</strong> project, deal<strong>in</strong>g with stream <strong>restoration</strong><br />

<strong>in</strong>clud<strong>in</strong>g a large flooded alluvium, represents <strong>the</strong> first of its k<strong>in</strong>d <strong>in</strong><br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> <strong>in</strong> extent and approach. New methods were applied<br />

<strong>in</strong> <strong>the</strong> design of shape and course of <strong>the</strong> streambed, and <strong>the</strong>ir<br />

successful implementation was enabled by good collaboration between<br />

<strong>in</strong>vestor, designer and subcontractors.<br />

Public support<br />

Also NGOs were <strong>in</strong>volved <strong>in</strong> <strong>the</strong> <strong>restoration</strong> project. Members of<br />

<strong>the</strong> <strong>Czech</strong> Union for Nature Conservation (Local Chapter Teplice –<br />

Fergunna) participated <strong>in</strong> study, project preparation and implementation.<br />

The restored site is used for education, and both experts and <strong>the</strong><br />

public from <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> and abroad have visited it.<br />

References<br />

Anonymus (2009): Revitalizace Černého potoka a jeho přítoků v<br />

přírodní rezervaci Černá louka – dokončení (Restoration of <strong>the</strong><br />

Černý potok stream and its tributaries <strong>in</strong> Černá louka Nature Reserve<br />

– completion). – Terén Design, s.r.o., Teplice.<br />

Bernard J.M., Fripp J. & Rob<strong>in</strong>son K. (eds) (2007): National Eng<strong>in</strong>eer<strong>in</strong>g<br />

Handbook. Part 654 – Stream <strong>restoration</strong> design. – United<br />

States Department of Agriculture, Natural Resources Conservation<br />

Service. (Available at: http://policy.nrcs.usda.gov/viewerFS.<br />

aspx?id=3491)<br />

Doll B.A., Grabow G.L., Hall K.R., Halley J., Harman W.A., Jenn<strong>in</strong>gs<br />

G.D. & Wise D.E. (2003): Stream <strong>restoration</strong>: a natural channel<br />

design handbook. – NC Stream Restoration Institute, NC State<br />

University, North Carol<strong>in</strong>a.<br />

Just T. (ed.) (2003): Revitalizace vodního prostředí (Restoration of<br />

aquatic habitats). – Agentura ochrany přírody a kraj<strong>in</strong>y ČR, Praha.<br />

Just T., Matoušek V., Fischer D. & Karlík P. (2005): Vodohospodářské<br />

revitalizace a jejich uplatnění v ochraně před povodněmi. 1 (Hydrological<br />

<strong>restoration</strong> and its application <strong>in</strong> fl ood control. 1). –<br />

ZO ČSOP Hořovicko, Praha.<br />

Lai Y.G. (2008): SRH-2D version 2: Theory and user’s manual. – U.S.<br />

Department of Interior, Bureau of Reclamation, Denver.<br />

Ondráček Č . (2006): Plán péče pro PR Černá louka pro období<br />

2007-2016 (Management plan of Černá louka NR for <strong>the</strong> period<br />

2007-2016). – Ms.; management plan, Agentura ochrany<br />

přírody a kraj<strong>in</strong>y Č R, Krajské středisko Ústí nad Labem.<br />

( Available at: http://www.kr-ustecky.cz/vismo/dokumenty2.asp?<br />

id_org=450018&id=1438949&p1=85758.)<br />

Acknowledgement<br />

Monitor<strong>in</strong>g of <strong>the</strong> restored site was supported under <strong>the</strong> transboundary<br />

project “Pestrý-Bunt”.<br />

76 Wetlands and streams


Revitalis<strong>in</strong>g effects of a near-natural bypass at a migration barrier on <strong>the</strong><br />

Blanice river<br />

Location<br />

Weir on <strong>the</strong> Blanice river at Bavorov near Vodňany, South Bohemia<br />

49°12'23" N, 14°09'08" E; altitude 420 m<br />

Protection status Important landscape element, river<strong>in</strong>e biocorridor<br />

Ecosystem types Alluvial river ecosystem<br />

Restored area<br />

6-km river section (with 35 m long bypass)<br />

F<strong>in</strong>ancial support Landscape management programmes<br />

Costs €19,920<br />

<br />

Initial conditions<br />

The Blanice river spr<strong>in</strong>gs at 972 m above sea level <strong>in</strong> <strong>the</strong> Šumava<br />

Mounta<strong>in</strong>s and jo<strong>in</strong>s <strong>the</strong> Otava river at an elevation of 362 m, where<br />

it is characterised as a lowland river with preserved oxbows. The gradient<br />

of <strong>the</strong> 93.3 km long river is 5.15% and <strong>the</strong> average flow is 4.23<br />

m 3 .s -1 at its lower end.<br />

Many damm<strong>in</strong>g-up devices have been built for water mills, hammer<br />

mills and sawmills, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> need for water. The river was<br />

fragmented <strong>in</strong>to parts with still water and parts where <strong>the</strong> flow was<br />

regulated. The character of <strong>the</strong> river ecosystem has changed, affect<strong>in</strong>g<br />

<strong>the</strong> natural development of fish populations (Hartvich et al. 2004).<br />

A high dam works as a migration barrier. It cannot be overcome<br />

by fish mov<strong>in</strong>g upstream and so <strong>the</strong> long-term loss of upstream migration<br />

negatively <strong>in</strong>fluences <strong>the</strong> exchange of genetic <strong>in</strong>formation<br />

dur<strong>in</strong>g reproduction. Separated fish populations become smaller as<br />

well as less resilient. Fish which are flushed downstream by <strong>the</strong> flow<br />

cannot get back to <strong>the</strong>ir habitat (Peter 1998, Lucas & Baras 2001).<br />

For this reason fish passes with damm<strong>in</strong>g-up devices (weirs etc.)<br />

are built. They allow fish and o<strong>the</strong>r aquatic animals to pass <strong>the</strong> barriers<br />

and move freely along <strong>the</strong> river. Fish passes transfer <strong>the</strong> backwater<br />

to <strong>the</strong> stream below <strong>the</strong> barrier and are ei<strong>the</strong>r a part of <strong>the</strong> migration<br />

barrier or placed on <strong>the</strong> grounds next to <strong>the</strong> barrier. In this case <strong>the</strong><br />

fish pass functions as <strong>the</strong> bypass of a barrier. These fish passes are<br />

built <strong>in</strong> such a way that <strong>the</strong>ir character, structure and stream flow are<br />

similar to <strong>the</strong> conditions of natural rivers (Kubečka et al. 1997, Cowx<br />

& Welcomme 1998, Gebler 2009, Lusk et al. 2011).<br />

In total 17 fixed or mobile barriers (weirs, dams) have been placed<br />

across <strong>the</strong> Blanice river. These barriers are not migration-permeable,<br />

with one exception. The river cont<strong>in</strong>uity is disrupted ma<strong>in</strong>ly by <strong>the</strong><br />

Hus<strong>in</strong>ec Dam-lake (area 61 ha, backwater 3.5 km long, maximum<br />

25.5 m deep). Below <strong>the</strong> dam, <strong>the</strong> river has a weir impassable for migrat<strong>in</strong>g<br />

aquatic animals. On <strong>the</strong> right bank a ground overgrown with<br />

deciduous trees and a part of a former oxbow connected to <strong>the</strong> river<br />

below <strong>the</strong> weir were available. Because of <strong>the</strong>se conditions, a nearnatural<br />

bypass was proposed as <strong>the</strong> most convenient solution.<br />

Objectives<br />

Restor<strong>in</strong>g and preserv<strong>in</strong>g healthy populations and diversity of <strong>the</strong><br />

orig<strong>in</strong>al fish species <strong>in</strong> Blanice river by build<strong>in</strong>g a bypass.<br />

Restoration measures<br />

In 2002, a 35 m long bypass was built at <strong>the</strong> weir to allow upstream<br />

migration. It runs from <strong>the</strong> upper weir through natural terra<strong>in</strong><br />

around <strong>the</strong> body of <strong>the</strong> weir and jo<strong>in</strong>s <strong>the</strong> river 20 metres downstream<br />

of <strong>the</strong> weir. The average gradient is 5%. Fig. 3 shows <strong>the</strong> placement of<br />

this near-natural bypass. At a medium flow rate (Q 180<br />

), up to 250 l.s -1<br />

flows through <strong>the</strong> bypass. The 2.5 m wide upper part of <strong>the</strong> bypass is<br />

a torrent fish pass with an <strong>in</strong>let device placed upstream of <strong>the</strong> weir.<br />

The construction <strong>in</strong>cludes 9 stone sills for <strong>the</strong> necessary backwater,<br />

<strong>in</strong> which 7 to 16 cm wide gaps between <strong>the</strong> stones (boulders) enable<br />

fish to swim through ei<strong>the</strong>r at <strong>the</strong> bottom or below <strong>the</strong> water surface.<br />

Gravel and smaller stones on <strong>the</strong> bottom decrease <strong>the</strong> flow <strong>in</strong> <strong>the</strong> lower<br />

water layers. The sills differ no more than 15 cm <strong>in</strong> height and <strong>the</strong>ir<br />

depth ranges from 0.3 to 0.5 m.<br />

The lower part of <strong>the</strong> bypass is formed by <strong>the</strong> oxbow (which was<br />

first cleaned) with slowly flow<strong>in</strong>g water. The width of <strong>the</strong> lower part<br />

Fig. 1. <br />

Fig. 2. <br />

Wetlands and streams 77


Fig. 3. -<br />

<br />

<br />

ranges from 3 to 5 m and <strong>the</strong> gradient is only 2%, but a few stone<br />

sills form up to 1 m deep pools. In places over sand and gravel banks<br />

shoals have been formed by high-water flows.<br />

Management measures<br />

— Bypass ma<strong>in</strong>tenance after floods, <strong>in</strong> spr<strong>in</strong>g and autumn.<br />

— Removal of sediments to keep <strong>the</strong> bypass clear.<br />

— Seasonal monitor<strong>in</strong>g of local fish fauna diversity <strong>in</strong> <strong>the</strong> bypass<br />

passable for migration.<br />

Results<br />

The presence of fish <strong>in</strong> <strong>the</strong> bypass was monitored once a month<br />

dur<strong>in</strong>g <strong>the</strong> year 2002 (except dur<strong>in</strong>g ice cover <strong>in</strong> w<strong>in</strong>ter and high-water)<br />

to assess species diversity (Hartvich et al. 2004). This was done by<br />

damm<strong>in</strong>g up <strong>the</strong> <strong>in</strong>let profile with a board to stop <strong>the</strong> stream, so that<br />

<strong>the</strong> fish present could be collected and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g ones caught with<br />

electric current. A small net was placed <strong>in</strong> <strong>the</strong> lower part to prevent<br />

<strong>the</strong> fish from escap<strong>in</strong>g. The fish were measured us<strong>in</strong>g common ichthyologic<br />

methods and returned immediately.<br />

The critically endangered Brook Lamprey (Lampetra planeri) and<br />

13 species of six families were detected dur<strong>in</strong>g <strong>the</strong> fi rst monitor<strong>in</strong>g<br />

period (Tab. 1). Accord<strong>in</strong>g to ecological preference rheophilous (liv<strong>in</strong>g<br />

<strong>in</strong> fast streams) species (8) were <strong>the</strong> most abundant, followed by<br />

eurytopic (5) and one limnophilous (liv<strong>in</strong>g <strong>in</strong> stand<strong>in</strong>g water) species,<br />

namely Tench (T<strong>in</strong>ca t<strong>in</strong>ca). The total fish fauna counted 610 <strong>in</strong>dividuals<br />

weigh<strong>in</strong>g 8,939 g <strong>in</strong> total. The most abundant species were<br />

Pseudorasbora parva, Leuciscus leuciscus, and Perca perca. In <strong>the</strong> lower<br />

part of <strong>the</strong> bypass, a few <strong>in</strong>dividuals of <strong>the</strong> critically endangered<br />

European Crayfish (Astacus astacus) were found.<br />

In <strong>the</strong> follow<strong>in</strong>g period (January to November 2003), <strong>the</strong> number<br />

of species grew to 18, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> newcomers Alburnus alburnus,<br />

Barbus barbus, Scard<strong>in</strong>ius ery throphthalmus and Anguilla anguilla<br />

(Hartvich et al. 2004), amount<strong>in</strong>g to 993 <strong>in</strong>dividuals and a biomass of<br />

7,876 g. The detected species assemblage corresponds, except for Cottus<br />

gobio, to <strong>the</strong> results given by Krupauer (1984) for <strong>the</strong> Blanice river<br />

upstream of <strong>the</strong> Hus<strong>in</strong>ec Dam-lake, and later mentioned by Křížek et<br />

al. (2004) for <strong>the</strong> upper and central part of <strong>the</strong> Blanice river.<br />

O<strong>the</strong>r lessons learned and new perspectives<br />

1. Grassland and self-seeded trees (willows and aspen) permanently<br />

re<strong>in</strong>force and protect <strong>the</strong> banks of <strong>the</strong> bypass aga<strong>in</strong>st erosion.<br />

The open <strong>in</strong>let device passes water level fluctuations <strong>in</strong>to <strong>the</strong> bypass.<br />

High-water flows do not endanger <strong>the</strong> bypass construction.<br />

Loosely placed stones on <strong>the</strong> bypass banks slow down <strong>the</strong> flow,<br />

prevent lateral erosion and create shelter for fish. Coarse gravel on<br />

<strong>the</strong> bottom is an appropriate substrate for <strong>the</strong> settl<strong>in</strong>g of benthos.<br />

2. Monitor<strong>in</strong>g results show that fish not only migrate through <strong>the</strong><br />

bypass but also settle <strong>the</strong>re for a certa<strong>in</strong> period of time. The detected<br />

18 species of fish and lamprey correspond to <strong>the</strong> composition<br />

found <strong>in</strong> ichthyologic research conducted <strong>in</strong> <strong>the</strong> upper and central<br />

part of <strong>the</strong> Blanice river. Fish migration <strong>in</strong> <strong>the</strong> bypass takes place<br />

dur<strong>in</strong>g <strong>the</strong> whole year, except when <strong>the</strong>re is ice cover.<br />

3. Monitor<strong>in</strong>g of bypass passability not only provides ichthyologists,<br />

nature conservationists, water authorities, and designers and<br />

builders of fish passes with a lot of new <strong>in</strong>formation, but it also<br />

shows <strong>the</strong> real state of <strong>the</strong> fish fauna <strong>in</strong> fish<strong>in</strong>g grounds, especially<br />

<strong>in</strong> <strong>the</strong> case of functional passes such as <strong>the</strong> one at Bavorov.<br />

Tab. 1. <br />

Species<br />

<strong>Ecological</strong> group<br />

IV<br />

<strong>in</strong>d./g<br />

VI<br />

<strong>in</strong>d./g<br />

VII<br />

<strong>in</strong>d./g<br />

IX<br />

<strong>in</strong>d./g<br />

X<br />

<strong>in</strong>d./g<br />

XI<br />

<strong>in</strong>d./g<br />

Gobio gobio eurytopic 12/151 1/5 16/106 2/7 16/148 8/100<br />

Leuciscus leuciscus rheophilous 43/441 12/502 20/1079 59/136 1/45 3/5 5/183<br />

Leuciscus cephalus rheophilous 7/134 8/459 7/510 2/13 2/37<br />

T<strong>in</strong>ca t<strong>in</strong>ca limnophilous 1/4<br />

Thymallus thymallus rheophilous 2/17 1/67 2/243<br />

Lota lota rheophilous 1/105 1/30 2/220 1/140<br />

Barbatula barbatula rheophilous 2/14 5/47 4/22 1/35<br />

Perca fluviatilis eurytopic 5/177 8/247 6/224 22/410 1/100 5/160 4/33<br />

Rutilus rutilus eurytopic 1/6 1/20 4/17 1/64 2/47<br />

Salmo trutta m. fario rheophilous 6/166 3/83 4/213 3/30 1/125<br />

Phox<strong>in</strong>us phox<strong>in</strong>us rheophilous 3/16 4/11 11/48 2/6 1/0,8 1/2<br />

Pseudorasbora parva eurytopic 14/16 2/11 120/49 80/207 11/41 12/9 15/34<br />

Esox lucius eurytopic 1/100 5/637 2/225<br />

Petromyzonidae:<br />

Lampetra planeri<br />

XII<br />

<strong>in</strong>d./g<br />

rheophilous 1/11 1/10<br />

78 Wetlands and streams


Fig. 4. <br />

Public support<br />

The bypass on <strong>the</strong> Blanice river was co-supported by <strong>the</strong> town<br />

council of Bavorov and by <strong>the</strong> Bavorov branch of <strong>the</strong> <strong>Czech</strong> Fish<strong>in</strong>g<br />

Association. The bypass is open to anybody <strong>in</strong>terested.<br />

Acknowledgements<br />

The authors are grateful for support from <strong>the</strong> projects CENAKA-<br />

VA CZ.1.05/2.1.00/01.0024 and GA JU 047/2010/Z. Our thanks<br />

for valuable advice fur<strong>the</strong>r go out to fish pass designer and builder<br />

Zdeněk L<strong>in</strong>hart. We also thank Vladimír Šámal for provid<strong>in</strong>g important<br />

data and <strong>in</strong>formation, and Miroslav Fenc for extensive assistance<br />

dur<strong>in</strong>g field work.<br />

References<br />

Cowx I.G. & Welcomme L.R. (eds) (1998): Rehabilitation of rivers for<br />

fish. – Fish<strong>in</strong>g News Books, Oxford.<br />

Gebler J.R. (2009): Fischwege und Sohlengleiten. – Verlag Wasser und<br />

Umwelt, Walzbachtal.<br />

Hartvich P., Dvořák P. & Holub M. (2004): Výskyt ryb v rybím<br />

přechodu na řece Blanici v Bavorově (Occurrence of fish <strong>in</strong> <strong>the</strong><br />

fish pass on <strong>the</strong> Blanice river at Bavorov). – Biodiverzita ichtyofauny<br />

České republiky 5: 93–98.<br />

Krupauer V. (1984): Kvalitativní a kvantitativní složení ichtyofauny v<br />

horním toku Blanice (Qualitative and quantitative ichthyofauna<br />

composition <strong>in</strong> <strong>the</strong> Blanice upper stream). – Sborník Vysoké školy<br />

zemědělské České Budějovice, řada zootechnická 2: 2–18.<br />

Křížek J., Dubský K. & Randák T. (2004): Ichtyologický průzkum řeky<br />

Blanice pramenící v CHKO Šumava (Ichthyologic survey of <strong>the</strong><br />

Blanice river hav<strong>in</strong>g its source <strong>in</strong> <strong>the</strong> Šumava Protected Landscape<br />

Area). – In: Vykusová B. (ed.), VII. Česká ichtyologická konference<br />

(VII. <strong>Czech</strong> Ichthyological Conference), sborník příspěvků z<br />

odborné konference s mez<strong>in</strong>árodní účastí pořádané ve Vodňanech<br />

6.–7. 5. 2004 v rámci XIV. Vodňanských rybářských dnů, pp. 11–<br />

15, Jihočeská univerzita v Českých Budějovicích, Výzkumný ústav<br />

rybářský a hydrobiologický, Vodňany.<br />

Kubečka J., Matěna J. & Hartvich (1997): Adverse ecological effects of<br />

small hydropower stations <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>: 1. Bypass plants.<br />

– Regulated Rivers: Research and Management 13: 101–113.<br />

Lucas C.M. & Baras E. (2001): Migration of freshwater fishes. – Blackwell<br />

Science, Oxford.<br />

Lusk S., Hartvich P. & Lojkásek B. (2011): Migrace ryb a migrační<br />

prostupnost vodních toků (Migration of fishes and migration<br />

permeability of water streams). – Biodiverzita ichtyofauny České<br />

republiky 8: 5–67.<br />

Peter A. (1998): Interruption of <strong>the</strong> river cont<strong>in</strong>uum by barriers and<br />

<strong>the</strong> consequences for migratory fish. – In: Jungwirth M., Schmutz<br />

S. & Weiss S. (eds), Fish migration and fish bypasses, pp. 99–112,<br />

Fish<strong>in</strong>g News Books, Oxford.<br />

Wetlands and streams 79


Restoration of dra<strong>in</strong>ed mires <strong>in</strong> <strong>the</strong> Šumava National Park<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs Ca. €510,000<br />

Šumava Mts., southwest <strong>Czech</strong> <strong>Republic</strong>, along <strong>the</strong> border with Germany and Austria<br />

48°59'–49°0' N, 13°47'–14°28' E; altitude 750–1200 m<br />

NP, UNESCO Biosphere Reserve, SCI, Ramsar Site (Šumava Peatlands)<br />

<br />

Open raised bogs with dwarf shrub, lawn and hollow vegetation surrounded by P<strong>in</strong>us ×pseudopumilio<br />

krummholz, bog p<strong>in</strong>e (P<strong>in</strong>us rotundata) forests on valley bogs, transitional mires, spruce mires, waterlogged<br />

spruce forests (Oxycocco-Sphagnetea, partly also Scheuchzerio palustris-Caricetea nigrae and Piceion abietis)<br />

Ca. 500 ha (19 sites), nearly 60 km of blocked ditches<br />

Landscape management programmes, Šumava NP and PLA Authority<br />

Initial conditions<br />

Many mires <strong>in</strong> <strong>the</strong> Šumava NP have been modified by various<br />

human activities like forestry, agriculture and peat extraction <strong>in</strong> <strong>the</strong><br />

past (Schreiber 1924). Various <strong>in</strong>terventions <strong>in</strong> <strong>the</strong> hydrology, ma<strong>in</strong>ly<br />

surface dra<strong>in</strong>age, are generally <strong>the</strong> most harmful impacts on mires<br />

<strong>in</strong> <strong>the</strong> area. A recent mire survey revealed that almost 70% of mires<br />

have been <strong>in</strong>fluenced at least once by dra<strong>in</strong>age. However, disturbance<br />

<strong>in</strong>tensity varies largely across <strong>the</strong> area depend<strong>in</strong>g on e.g. human population<br />

density and land use. Dra<strong>in</strong>age ditches from <strong>the</strong> turn of 19 th and<br />

20 th centuries are ra<strong>the</strong>r shallow and usually less damag<strong>in</strong>g for mires.<br />

In contrast, deep channels made from <strong>the</strong> 1960s to <strong>the</strong> 1980s are less<br />

frequent but represent a much more serious problem (Fig. 2).<br />

Dra<strong>in</strong>age <strong>in</strong> <strong>the</strong> past has caused significant degradation, both <strong>in</strong><br />

mire ecology and mire structure (Bufková et al. 2008), and has nega-<br />

tively <strong>in</strong>fluenced mire biodiversity <strong>in</strong>clud<strong>in</strong>g rare and relict species.<br />

In order to improve <strong>the</strong> situation, a long-term project called Mire<br />

Restoration Programme has been realized <strong>in</strong> <strong>the</strong> area s<strong>in</strong>ce <strong>the</strong> year<br />

1999. S<strong>in</strong>ce 1996, <strong>the</strong> position of <strong>the</strong> water table and its basic chemistry<br />

(pH, conductivity) was monitored, but s<strong>in</strong>ce 2005, <strong>the</strong> <strong>restoration</strong><br />

project has been coupled with detailed research and a monitor<strong>in</strong>g<br />

programme.<br />

Abiotic conditions<br />

All restored sites monitored <strong>in</strong> detail were situated on <strong>the</strong> central<br />

mounta<strong>in</strong> plateau (at an elevation of ca. 1000 m). The bedrock<br />

is nutrient-poor and acid. It is formed ma<strong>in</strong>ly of paragneisses, with<br />

some granite <strong>in</strong> places. The mean annual temperature is 3.2 °C and<br />

<strong>the</strong> annual precipitation is 1200–1330 mm (Svobodová et al. 2002).<br />

Fig. 1. <br />

80 Wetlands and streams


Fig. 2. <br />

<br />

Fig. 3. <br />

<br />

Objectives<br />

The ma<strong>in</strong> objectives of <strong>the</strong> mire <strong>restoration</strong> programme were: (i)<br />

<strong>restoration</strong> of natural (or near-natural) mire hydrology; (ii) enhancement<br />

of peat-form<strong>in</strong>g vegetation and processes, (iii) conservation of<br />

natural mire biodiversity; and (iv) <strong>in</strong>volvement of <strong>the</strong> public <strong>in</strong>to local<br />

mire conservation.<br />

Regard<strong>in</strong>g hydrology, <strong>the</strong> aim of <strong>the</strong> <strong>restoration</strong> was to raise <strong>the</strong><br />

water table to a natural (pre-dra<strong>in</strong>age) level, decrease <strong>the</strong> fluctuations,<br />

and reta<strong>in</strong> sufficient water <strong>in</strong> <strong>the</strong> mires especially dur<strong>in</strong>g <strong>the</strong> driest periods.<br />

These measures were expected to halt or moderate degradation<br />

processes and to enhance peat-form<strong>in</strong>g vegetation and spontaneous<br />

mire regeneration.<br />

Restoration measures<br />

The <strong>restoration</strong> of dra<strong>in</strong>ed mires was based on <strong>the</strong> target water table<br />

concept. The target water table corresponds with <strong>the</strong> natural water<br />

table <strong>in</strong> undisturbed mires, and differs per mire type. The ma<strong>in</strong> <strong>restoration</strong><br />

technique was <strong>the</strong> block<strong>in</strong>g of ditches with a set of board dams<br />

(Fig. 1) followed by fill<strong>in</strong>g <strong>the</strong> dammed ditches with natural material.<br />

The target water table and slope of <strong>the</strong> ditches were <strong>the</strong> key parameters<br />

to establish <strong>the</strong> number of dams and <strong>the</strong>ir distribution along <strong>the</strong> ditch.<br />

In deep ditches, <strong>the</strong> water-filled segments between <strong>the</strong> dams were<br />

<strong>the</strong>n partly filled with peat, fasc<strong>in</strong>es (brushwood bundles), branches,<br />

Sphagnum clusters, etc. to enhance <strong>the</strong>ir terrestrialisation. In shallow<br />

ditches, especially under good light conditions, spontaneous terrestrialisation<br />

usually proceeds very well without any support. Because<br />

of <strong>the</strong> high vulnerability of <strong>the</strong> restored habitats, all work was carried<br />

out manually.<br />

All <strong>restoration</strong> measures were limited <strong>in</strong> time (usually carried out<br />

dur<strong>in</strong>g 1–2 years) and focused on <strong>the</strong> re-establishment of natural or<br />

near-natural hydrological conditions, after which subsequent autogenic<br />

plant succession <strong>in</strong>clud<strong>in</strong>g peat-form<strong>in</strong>g vegetation and selfregulat<strong>in</strong>g<br />

development of a particular mire type are expected to start.<br />

S<strong>in</strong>ce 2005, under <strong>the</strong> Mire Restoration Programme, mire sites<br />

<strong>in</strong> various stages of degradation have been studied. Permanent plots<br />

(97 <strong>in</strong> total) were established to study <strong>the</strong> microtopographical, vegetation<br />

and dra<strong>in</strong>age patterns of <strong>the</strong> different mire sites. The water table<br />

height was measured manually <strong>in</strong> all boreholes at roughly fortnightly<br />

<strong>in</strong>tervals. Automatic gaug<strong>in</strong>g (at 1 h <strong>in</strong>tervals) with piezometers was<br />

used <strong>in</strong> 49 selected boreholes. Water samples from boreholes, ditches,<br />

runoff profiles from dra<strong>in</strong>ed sites, and control streams were taken<br />

monthly for a detailed hydrochemical analysis, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> ma<strong>in</strong><br />

cations and anions (SO 4<br />

, NO 3<br />

, NH 4<br />

, PO 4<br />

, Ca, Mg, Al, Fe), pH, conductivity<br />

and dissolved organic carbon (DOC). Runoff from dra<strong>in</strong>ed<br />

sites as well as precipitation were measured cont<strong>in</strong>ually.<br />

1994–1998 Survey of mires <strong>in</strong> <strong>the</strong> Šumava NP <strong>in</strong>clud<strong>in</strong>g human<br />

impacts (e.g. dra<strong>in</strong>age) and rough assessment of<br />

degradation changes.<br />

1999 Initiation of <strong>the</strong> Mire Restoration Programme.<br />

Realization of pilot project called Restoration of <strong>the</strong><br />

Kamerální slať Mire.<br />

1995–2011 Basic monitor<strong>in</strong>g (water table, groundwater pH and<br />

conductivity) of two selected raised bogs, <strong>the</strong> first<br />

one be<strong>in</strong>g restored <strong>in</strong> 1999, <strong>the</strong> second one <strong>in</strong> 2004.<br />

2003 Update of <strong>the</strong> Mire Restoration Programme conception<br />

– target water table concept <strong>in</strong>cluded.<br />

2003–2010 Restoration of 18 sites.<br />

2005–2007 Detailed monitor<strong>in</strong>g – pre-<strong>restoration</strong> phase.<br />

2008 Restoration of two sites monitored <strong>in</strong> detail.<br />

2009–2011 Detailed monitor<strong>in</strong>g – post-<strong>restoration</strong> phase.<br />

Results<br />

First results suggest that <strong>the</strong> <strong>restoration</strong> has had a positive effect<br />

on <strong>the</strong> hydrology at <strong>the</strong> moderately degraded site (Schachtenfilz). The<br />

mean water table rose and its fluctuations were reduced, especially <strong>in</strong><br />

<strong>the</strong> dwarf-shrub bog sites and wet forests (Fig. 4). The water table beneath<br />

Trichophorum lawns rema<strong>in</strong>ed at almost <strong>the</strong> same level, but also<br />

Fig. 4. <br />

<br />

<br />

<br />

<br />

<br />

Wetlands and streams 81


Fig. 5. <br />

<br />

here fluctuations were reduced (Bufková et al. 2010). The positive effect<br />

of <strong>the</strong> <strong>restoration</strong> on water table fluctuations can be seen <strong>in</strong> Fig. 5.<br />

The various mire types differed <strong>in</strong> hydrochemical response to <strong>the</strong><br />

<strong>restoration</strong>. The results suggest that hydrochemical changes are more<br />

prom<strong>in</strong>ent <strong>in</strong> wet forests than <strong>in</strong> bogs. Electrical conductivity, PO 4<br />

,<br />

Al and Fe concentrations <strong>in</strong>creased <strong>in</strong> wet forests but rema<strong>in</strong>ed almost<br />

<strong>the</strong> same <strong>in</strong> bogs after <strong>the</strong> <strong>restoration</strong>. However, data two years<br />

after <strong>the</strong> <strong>restoration</strong> only show <strong>the</strong> short-term response of a mire to<br />

dra<strong>in</strong>-block<strong>in</strong>g and may differ from <strong>the</strong> long-term response (Worrall<br />

et al. 2007). As a result, long-term monitor<strong>in</strong>g will be necessary for a<br />

full understand<strong>in</strong>g of <strong>the</strong> ecological processes and changes caused by<br />

<strong>restoration</strong>.<br />

O<strong>the</strong>r lessons learned and future perspectives<br />

The target water table concept seems to be a useful tool <strong>in</strong> mire<br />

<strong>restoration</strong> especially <strong>in</strong> <strong>the</strong> case of bogs and various slop<strong>in</strong>g mires.<br />

Long-term monitor<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g a pre-<strong>restoration</strong> period of several<br />

years is necessary to evaluate <strong>restoration</strong> success both <strong>in</strong> mires and<br />

adjacent habitats. When assess<strong>in</strong>g hydrochemistry effects of <strong>restoration</strong><br />

on <strong>the</strong> catchment level, <strong>the</strong> various conditions of restored m<strong>in</strong>erotrophic<br />

mires and bogs should be taken <strong>in</strong>to consideration.<br />

Public support<br />

Involvement of <strong>the</strong> public <strong>in</strong>to mire <strong>restoration</strong> and provid<strong>in</strong>g <strong>in</strong>formation<br />

on it are <strong>in</strong>cluded <strong>in</strong>to <strong>the</strong> aims of <strong>the</strong> project. Both visitors<br />

and local people regularly attend “Mire Days”, which have been organised<br />

<strong>in</strong> <strong>the</strong> Šumava NP s<strong>in</strong>ce 2008. In <strong>the</strong> first half of such a mire day,<br />

people help with mire <strong>restoration</strong> after which <strong>the</strong>y can visit undisturbed<br />

mires dur<strong>in</strong>g <strong>the</strong> afternoon excursion. Similar “Mire Weeks”<br />

have also been organised <strong>in</strong> collaboration with NGOs for already 8<br />

years. These “Mire Weeks” are attended ma<strong>in</strong>ly by young people and<br />

students. In this way several hundred people from <strong>the</strong> whole <strong>Czech</strong><br />

<strong>Republic</strong> have taken part <strong>in</strong> mire <strong>restoration</strong> (Fig. 3).<br />

References<br />

Bufková I., Stíbal F. & Loskotová E. (2008): Ecology and <strong>restoration</strong><br />

of dra<strong>in</strong>ed mires <strong>in</strong> <strong>the</strong> Šumava National Park (<strong>Czech</strong> <strong>Republic</strong>).<br />

– In: Farrell C. & Feehan J. (eds), After Wise Use – The Future of<br />

Peatlands, Proceed<strong>in</strong>gs of <strong>the</strong> 13th International Peat Congress,<br />

Tullamore 2008, pp. 380–384, International Peat Society, Jyväskylä.<br />

Bufková I., Stíbal F. & Mikulášková E. (2010): Restoration of dra<strong>in</strong>ed<br />

mires <strong>in</strong> <strong>the</strong> Šumava National Park, <strong>Czech</strong> <strong>Republic</strong>. – In: Eiseltová<br />

M. (ed.), Restoration of lakes, streams, floodpla<strong>in</strong>s, and bogs<br />

<strong>in</strong> Europe: pr<strong>in</strong>ciples and case studies, pp. 331–354, Spr<strong>in</strong>ger Verlag,<br />

Dordrecht, Heidelberg, London & New York.<br />

Schreiber H. (1924): Moore des Böhmerwaldes und des deutschen<br />

Südböhmen. – Verlag des Deutschen Moorvere<strong>in</strong>s <strong>in</strong> der Tschechoslowakei,<br />

Sebastiansberg.<br />

Svobodová H., Soukupová L. & Reille M. (2002): Diversified development<br />

of mounta<strong>in</strong> mires, Bohemian Forest, Central Europe, <strong>in</strong> <strong>the</strong><br />

last 13,000 years. – Quaternary International 91: 123–135.<br />

Worrall F., Armstrong A. & Holden J. (2007): Short-term impact of<br />

peat dra<strong>in</strong>-block<strong>in</strong>g on water colour, dissolved organic carbon<br />

concentration, and water table depth. – Journal of Hydrology 337:<br />

315–325.<br />

82 Wetlands and streams


Restoration of <strong>the</strong> m<strong>in</strong>ed peatbog Soumarský Most<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Šumava Mts., southwest <strong>Czech</strong> <strong>Republic</strong>, near <strong>the</strong> border with Germany<br />

48°54'45" N, 13°49'33" E; altitude 745 m<br />

NP, UNESCO Biosphere Reserve, SCI, Ramsar Site (Šumavská peatlands)<br />

Degraded valley bog (Oxycocco-Sphagnetea) orig<strong>in</strong>ally covered by bog p<strong>in</strong>e (P<strong>in</strong>us rotundata) forest and<br />

dwarf shrub vegetation dom<strong>in</strong>ated by Vacc<strong>in</strong>ium ulig<strong>in</strong>osum<br />

53 ha<br />

Landscape management programmes, Šumava NP and PLA Authority<br />

€3,193/ha<br />

Initial conditions<br />

The Soumarský Most peatbog (total area ca. 80 ha) is part of a<br />

large mire complex developed <strong>in</strong> <strong>the</strong> bas<strong>in</strong> of <strong>the</strong> Upper Vltava river.<br />

Initially, <strong>the</strong> peatbog was covered by typical bog p<strong>in</strong>e (P<strong>in</strong>us rotundata)<br />

forest (Schreiber 1924), but was partly damaged by manual peat<br />

digg<strong>in</strong>g on an area of approximately 15 ha at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of 20 th<br />

century. In 1959–1960 a detailed survey of <strong>the</strong> peatbog <strong>in</strong>clud<strong>in</strong>g peat<br />

profiles was carried out by <strong>the</strong> former Research Institute for Soils and<br />

Reclamation. Based on <strong>the</strong> results of this study, peat m<strong>in</strong><strong>in</strong>g was proposed<br />

on an area of 75 ha <strong>in</strong>dicat<strong>in</strong>g a supply of 1,850,000 m 3 of peat<br />

(Anonymus 1960). Industrial peat mill<strong>in</strong>g was started shortly after <strong>the</strong><br />

survey (<strong>in</strong> 1962) on large areas. Only a small remnant of <strong>the</strong> orig<strong>in</strong>al<br />

bog rema<strong>in</strong>ed <strong>in</strong> <strong>the</strong> SE edge of <strong>the</strong> exploited area. Peat mill<strong>in</strong>g was<br />

stopped by <strong>the</strong> National Park Authority between 1998 and 2000.<br />

Abiotic conditions<br />

After peat m<strong>in</strong><strong>in</strong>g had ceased, <strong>the</strong> peatbog consisted of large areas<br />

of abandoned bare peat strongly dra<strong>in</strong>ed by a system of open ditches.<br />

Several large ditches (both central and peripheral) were connected<br />

with a large number of small lateral ditches and <strong>in</strong> many places even<br />

piped. The residual peat layer was up to 3 m thick, but <strong>the</strong> prevail<strong>in</strong>g<br />

peat layer thickness was only 0.5 m and average peat thickness about<br />

0.8 m. The bare peat surface was characterised by a harsh microclimate,<br />

especially high temperature extremes near <strong>the</strong> peat surface and<br />

a strong fluctuation of <strong>the</strong> water table and peat moisture, caus<strong>in</strong>g extreme<br />

desiccation <strong>in</strong> some places. Colonis<strong>in</strong>g plants and spontaneous<br />

revegetation were strongly limited by <strong>the</strong>se conditions. The mean annual<br />

temperature <strong>in</strong> <strong>the</strong> area is 6.2 °C, <strong>the</strong> total annual precipitation<br />

is ca. 760 mm (Svobodová et al. 2002), but <strong>the</strong> entire valley is under<br />

strong <strong>in</strong>fluence of temperature <strong>in</strong>version and a high amount of horizontal<br />

precipitation from frequent fogs.<br />

Objectives<br />

Restoration of a raised bog almost completely destroyed by <strong>in</strong>dustrial<br />

peat m<strong>in</strong><strong>in</strong>g. Establishment of wetland communities and peatform<strong>in</strong>g<br />

vegetation with possible return of relict peatbog species <strong>in</strong><br />

parts with a high water table and low nutrient contents.<br />

Restoration measures<br />

1995–1996 The first negotiations about fur<strong>the</strong>r use and <strong>the</strong><br />

future of Soumarský Most peatbog with <strong>the</strong> former<br />

owner (Rašel<strong>in</strong>a Soběslav, a private company)<br />

started.<br />

1999 Ownership of <strong>the</strong> peatbog was changed from private<br />

to state (Šumava NP and PLA Authority).<br />

1998–1999 Shallow surface depressions were created <strong>in</strong> collaboration<br />

with Rašel<strong>in</strong>a Soběslav us<strong>in</strong>g <strong>the</strong>ir mach<strong>in</strong>ery.<br />

1999 Peat mill<strong>in</strong>g was def<strong>in</strong>itely f<strong>in</strong>ished.<br />

2000 Project documentation was compiled.<br />

2000 The peatbog came <strong>in</strong> <strong>the</strong> hands of <strong>the</strong> town of Volary.<br />

Negotiations on <strong>the</strong> future of <strong>the</strong> bog took place.<br />

2000–2004 Implementation of <strong>the</strong> <strong>restoration</strong> project.<br />

2000–2011 Hydrology and vegetation monitor<strong>in</strong>g.<br />

Fig. 1. <br />

<br />

The <strong>restoration</strong> measures were based on <strong>the</strong> concept of directed<br />

succession. First of all a few shallow depressions were made <strong>in</strong> <strong>the</strong><br />

bare peat surface and subsequently <strong>the</strong> highly fluctuat<strong>in</strong>g water regime<br />

was stabilised by block<strong>in</strong>g dra<strong>in</strong>age ditches with boards (Fig. 5).<br />

Wetlands and streams 83


Fig. 2. <br />

<br />

This improved <strong>the</strong> water regime <strong>in</strong> a large area and some parts of <strong>the</strong><br />

bog were even shallowly but permanently flooded (Fig. 4). Sphagnum<br />

mosses – fundamental <strong>in</strong> peat-form<strong>in</strong>g communities – were re<strong>in</strong>troduced,<br />

especially <strong>in</strong>to <strong>the</strong>se shallow bas<strong>in</strong>s. The bare peat surface<br />

was covered with mulch from adjacent m<strong>in</strong>erotrophic sedge mires to<br />

accelerate colonisation by appropriate vascular plant species. In dry<br />

areas selected groups of trees mostly <strong>in</strong>clud<strong>in</strong>g Betula pubescens and<br />

P<strong>in</strong>us sylvestris were felled to reduce water loss through transpiration.<br />

Results<br />

The <strong>in</strong>itial vegetation on <strong>the</strong> peat bog immediately after peat m<strong>in</strong><strong>in</strong>g<br />

had f<strong>in</strong>ished was dom<strong>in</strong>ated by wetland species grow<strong>in</strong>g mostly<br />

on <strong>the</strong> wet bases of <strong>the</strong> dra<strong>in</strong><strong>in</strong>g ditches, e.g. Eriophorum angustifolium,<br />

E. vag<strong>in</strong>atum, Carex rostrata, Mol<strong>in</strong>ia caerulea, and Juncus effusus<br />

(Zýval et al. 2000). These species were also later <strong>the</strong> ma<strong>in</strong> colonisers<br />

of bare peat areas, and <strong>the</strong> different proportions of <strong>the</strong>m at <strong>the</strong> sites<br />

were probably determ<strong>in</strong>ed by moisture and nutrients. The colonisation<br />

process was later strongly accelerated by experimental plant<strong>in</strong>g of<br />

Carex rostrata and Eriophorum angustifolium dur<strong>in</strong>g <strong>restoration</strong>. The<br />

ma<strong>in</strong> factor facilitat<strong>in</strong>g successful regeneration of peatbog vegetation<br />

was <strong>the</strong> <strong>restoration</strong> of <strong>the</strong> water regime. The ma<strong>in</strong> factors <strong>in</strong>fluenc<strong>in</strong>g<br />

<strong>the</strong> vegetation of fl ooded areas are water table height, depth of <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g peat, and successional age. The vegetation of flooded areas<br />

did not significantly respond to relatively small differences <strong>in</strong> water<br />

chemistry.<br />

Fig. 3. <br />

<br />

Initially Common Cottongrass (Eriophorum angustifolium)<br />

spread very successfully over both wet and dry areas. Th is species<br />

formed r<strong>in</strong>g polycormons <strong>in</strong> drier parts which facilitated <strong>the</strong> establishment<br />

of o<strong>the</strong>r plants <strong>in</strong> <strong>the</strong>ir centre (Lanta et al. 2008). Therefore<br />

<strong>the</strong> <strong>in</strong>creas<strong>in</strong>g abundance of E. angustifolium <strong>in</strong> drier parts was only<br />

temporal and occurred <strong>in</strong> <strong>the</strong> fi rst five years after <strong>the</strong> <strong>restoration</strong><br />

measures had been carried out.<br />

The ma<strong>in</strong> process observed dur<strong>in</strong>g <strong>the</strong> vegetation development<br />

after 2006 was rapid colonisation of bare peat by Hare’s-tail Cottongrass<br />

(Eriophorum vag<strong>in</strong>atum) tussocks (Fig. 1) (Horn 2009). Considerable<br />

changes <strong>in</strong> <strong>the</strong> total cover of this species after <strong>restoration</strong> (<strong>in</strong><br />

2000–2007) are shown <strong>in</strong> Fig. 3. It is very probable that Eriophorum<br />

vag<strong>in</strong>atum will also be reduced and facilitate establishment of o<strong>the</strong>r<br />

species <strong>in</strong> <strong>the</strong> future.<br />

Tab. 1. <br />

-<br />

<br />

bare CalaEpig Carx.spp ErioAngu ErioVagi flooded JuncEffu MoliCaer PhalArun<br />

bare 0.7088 0.0147 0.0159 0.0452 0.1081 0 0.0601 0.0473 0<br />

CalaEpig 0.1528 0.3426 0.0463 0.0417 0 0.1042 0.2836 0.0289 0<br />

Carx.spp 0.176 0.0035 0.1851 0.0871 0.2441 0.1347 0.0782 0.0912 0<br />

ErioAngu 0.2073 0 0.0462 0.4608 0.1847 0.0418 0.0496 0.0096 0<br />

ErioVagi 0.1489 0.0014 0.0349 0.0973 0.6016 0.0183 0.0088 0.0888 0<br />

flooded 0 0.0009 0.1159 0.091 0.2344 0.4053 0.0751 0.0773 0<br />

JuncEffu 0.2108 0.0309 0.0419 0.0153 0.1062 0.0498 0.4358 0.1093 0<br />

MoliCaer 0.2176 0 0.0452 0.0304 0.1813 0.2155 0.0897 0.2203 0<br />

PhalArun 0 0 0.75 0 0 0 0.2222 0.0278 0<br />

84 Wetlands and streams


Fig. 4. <br />

<br />

Fig. 6. <br />

<br />

Marg<strong>in</strong>s of fl ooded areas and shallow bas<strong>in</strong>s were colonised by<br />

re<strong>in</strong>troduced Sphagnum species, especially Sphagnum fallax and S.<br />

cuspidatum. These sites have <strong>the</strong> best potential for establishment of<br />

peat-form<strong>in</strong>g processes and communities (Fig. 6). The total area of<br />

Sphagnum carpets considerably <strong>in</strong>creased <strong>in</strong> <strong>the</strong> restored peatbog. In<br />

2002, <strong>the</strong> estimated Sphagnum cover was only about 1–2% of <strong>the</strong> total<br />

peatbog area, but <strong>in</strong> 2007 it was already about 8% (P. Horn, unpubl.).<br />

Dry parts of <strong>the</strong> site were mostly colonised by trees such as Betula<br />

pubescens and P<strong>in</strong>us sylvestris (Lanta & Hazuková 2005). At flooded<br />

sites, however, <strong>the</strong>ir proportion was significantly reduced by death.<br />

The <strong>in</strong>teraction between vascular plant species recorded after <strong>restoration</strong><br />

<strong>in</strong> 2000 and 2007 can be read from <strong>the</strong> transition matrix <strong>in</strong><br />

Tab. 1. The matrix clearly shows that <strong>the</strong> most expansive species <strong>in</strong><br />

2000–2007 was Eriophorum vag<strong>in</strong>atum, which has <strong>the</strong> highest success<br />

not only <strong>in</strong> <strong>the</strong> colonisation of bare peat, but also <strong>in</strong> replac<strong>in</strong>g o<strong>the</strong>r<br />

vascular plants (e.g. Carex spp., Eriophorum angustifolium). The second<br />

most successful plant was Juncus effusus, which colonised ra<strong>the</strong>r<br />

th<strong>in</strong> rema<strong>in</strong><strong>in</strong>g layers of probably strongly m<strong>in</strong>eralised bare peat.<br />

Public support<br />

Some <strong>restoration</strong> measures at <strong>the</strong> site were carried with <strong>the</strong> help<br />

of volunteers, ma<strong>in</strong>ly students. The site is also used as a tourist <strong>in</strong>formation<br />

po<strong>in</strong>t with connection to <strong>the</strong> nearby Vltava river floodpla<strong>in</strong>.<br />

The nature trail with observation tower is under construction at <strong>the</strong><br />

moment.<br />

References<br />

Anonymus (1960): Detailní průzkum rašel<strong>in</strong>iště Soumarský Most<br />

(Detailed research <strong>in</strong>to Soumarský Most peatbog). – Ms.; f<strong>in</strong>al report,<br />

Výzkumný ústav meliorací a ochrany půdy, Praha 5 – Zbraslav.<br />

Horn P. (2009): Mire ecology <strong>in</strong> <strong>the</strong> Šumava Mounta<strong>in</strong>s. – Ms.; Ph.D.<br />

<strong>the</strong>sis, Faculty of Science, University of South Bohemia, České<br />

Budějovice.<br />

Lanta V. & Hazuková I. (2005): Growth response of downy birch<br />

(Betula pubescens) to moisture treatment at a cut-over peat bog<br />

<strong>in</strong> <strong>the</strong> Šumava Mts., <strong>Czech</strong> <strong>Republic</strong>. – Annales Botanici Fennici<br />

47: 247–256.<br />

Lanta V., Janeček Š. & Doležal J. (2008): Radial growth and r<strong>in</strong>g formation<br />

process <strong>in</strong> clonal plant Eriophorum angustifolium on<br />

post-m<strong>in</strong>ed peatland <strong>in</strong> <strong>the</strong> Sumava Mts., <strong>Czech</strong> <strong>Republic</strong>. – Annales<br />

Botanici Fennici 45: 44–54.<br />

Schreiber H. (1924): Moore des Böhmerwaldes und des deutschen<br />

Südböhmen. – Verlag des Deutschen Moorvere<strong>in</strong>s <strong>in</strong> der Tschechoslowakei,<br />

Sebastiansberg.<br />

Svobodová H., Soukupová L. & Reille M. (2002): Diversified development<br />

of mounta<strong>in</strong> mires, Bohemian Forest, Central Europe, <strong>in</strong> <strong>the</strong><br />

last 13,000 years. – Quaternary International 91: 123–135.<br />

Zýval V., Lederer F., Bastl M. & Horn P. (2000): Soumarský most –<br />

projekt revitalizace rašel<strong>in</strong>iště (Soumarský most – peatbog <strong>restoration</strong><br />

project). – Ms.; f<strong>in</strong>al report, Geovision s.r.o., Plzeň.<br />

Fig. 5. <br />

<br />

Fig. 7. <br />

<br />

Wetlands and streams 85


M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


88 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Introduction<br />

<br />

M<strong>in</strong><strong>in</strong>g has a long tradition <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> and is an important<br />

part of <strong>the</strong> country’s economy. Despite its recent decl<strong>in</strong>e, it<br />

still has a significant impact on landscape and nature. Given that <strong>the</strong><br />

excavation of various materials will rema<strong>in</strong> an important economic<br />

activity, <strong>restoration</strong> efforts should address <strong>the</strong> remarkable biodiversity<br />

potential of extraction sites. As a by-product of o<strong>the</strong>r <strong>in</strong>dustrial activities,<br />

various post-<strong>in</strong>dustrial anthropogenic sites represent a grow<strong>in</strong>g<br />

component of many landscapes and regions <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

Here, we consider significantly modified sites such as quarries, spoil<br />

heaps created by m<strong>in</strong><strong>in</strong>g, sand and gravel pits, clay pits, ash and slag<br />

deposits, brownfields, road verges, and railway embankments.<br />

The traditionally negative view of such sites among ecologists<br />

and conservationists is rapidly chang<strong>in</strong>g. It is becom<strong>in</strong>g clear that <strong>in</strong><br />

human-altered regions, <strong>the</strong>ir early successional and highly heterogeneous<br />

surfaces with extreme abiotic conditions and low productivity<br />

may offer valuable refugia and/or compensatory habitats for a range of<br />

species rapidly decl<strong>in</strong><strong>in</strong>g <strong>in</strong> modern impoverished landscapes. Several<br />

important studies show<strong>in</strong>g <strong>the</strong> conservation potential of post-m<strong>in</strong><strong>in</strong>g<br />

sites, such as coal spoil dumps (Prach 1987, Hodačová & Prach 2003,<br />

Frouz et al. 2008, Tropek et al. 2012), limestone quarries (Beneš et al.<br />

2003, Tichý 2006, Tropek et al. 2010), acid rock quarries (Novák &<br />

Prach 2003, Tropek & Konvička 2008, Trnková et al. 2010), sandpits<br />

(Řehounková & Prach 2006, 2008, 2010), extracted peatlands (Bastl et<br />

al. 2009, Konval<strong>in</strong>ková & Prach 2010), and ash/slag deposits (Kovář<br />

2004), orig<strong>in</strong>ate from <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. There are still o<strong>the</strong>r unpublished<br />

data from various sites and regions, which can be used to<br />

assess <strong>the</strong> importance of particular sites <strong>in</strong> biodiversity conservation<br />

and <strong>restoration</strong> plann<strong>in</strong>g.<br />

Ma<strong>in</strong> types of m<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites<br />

<br />

Quarries are relatively numerous <strong>in</strong> all regions of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

Several dozen million tons of decorative and build<strong>in</strong>g stones<br />

are m<strong>in</strong>ed annually from more than 200 active quarries (Starý et al.<br />

Fig. 2. <br />

<br />

<br />

<br />

2008). Especially limestone excavation, concentrated <strong>in</strong> <strong>the</strong> warmest<br />

parts of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, is important. It has repeatedly been<br />

shown that excavated sites (especially limestone quarries) provide<br />

specific abiotic conditions fundamental for <strong>the</strong> development of nonproductive<br />

habitats of great conservation potential. These habitats are<br />

often colonised by many species specialised <strong>in</strong> grow<strong>in</strong>g on rocks, <strong>in</strong><br />

sparse steppe-like grassland and <strong>in</strong> forest steppes, <strong>in</strong>clud<strong>in</strong>g dozens of<br />

critically endangered species.<br />

<br />

Sand- and gravel pits occur <strong>in</strong> many regions of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>,<br />

ow<strong>in</strong>g to <strong>the</strong> importance of sand and gravel for <strong>the</strong> build<strong>in</strong>g sector<br />

and various <strong>in</strong>dustries (Řehounková & Prach 2006). Sand and gravel<br />

are currently be<strong>in</strong>g excavated at more than 80 active sites and <strong>the</strong>re<br />

Fig. 1. <br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 89


are a similar number of currently <strong>in</strong>active sites (Starý et al. 2008). The<br />

ma<strong>in</strong> factor <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> vegetation development of sand-gravel<br />

pit communities is <strong>the</strong> fi ne-gra<strong>in</strong>ed and nutrient-poor substrate.<br />

Ma<strong>in</strong>ly depend<strong>in</strong>g on <strong>the</strong> depth to which <strong>the</strong> substrate is m<strong>in</strong>ed and<br />

<strong>the</strong> location of <strong>the</strong> site, valuable dry or wet sandy habitats are formed<br />

(Řehounková & Prach 2006). Sand-gravel pits are also one of <strong>the</strong> most<br />

<strong>in</strong>tensively studied anthropogenic sites and <strong>the</strong>re is <strong>in</strong>creas<strong>in</strong>g evidence<br />

that <strong>the</strong>y provide surrogate habitats for communities of both<br />

dry and wet sands (Řehounková & Prach 2008).<br />

<br />

Post-m<strong>in</strong><strong>in</strong>g spoil heaps are important components of <strong>the</strong> landscape<br />

<strong>in</strong> some regions of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, especially <strong>in</strong> <strong>the</strong> western<br />

part, where lignite coal is excavated <strong>in</strong> open-cast m<strong>in</strong>es. However,<br />

deep coal m<strong>in</strong><strong>in</strong>g is also significant <strong>in</strong> especially <strong>the</strong> central and<br />

nor<strong>the</strong>astern parts of <strong>the</strong> country. In addition to coal m<strong>in</strong><strong>in</strong>g, spoil<br />

heaps were also created dur<strong>in</strong>g uranium excavation, but no m<strong>in</strong>e is recently<br />

active. M<strong>in</strong><strong>in</strong>g of o<strong>the</strong>r resources has been ra<strong>the</strong>r rare, if we do<br />

not consider historical m<strong>in</strong><strong>in</strong>g. Spoil heaps with various successional<br />

stages, especially if not completely covered by woodland, also provide<br />

valuable surrogate habitats for a range of species vanish<strong>in</strong>g from <strong>the</strong><br />

surround<strong>in</strong>g landscape.<br />

<br />

The <strong>Czech</strong> energy production still predom<strong>in</strong>antly relies on coal<br />

burn<strong>in</strong>g. Therefore deposits of <strong>the</strong> by-products (ash and slag) are relatively<br />

frequent <strong>in</strong> <strong>the</strong> landscape, adjacent to practically every power<br />

plant, heat<strong>in</strong>g plant and many of <strong>the</strong> larger factories (Kovář 2004,<br />

Kovář et al. 2011). The negative impacts of fly-ash, easily dispersed<br />

from <strong>the</strong> deposits by w<strong>in</strong>d erosion, on <strong>the</strong> human environment (e.g.<br />

Borm 1997) are well known. Recently published studies thus consider<br />

a rapid reclamation of <strong>the</strong>se sites as <strong>the</strong> only possibility. On <strong>the</strong> o<strong>the</strong>r<br />

hand, <strong>the</strong> biodiversity of communities <strong>in</strong>habit<strong>in</strong>g <strong>the</strong>se deposits has<br />

rarely been studied. To date, all <strong>the</strong> studies are restricted to plants<br />

(e.g. Ash et al. 1994, Vaňková & Kovář 2004), lichens (Palice & Soldán<br />

2004) and fungi (Kubátová et al. 2002), whereas animals seem to be<br />

neglected. Never<strong>the</strong>less, <strong>the</strong> results of a few unpublished prelim<strong>in</strong>ary<br />

studies <strong>in</strong>dicate a great potential of <strong>the</strong>se sites to become strongholds<br />

of vanish<strong>in</strong>g psammophilous arthropods (Tropek et al., unpubl.). The<br />

exist<strong>in</strong>g <strong>in</strong>formation is however very limited, so that fur<strong>the</strong>r comprehensive<br />

research consider<strong>in</strong>g both <strong>the</strong> risk to human health and <strong>the</strong><br />

benefit for biodiversity conservation is urgently needed.<br />

Restoration of m<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites<br />

Because of <strong>the</strong> relatively large area of <strong>in</strong>dustrially affected sites<br />

(both currently and <strong>in</strong> <strong>the</strong> future) and <strong>the</strong>ir great conservation value,<br />

<strong>restoration</strong> should aim at streng<strong>the</strong>n<strong>in</strong>g <strong>the</strong>ir biodiversity potential<br />

(Prach & Pyšek 2001, Pyšek et al. 2001; Young et al. 2005).<br />

Therefore, any current and future <strong>restoration</strong> project should be<br />

based on scientific knowledge and fundamental biological assessments.<br />

Besides biodiversity, each <strong>restoration</strong> project should consider all<br />

o<strong>the</strong>r public concerns <strong>in</strong> a balanced way. Among o<strong>the</strong>rs, reduction of<br />

erosion and risk of contam<strong>in</strong>ation, recreational activities and aes<strong>the</strong>tic<br />

aspects can be considered. However, at sites where <strong>the</strong>se concerns<br />

are not relevant or important, biodiversity should become <strong>the</strong> ma<strong>in</strong><br />

<strong>restoration</strong> target.<br />

There are three approaches to <strong>restoration</strong> of disturbed sites (sensu<br />

Prach & Hobbs 2008, Tropek et al. 2012):<br />

1. Technically oriented reclamation, typically compris<strong>in</strong>g cover<strong>in</strong>g<br />

<strong>the</strong> sites with fertile topsoil, sow<strong>in</strong>g grass-herb mixtures, and/or<br />

Fig. 3. <br />

<br />

<br />

plant<strong>in</strong>g trees. This approach still strongly dom<strong>in</strong>ates <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>.<br />

2. Spontaneous succession without any human <strong>in</strong>tervention, which<br />

is only exceptionally used as an <strong>in</strong>tentional <strong>restoration</strong> measure.<br />

The overwhelm<strong>in</strong>g majority of spontaneously developed sites are<br />

left abandoned for o<strong>the</strong>r reasons, such as planned cont<strong>in</strong>uation of<br />

exploitation <strong>in</strong> <strong>the</strong> future, lack of f<strong>in</strong>ance or labour shortage.<br />

3. Directed succession is a rarely used method, <strong>in</strong> which natural<br />

processes are actively <strong>in</strong>fluenced; e.g. through support of plants<br />

desired for reasons of biodiversity (by sow<strong>in</strong>g or species-rich hay<br />

transfer), or by suppress<strong>in</strong>g <strong>in</strong>vasive plants (Rydgren et al. 2010,<br />

Novák & Prach 2010).<br />

Reclamation<br />

In reclamation, re-establishment of a landscape correspond<strong>in</strong>g<br />

to <strong>the</strong> one before m<strong>in</strong><strong>in</strong>g or with o<strong>the</strong>r both economic or amenity<br />

benefits for <strong>the</strong> local people is preferred. In m<strong>in</strong>ed pits, hydrological<br />

reclamation creat<strong>in</strong>g anthropogenic lakes by artificial <strong>in</strong>undation represents<br />

a common approach usually appreciated by <strong>the</strong> public. O<strong>the</strong>r<br />

rout<strong>in</strong>ely used methods are aimed at creat<strong>in</strong>g forests for timber production<br />

(although formally be<strong>in</strong>g considered as protective forests, i.e.<br />

not of economic <strong>in</strong>terest), agricultural land, public parks and o<strong>the</strong>r<br />

recreational or sport areas. <strong>Czech</strong> legislation provides relatively powerful<br />

rules restrict<strong>in</strong>g <strong>the</strong> loss of farm- and woodland; hence <strong>the</strong> reestablishment<br />

of forest and agricultural land is ma<strong>in</strong>ly desired by <strong>the</strong><br />

authorities even <strong>in</strong> places where any re-establishment of forest or agricultural<br />

land is problematic or useless. The biodiversity issue is still<br />

not generally considered.<br />

The most common reclamation approach <strong>in</strong>cludes <strong>the</strong> follow<strong>in</strong>g<br />

procedures. First, usually after several years of substrate stabilisation,<br />

<strong>the</strong> surface is re-modelled eras<strong>in</strong>g any terra<strong>in</strong> unevenness and het-<br />

90 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Fig. 4. <br />

<br />

<br />

<br />

<br />

Fig. 5. <br />

<br />

<br />

<br />

erogeneity. Then <strong>the</strong> surface is covered with fertile topsoil, usually removed<br />

before m<strong>in</strong><strong>in</strong>g and <strong>the</strong>n stored. If a productive dense forest is<br />

to be created, trees are planted <strong>in</strong> regular rows. Sapl<strong>in</strong>gs usually come<br />

from different regions, often non-<strong>in</strong>digenous species are planted, and<br />

even <strong>in</strong>vasive ones are still commonly used.<br />

Unfortunately, strict application of <strong>the</strong>se reclamation methods<br />

generally leads to <strong>the</strong> destruction of valuable habitats and/or <strong>the</strong> local<br />

ext<strong>in</strong>ction of rare and endangered species, which is often <strong>in</strong> conflict<br />

with nature conservation laws. Moreover, <strong>the</strong> economic importance<br />

of such newly created meadows, arable fields, and forests is <strong>in</strong> most<br />

cases low.<br />

Reclamation is also a very expensive method. For <strong>in</strong>stance, <strong>the</strong><br />

reclamation costs of lignite spoil dumps is 2 million CZK (ca. €80,000)<br />

per 1 ha <strong>in</strong> <strong>the</strong> Most region, and 0.5 million CZK (ca. €20,000) per 1<br />

ha <strong>in</strong> <strong>the</strong> Sokolov region. In <strong>the</strong> Sokolov region, an area of about 2000<br />

ha is currently under reclamation and ano<strong>the</strong>r 3000 ha are planned<br />

to be reclaimed. This adds up to 1.5 billion CZK (€60 million), which<br />

could be spent <strong>in</strong> more useful ways by re<strong>in</strong>stat<strong>in</strong>g <strong>the</strong> natural values of<br />

<strong>the</strong> m<strong>in</strong><strong>in</strong>g district landscape.<br />

Spontaneous succession<br />

As a consequence of historical environmental policy, many of both<br />

post-m<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> have not<br />

been actively reclaimed, giv<strong>in</strong>g us <strong>the</strong> unique chance to study natural<br />

processes and spontaneous succession <strong>the</strong>re. Dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g, spoil<br />

deposit<strong>in</strong>g and o<strong>the</strong>r <strong>in</strong>dustrial activities, <strong>the</strong> surface is often highly<br />

reshaped and diversified. This abiotic diversity is <strong>the</strong> best premise for<br />

creat<strong>in</strong>g a heterogeneous mosaic of diverse habitats. In terra<strong>in</strong> depressions,<br />

water accumulates creat<strong>in</strong>g oligotrophic wetlands and small<br />

pools. Conversely, elevations are excessively free-dra<strong>in</strong><strong>in</strong>g, often susta<strong>in</strong><strong>in</strong>g<br />

sparse dry grassland for a long time. Various microhabitats <strong>in</strong><br />

between <strong>the</strong>se relative extremes occur <strong>in</strong> a relatively small area and<br />

provide an environment for a range of species and <strong>the</strong>ir communities.<br />

From hundreds of studied plots at spontaneously developed sites<br />

(Prach et al. 2011) it has been sufficiently documented that <strong>the</strong>se<br />

natural processes have a great potential to restore almost all humanmade<br />

habitats (Řehounek et al. 2010). Depend<strong>in</strong>g on site conditions,<br />

near-natural habitats develop with<strong>in</strong> several years to a few decades.<br />

In most areas, spontaneous succession leads to near-natural sparse<br />

forests with a diverse structure. In a part of <strong>the</strong> post-<strong>in</strong>dustrial sites,<br />

early successional habitats, such as non-productive wetlands, sparse<br />

steppe-like grassland and open sandy habitats, may persist for a long<br />

time. These open habitats host a large number of endangered species<br />

and are crucial for biodiversity conservation.<br />

Reclamation vs. spontaneous succession<br />

S<strong>in</strong>ce reclamation and spontaneous succession are by far <strong>the</strong><br />

most common <strong>restoration</strong> methods <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, <strong>the</strong>ir<br />

plant and animal communities have been compared at various postm<strong>in</strong><strong>in</strong>g<br />

sites. The most studied sites were reclaimed and spontaneously<br />

developed lignite spoil dumps, namely plants <strong>in</strong> <strong>the</strong> Most region<br />

(Hodačová & Prach 2003), and ants (Holec & Frouz 2005) and plants<br />

(Mudrák et al. 2010) <strong>in</strong> <strong>the</strong> Sokolov region. In limestone quarries of<br />

<strong>the</strong> Bohemian Karst (Tropek et al. 2010) and <strong>in</strong> <strong>the</strong> black coal spoil<br />

dumps of <strong>the</strong> highly anthropically impoverished Kladno region (Tropek<br />

et al. 2012), <strong>the</strong> <strong>in</strong>fluence of <strong>restoration</strong> methods on vascular plant<br />

communities and several arthropod groups has been studied. In all<br />

mentioned studies, <strong>the</strong> spontaneously developed habitats were consistently<br />

found to host highly valuable communities with a number of<br />

nationally endangered species. Reclamation, however, damages this<br />

conservation potential and <strong>the</strong> reclaimed plots are colonised almost<br />

exclusively by common generalists. In addition, plots covered with<br />

fertile topsoil support <strong>the</strong> spread<strong>in</strong>g of some <strong>in</strong>vasive and expansive<br />

species (e.g. Hodačová & Prach 2003). These results are also supported<br />

by several not yet published studies of various groups of organisms<br />

at different post-<strong>in</strong>dustrial sites, such as dragonflies on lignite spoil<br />

dumps (Tichánek & Harabiš), wild bees on ash-slag deposits (Tropek<br />

et al.), and higher plants <strong>in</strong> sandpits (Schmidtmayerová).<br />

Despite <strong>the</strong> strong arguments above and <strong>the</strong> effort of scientists,<br />

non-governmental organisations and some m<strong>in</strong><strong>in</strong>g companies, reclamation<br />

of post-<strong>in</strong>dustrial sites still strongly prevails (not only) <strong>in</strong><br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (Prach et al. 2011). We offer three <strong>in</strong>terconnected<br />

explanations (cf. Tropek et al. 2010, Tropek & Konvička 2011) for this.<br />

The first one is based on <strong>the</strong> long persist<strong>in</strong>g but obsolete idea of stable<br />

natural communities (“equilibrium paradigm” sensu Wall<strong>in</strong>gton et<br />

al. 2005), emphasis<strong>in</strong>g such <strong>restoration</strong> goals as soil formation, prevention<br />

of erosion, nutrient cycl<strong>in</strong>g, and water accumulation. Taken<br />

to extremes, this obsolete paradigm regards disturbances as largely<br />

undesirable and barren land as an unhealthy environment. The o<strong>the</strong>r<br />

reason for reclamation is <strong>the</strong> need to ‘heal’ human-damaged post-<strong>in</strong>dustrial<br />

sites, a view still persist<strong>in</strong>g among technically oriented practitioners<br />

and <strong>the</strong> general public. To <strong>the</strong>ir reassurance, <strong>the</strong>se sites are<br />

erased from <strong>the</strong> landscape, creat<strong>in</strong>g <strong>in</strong>conspicuous common habitats,<br />

such as dense forest, productive meadow, and arable land. Last, but<br />

not least, reclamation is sometimes preferred out of narrow economic<br />

<strong>in</strong>terests, s<strong>in</strong>ce some m<strong>in</strong><strong>in</strong>g and/or <strong>in</strong>dustrial companies have reclamation<br />

subsidiary companies or bus<strong>in</strong>ess partners for whom <strong>the</strong> expensive<br />

reclamation is profitable.<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 91


Directed succession and post-m<strong>in</strong><strong>in</strong>g management<br />

As <strong>the</strong> best solution for almost all m<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites,<br />

we offer near-natural <strong>restoration</strong>, comb<strong>in</strong><strong>in</strong>g spontaneous succession<br />

at most of <strong>the</strong> site supplemented with reclamation <strong>in</strong> particular parts<br />

where o<strong>the</strong>r public concerns (e.g. erosion risks, acid rock dra<strong>in</strong>age,<br />

stream sedimentation, tox<strong>in</strong> leaks, public safety issues) prevail (Prach<br />

& Hobbs 2008, Tropek & Konvička 2011). In certa<strong>in</strong> cases, direct<strong>in</strong>g<br />

<strong>the</strong> succession, as described above, towards valuable target habitats is<br />

desirable. To ma<strong>in</strong>ta<strong>in</strong> or support <strong>the</strong> biodiversity potential of <strong>the</strong>se<br />

sites, it is necessary to arrest or reverse succession by disturbance<br />

management, s<strong>in</strong>ce <strong>the</strong> <strong>in</strong>itial sparsely vegetated habitats are valuable<br />

for biodiversity, especially animals (<strong>in</strong>sects and o<strong>the</strong>r arthropods, amphibians<br />

and birds). The <strong>restoration</strong> scheme should ideally consider<br />

<strong>the</strong> <strong>restoration</strong> of valuable habitats dur<strong>in</strong>g <strong>the</strong> m<strong>in</strong><strong>in</strong>g process or spoil<br />

dump<strong>in</strong>g, e.g. formation of a heterogeneous surface with both wet depressions<br />

and dry elevations. It is also necessary to leave untouched<br />

(semi-)natural communities, which can later serve as sources of desirable<br />

species, <strong>in</strong> <strong>the</strong> close surround<strong>in</strong>g of <strong>the</strong> m<strong>in</strong><strong>in</strong>g sites. However,<br />

a careful biological assessment has to precede any seriously <strong>in</strong>tended<br />

<strong>restoration</strong> project.<br />

Conclusions<br />

If by m<strong>in</strong><strong>in</strong>g or similar activities a naturally, historically or aes<strong>the</strong>tically<br />

valuable site is not destroyed or damaged, it can often be<br />

considered a contribution to biodiversity conservation. However,<br />

high biodiversity can only be achieved under certa<strong>in</strong> conditions:<br />

surface heterogeneity should be created and <strong>the</strong>n preserved; <strong>the</strong> low<br />

nutrient content must be preserved; a mosaic of differently aged successional<br />

stages should be ma<strong>in</strong>ta<strong>in</strong>ed. Traditional reclamation must<br />

be avoided. Follow<strong>in</strong>g <strong>the</strong>se simple pr<strong>in</strong>ciples, we should grasp <strong>the</strong><br />

unique opportunity to <strong>in</strong>crease <strong>the</strong> natural value of <strong>the</strong>se landscapes.<br />

Acknowledgements<br />

We are grateful to our colleagues, students and friends for neverend<strong>in</strong>g<br />

fruitful discussions about post-<strong>in</strong>dustrial sites and <strong>the</strong>ir <strong>restoration</strong>.<br />

Our research was supported by <strong>the</strong> <strong>Czech</strong> Science Foundation<br />

(P504/12/2525, 206/08/H044, P505/11/0256) and <strong>the</strong> <strong>Czech</strong> M<strong>in</strong>istry<br />

of Education (RVO67985939 and LC06073).<br />

References<br />

Ash H.J., Gemmell R.P. & Bradshaw A.D. (1994): The <strong>in</strong>troduction of<br />

native plant species on <strong>in</strong>dustrial waste heaps: a test of immigration<br />

and o<strong>the</strong>r factors affect<strong>in</strong>g primary succession. – Journal of<br />

Applied Ecology 31: 74–84.<br />

Bastl M., Štechová T. & Prach K. (2009): The effect of disturbance on<br />

<strong>the</strong> vegetation of peat bogs with P<strong>in</strong>us rotundata <strong>in</strong> <strong>the</strong> Třeboň<br />

Bas<strong>in</strong>, <strong>Czech</strong> <strong>Republic</strong>. – Preslia 81: 105–117.<br />

Beneš J., Kepka P. & Konvička M. (2003): Limestone quarries as refuges<br />

for European xerophilous butterflies. – Conservation Biology<br />

17: 1058–1069.<br />

Borm P.J.A. (1997): Toxicity and occupational health hazards of coal<br />

fly ash (CFA). A review of data and comparison to coal m<strong>in</strong>e dust.<br />

– Annals of Occupational Hygiene 6: 659–676.<br />

Frouz J., Prach K., Pižl V., Háněl L., Starý J., Tajovský K., Materna J.,<br />

Balík V., Kalčík J. & Řehounková K. (2008): Interactions between<br />

soil development, vegetation and soil fauna dur<strong>in</strong>g spontaneous<br />

succession <strong>in</strong> post m<strong>in</strong><strong>in</strong>g sites. – European Journal of Soil Biology<br />

44: 109–122.<br />

Hodačová D. & Prach K. (2003): Spoil heaps from brown coal m<strong>in</strong><strong>in</strong>g:<br />

technical reclamation versus spontaneous revegetation. – Restoration<br />

Ecology 11: 385–391.<br />

Fig. 6. <br />

92 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Fig. 7. <br />

<br />

<br />

Holec M. & Frouz J. (2005): Ant (Hymenoptera: Formicidae) communities<br />

<strong>in</strong> reclaimed and unreclaimed brown coal m<strong>in</strong><strong>in</strong>g spoil<br />

dumps <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. – Pedobiologia 49: 345–357.<br />

Konval<strong>in</strong>ková P. & Prach K. (2010): Spontaneous succession of vegetation<br />

<strong>in</strong> m<strong>in</strong>ed peatlands: a multi-site study. – Preslia 82: 423–435.<br />

Kovář P. (ed.) (2004): Natural recovery of human-made deposits <strong>in</strong><br />

landscape. Biotic <strong>in</strong>teractions and ore/ash-slag artificial ecosystems.<br />

– Academia, Praha.<br />

Kovář P., Štefánek M. & Mrázek J. (2011): Responses of vegetation<br />

stages with woody dom<strong>in</strong>ants to stress and disturbance dur<strong>in</strong>g<br />

succession of abandoned tail<strong>in</strong>gs <strong>in</strong> cultural landscape. – Journal<br />

of Landscape Ecology 4(2): 35–48.<br />

Kubátová A., Prášil K. & Váňová M. (2002): Diversity of soil microscopic<br />

fungi on abandoned <strong>in</strong>dustrial deposits. – Cryptogamie<br />

Mycologie 23: 205–219.<br />

Mudrák O., Frouz J. & Velichová V. (2010): Understory vegetation <strong>in</strong><br />

reclaimed and unreclaimed post-m<strong>in</strong><strong>in</strong>g forest stands. – <strong>Ecological</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g 36: 783–790.<br />

Novák J. & Prach K. (2003): Vegetation succession <strong>in</strong> basalt quarries:<br />

pattern over a landscape scale. – Applied Vegetation Science 6:<br />

111–116.<br />

Novák J. & Prach K. (2010): Artificial sow<strong>in</strong>g of endangered dry grassland<br />

species <strong>in</strong>to disused basalt quarries. – Flora 205: 179–183.<br />

Palice Z. & Soldán Z. (2004): Lichen and bryophyte species diversity<br />

on toxic substrates <strong>in</strong> <strong>the</strong> abandoned sedimentation bas<strong>in</strong>s of<br />

Chva letice and Bukov<strong>in</strong>a. – In: Kovář P. (ed.), Natural recovery of<br />

human-made deposits <strong>in</strong> landscape. Biotic <strong>in</strong>teractions and ore/<br />

ash-slag artificial ecosystems, pp. 200–221, Academia, Praha.<br />

Prach K. (1987): Succession of vegetation on dumps from strip coal<br />

m<strong>in</strong><strong>in</strong>g, N. W. Bohemia, <strong>Czech</strong>oslovakia. – Folia Geobotanica et<br />

Phytotaxonomica 22: 339–354.<br />

Prach K. & Hobbs R.J. (2008): Spontaneous succession versus technical<br />

reclamation <strong>in</strong> <strong>the</strong> <strong>restoration</strong> of disturbed sites. – Restoration<br />

Ecology 16: 363–366.<br />

Prach K. & Pyšek P. (2001): Us<strong>in</strong>g spontaneous succession for <strong>restoration</strong><br />

of human-disturbed habitats: experience from Central<br />

Europe. – <strong>Ecological</strong> Eng<strong>in</strong>eer<strong>in</strong>g 17: 55–62.<br />

Prach K., Řehounková K., Řehounek J. & Konval<strong>in</strong>ková P. (2011):<br />

<strong>Ecological</strong> <strong>restoration</strong> of central European m<strong>in</strong><strong>in</strong>g sites: a summary<br />

of a multi-site analysis. – Landscape Research 36: 263–268.<br />

Pyšek P., Prach K., Joyce C.B., Muc<strong>in</strong>a L., Rapson G.L. & Müllerová J.<br />

(2001): The role of vegetation succession <strong>in</strong> ecosystem <strong>restoration</strong>.<br />

– Applied Vegetation Science 4: 3–4.<br />

Řehounek J., Řehounková K. & Prach K. (eds) (2010): Ekologická obnova<br />

území narušených těžbou nerostných surov<strong>in</strong> a průmyslovými<br />

deponiemi (<strong>Ecological</strong> <strong>restoration</strong> of sites disturbed by m<strong>in</strong><strong>in</strong>g<br />

and <strong>in</strong>dustrial deposits). – Calla, České Budějovice.<br />

Řehounková K. & Prach K. (2006): Spontaneous vegetation succession<br />

<strong>in</strong> disused gravel-sand pits: role of local site and landscape<br />

factors. – Journal of Vegetation Science 17: 583–590.<br />

Řehounková K. & Prach K. (2008): Spontaneous vegetation succession<br />

<strong>in</strong> gravel-sand pits: a potential for <strong>restoration</strong>. – Restoration<br />

Ecology 16: 305–312.<br />

Řehounková K. & Prach K. (2010): Life-history traits and habitat<br />

preferences of coloniz<strong>in</strong>g plant species <strong>in</strong> long-term spontaneous<br />

succession <strong>in</strong> abandoned gravel-sand pits. – Basic and Applied<br />

Ecology 11: 45–53.<br />

Rydgren K., Nordbakken J.F., Austad I., Auestad I. & Heegaard E.<br />

(2010): Recreat<strong>in</strong>g semi-natural grasslands: a comparison of four<br />

methods. – <strong>Ecological</strong> Eng<strong>in</strong>eer<strong>in</strong>g 36: 1672–1679.<br />

Starý J., Kav<strong>in</strong>a P., Vaněček M., Sitenský I., Kotková J. & Nekutová<br />

T. (2008): Surov<strong>in</strong>ové zdroje České republiky. Nerostné surov<strong>in</strong>y,<br />

stav 2007 (M<strong>in</strong>eral commodity of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, 2007). –<br />

Česká geologická služba – Geofond, Praha.<br />

Tichý L. (2006): Diverzita vápencových lomů a možnosti jejich rekultivace<br />

s využitím přirozené sukcese na příkladu Růžen<strong>in</strong>a lomu<br />

(Diversity <strong>in</strong> limestone quarries and us<strong>in</strong>g natural succession <strong>in</strong><br />

<strong>the</strong>ir reclamation, <strong>the</strong> Růžen<strong>in</strong> lom quarry). – Zprávy České Botanické<br />

Společnosti, Materiály 21: 89–103.<br />

Trnková R., Řehounková K. & Prach K. (2010): Spontaneous succession<br />

of vegetation on acidic bedrock <strong>in</strong> quarries <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

– Preslia 82: 333–343.<br />

Tropek R., Kadlec T., Hejda M., Kočárek P., Skuhrovec J., Malenovský<br />

I., Vodka S., Spitzer L., Baňař P. & Konvička M. (2012): Technical<br />

reclamations are wast<strong>in</strong>g <strong>the</strong> conservation potential of postm<strong>in</strong><strong>in</strong>g<br />

sites. A case study of black coal spoil dumps. – <strong>Ecological</strong><br />

Engeneer<strong>in</strong>g 43: 13–18.<br />

Tropek R., Kadlec T., Karešová P., Spitzer L., Kočárek P., Malenovský<br />

P., Baňař P., Tuf I.H., Hejda M. & Konvička M. (2010): Spontaneous<br />

succession <strong>in</strong> limestone quarries as an effective <strong>restoration</strong><br />

tool for endangered arthropods and plants. – Journal of Applied<br />

Ecology 47: 139–147.<br />

Tropek R. & Konvička M. (2008): Can quarries supplement rare xeric<br />

habitats <strong>in</strong> a piedmont region? Spiders of <strong>the</strong> Blanský les Mts.,<br />

<strong>Czech</strong> <strong>Republic</strong>. – Land Degradation and Developement 19:<br />

104–114.<br />

Tropek R. & Konvička M. (2011): Should <strong>restoration</strong> damage rare biotopes?<br />

– Biological Conservation 144: 1299.<br />

Vaňková J. & Kovář P. (2004): Plant species diversity <strong>in</strong> <strong>the</strong> biotopes<br />

of unreclaimed <strong>in</strong>dustrial deposits as artificial islands <strong>in</strong> <strong>the</strong> landscape.<br />

– In: Kovář P. (ed.), Natural recovery of human-made deposits<br />

<strong>in</strong> landscape. Biotic <strong>in</strong>teractions and ore/ash-slag artificial<br />

ecosystems, pp. 30–45, Academia, Praha.<br />

Wall<strong>in</strong>gton T.J., Hobbs R.J. & Moore S.A. (2005): Implications of current<br />

ecological th<strong>in</strong>k<strong>in</strong>g for biodiversity conservation: A review of<br />

<strong>the</strong> salient issues. – Ecology and Society 10: 15.<br />

Young T.P., Petersen D.A. & Clary J.J. (2005): The ecology of <strong>restoration</strong>:<br />

historical l<strong>in</strong>ks, emerg<strong>in</strong>g issues and unexplored realms. –<br />

Ecology Letters 8: 662–673.<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 93


Restoration and conservation of sand and gravel-sand pits<br />

<br />

Location<br />

<strong>Czech</strong> <strong>Republic</strong> (51 sites throughout <strong>the</strong> country)<br />

Protection status NR (9), SCI (10), temporarily protected area (4)<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Various successional stages of 1 to 75 years old, established on dry, wet and slightly flooded sites (aquatic<br />

habitats not <strong>in</strong>cluded); endangered habitats such as open sands, dry grasslands, oligotrophic marshes;<br />

reclaimed areas (forest, agricultural and hydrological reclamation)<br />

18 sand and gravel-sand pits of 0.05 to 6 ha<br />

Reclamation mostly funded by m<strong>in</strong><strong>in</strong>g companies, subsequent management by <strong>the</strong> state (e.g. landscape<br />

management programmes), foundations, and from <strong>the</strong> “Adopt a Sand Mart<strong>in</strong>!” project (www.calla.cz/<br />

brehule)<br />

<strong>Ecological</strong> <strong>restoration</strong> of m<strong>in</strong><strong>in</strong>g sites: €400–2,000/ha, agricultural and forest reclamation €20,000–40,000/<br />

ha, <strong>restoration</strong> of vertical faces for Sand Mart<strong>in</strong> nest<strong>in</strong>g €400–600/face<br />

Initial conditions<br />

Sand and gravel-sand pits are important features affect<strong>in</strong>g <strong>the</strong><br />

landscape <strong>in</strong> several regions of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. M<strong>in</strong><strong>in</strong>g of sand<br />

and gravel-sand <strong>in</strong> many cases results <strong>in</strong> a new landscape type, often<br />

with large water bodies or conspicuously high vertical faces. M<strong>in</strong><strong>in</strong>g<br />

sites often have great nature conservation potential, because such<br />

sites may become secondary habitats for many endangered plant and<br />

animal species (mostly of early successional stages, e.g. open sands,<br />

dry grasslands and oligotrophic marshes). A typical example is <strong>the</strong><br />

Sand Mart<strong>in</strong> (Riparia riparia), whose population <strong>in</strong> <strong>the</strong> SW part of <strong>the</strong><br />

country decreased from nearly 5,000 to approx. 2,000 pairs between<br />

1999 and 2009 (Heneberg 2009).<br />

Abiotic conditions<br />

Sand and gravel-sand orig<strong>in</strong>ate ma<strong>in</strong>ly from river, lake and sea<br />

sedimentation or aeolian processes (shift<strong>in</strong>g sands). Most of <strong>the</strong> deposits<br />

are of Quaternary orig<strong>in</strong>, but a few orig<strong>in</strong>ate also from Tertiary<br />

and Mesozoic periods. M<strong>in</strong><strong>in</strong>g may reveal important geomorphological<br />

processes (e.g. water erosion and landslides) and phenomena (e.g.<br />

stratigraphic profiles) which deserve protection.<br />

Soil creation processes on bare substrate start from <strong>the</strong> very beg<strong>in</strong>n<strong>in</strong>g<br />

and are slow. Provided that an abandoned pit is not overlaid<br />

with organic material, oligotrophic conditions <strong>in</strong> <strong>the</strong> substrate and <strong>the</strong><br />

water can susta<strong>in</strong> for a long time.<br />

Fig. 1. <br />

94 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Restoration measures<br />

2002–2004 Study of spontaneous succession <strong>in</strong> 36 sand<br />

and gravel-sand pits across <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

(Řehounková & Prach 2006, 2008).<br />

2005 Survey of approx. 110 sites <strong>in</strong> <strong>the</strong> SW part of <strong>the</strong><br />

country, selection of sites with prevail<strong>in</strong>g spontaneous<br />

succession, and determ<strong>in</strong><strong>in</strong>g <strong>the</strong>ir nature<br />

conservation potential.<br />

2005–2011 Introduction of management to support Riparia<br />

riparia and hymenopterous <strong>in</strong>sects, ma<strong>in</strong>ly creation<br />

and <strong>restoration</strong> of vertical faces (repeated annually<br />

or every o<strong>the</strong>r year), <strong>restoration</strong> of bare sand areas <strong>in</strong><br />

a mosaic pattern by mechanical remov<strong>in</strong>g <strong>the</strong> topsoil<br />

layer, and removal of pioneer shrubs and trees from<br />

open sand habitats (11 localities).<br />

Monitor<strong>in</strong>g of Riparia riparia at <strong>the</strong> 11 sites (Heneberg<br />

2009).<br />

2009 Management to support amphibians <strong>in</strong>clud<strong>in</strong>g creation<br />

and <strong>restoration</strong> of oligotrophic pools and small<br />

marshes (8 localities).<br />

2010–2011 Monitor<strong>in</strong>g of realised management and its impact<br />

on amphibians and <strong>in</strong>vertebrates, mostly aculeate<br />

Hymenoptera, spiders and water beetles at most sites<br />

(Heneberg 2010, 2011, Boukal 2010), protection of<br />

<strong>the</strong> most valuable localities.<br />

Objectives<br />

Ma<strong>in</strong>tenance or <strong>in</strong>crease of biodiversity <strong>in</strong> sand and gravel-sand<br />

pits after exploitation; <strong>restoration</strong> and conservation of habitats important<br />

for endangered species, and stabilisation of <strong>the</strong>ir populations;<br />

protection of <strong>the</strong> most valuable localities (e.g. as protected or temporarily<br />

protected areas).<br />

Results<br />

In total, 452 vascular plants (ca. 16% of <strong>the</strong> <strong>Czech</strong> fl ora) were<br />

recorded <strong>in</strong> 224 phytosociological relevés <strong>in</strong> 36 selected sand and<br />

gravel-sand pits situated across <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Nearly 10% of <strong>the</strong><br />

species are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>Czech</strong> Red List (Holub & Procházka 2000),<br />

two of <strong>the</strong>m as critically endangered – Variegated Horsetail (Equisetum<br />

variegatum) and Field Needleleaf (Polycnemum arvense).<br />

Ord<strong>in</strong>ation analyses showed that <strong>the</strong> water table was <strong>the</strong> most important<br />

site factor <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> course of spontaneous vegetation<br />

succession. Succession was fur<strong>the</strong>r significantly <strong>in</strong>fluenced by soil texture,<br />

pH, macroclimate, <strong>the</strong> presence of nearby (semi-)natural vegetation<br />

and land cover types <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g landscape.<br />

Spontaneous vegetation succession usually leads (at various rates)<br />

to <strong>the</strong> formation of woodland (Fig. 3). Wet sites are dom<strong>in</strong>ated by<br />

willow and alder carr after about 25 years, dry sites typically show<br />

broad-leaved woodland with Silver Birch (Betula pendula), Scots P<strong>in</strong>e<br />

(P<strong>in</strong>us sylvestris), Pedunculate Oak (Quercus robur) and Rowan (Sorbus<br />

aucuparia). Valuable successional stages of forest-steppe vegetation<br />

persist only at dry sites <strong>in</strong> <strong>the</strong> warmest regions of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

Shallowly flooded sites are dom<strong>in</strong>ated by stands of tall sedges<br />

(Carex spp.), Common Reed (Phragmites australis) and bulrushes<br />

(Typha spp.).<br />

Restoration of vertical faces for <strong>the</strong> nest<strong>in</strong>g of Riparia riparia appeared<br />

to be very effective. In 2009, nearly 57% of Sand Mart<strong>in</strong>s <strong>in</strong><br />

South Bohemia nested <strong>in</strong> managed pits and <strong>the</strong> <strong>in</strong>troduced management<br />

halted its rapid decl<strong>in</strong>e and led to stabilisation of population<br />

Fig. 2. <br />

Fig. 3. <br />

<br />

<br />

Series:<br />

Grassland:<br />

-<br />

<br />

<br />

Woodland:<br />

<br />

Marshes:<br />

Ruderal vegetation:<br />

<br />

<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 95


numbers (Heneberg 2009). Moreover, it was found that <strong>the</strong> management<br />

of pit walls also improved habitat conditions for o<strong>the</strong>r endangered<br />

species, ma<strong>in</strong>ly hymenopterous <strong>in</strong>sects (Heneberg 2010).<br />

Generally it is important for <strong>in</strong>vertebrates to ma<strong>in</strong>ta<strong>in</strong> a heterogeneous<br />

mosaic of habitats, where patches of bare sand, vertical sand<br />

faces and o<strong>the</strong>r early successional stages are present (Heneberg 2010,<br />

2011, Tropek & Řehounek 2012).<br />

Fig. 4. <br />

<br />

Fig. 5. <br />

O<strong>the</strong>r lessons learned and future prospects<br />

Spontaneous succession and o<strong>the</strong>r ways of ecological <strong>restoration</strong><br />

are utilised only seldom, although <strong>the</strong>y represent a cheap and naturefriendly<br />

alternative to classical reclamation still prevail<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>. Moreover, reclamation usually leads to a decrease <strong>in</strong><br />

landscape heterogeneity and biodiversity and often destroys habitats<br />

of protected and endangered species (Řehounek et al. 2010).<br />

Management measures usually arrests or reverses <strong>the</strong> vegetation<br />

succession. Species typical of open sands or oligotrophic marshes respond<br />

fast to management measures. Newly created pools must fulfil<br />

conditions not only appropriate for amphibians but also for o<strong>the</strong>r endangered<br />

species. Therefore, shallowly fl ooded sites, diverse littoral<br />

areas and gentle water–land transitions should be a part of each <strong>restoration</strong><br />

plan (Boukal 2010).<br />

In abandoned sand and sand-gravel pits, ecological <strong>restoration</strong><br />

and nature conservation are often <strong>in</strong> harmony with recreational activities.<br />

Holidaymakers and tourist activity ma<strong>in</strong>ta<strong>in</strong>s <strong>the</strong> mosaic of<br />

sparse vegetation, which is an important biotope of many endangered<br />

species. A comb<strong>in</strong>ation of nature conservation and sand/gravel-sand<br />

exploitation might even improve <strong>the</strong> conditions for endangered species,<br />

if appropriately directed.<br />

Recently, <strong>the</strong> area of ecologically restored sites <strong>in</strong> sand and sandgravel<br />

pits has gradually <strong>in</strong>creased <strong>in</strong> spite of <strong>the</strong> unfavourable legislation.<br />

Popularisation of scientific results and presentation of examples<br />

of good practice <strong>in</strong> <strong>the</strong> field to <strong>the</strong> public have helped to make ecological<br />

<strong>restoration</strong> more visible.<br />

Public support<br />

Scientists, enlightened officials, NGOs and even some m<strong>in</strong><strong>in</strong>g<br />

and reclamation companies participate <strong>in</strong> <strong>the</strong> promotion of ecological<br />

<strong>restoration</strong> as an alternative to reclamation <strong>in</strong> sandpits after <strong>the</strong>ir exploitation<br />

has stopped. Public support for ecological <strong>restoration</strong> at <strong>the</strong><br />

expense of traditional reclamation is still low but gradually <strong>in</strong>creas<strong>in</strong>g<br />

due to <strong>the</strong> popularisation mentioned above.<br />

Acknowledgements<br />

The study was supported by grants DBU 91-0041-AZ26858-33/2<br />

and GA ČR P505/11/0256.<br />

References<br />

Boukal M. (2010): Zhodnocení usměrněné spontánní obnovy z hlediska<br />

vodních brouků na několika vybraných jihočeských pískovnách,<br />

doplněné poznámkami k jejich dalšímu managementu<br />

(Evaluation of directed spontaneous <strong>restoration</strong> from <strong>the</strong> aspect<br />

of water beetles on selected sandpits <strong>in</strong> South Bohemia, <strong>in</strong>clud<strong>in</strong>g<br />

notes on <strong>the</strong>ir fur<strong>the</strong>r management). – Elateridarium 4: 78–93.<br />

Heneberg P. (2009): Analýza hnízdní populace břehulí v Jihočeském<br />

kraji v r. 2009 (Analysis of nest<strong>in</strong>g Sand Mart<strong>in</strong> populations <strong>in</strong><br />

<strong>the</strong> South Bohemian Region <strong>in</strong> 2009). – Sdružení Calla, České<br />

Budějovice.<br />

Heneberg P. (2010): Analýza vlivu managementu břehule říční na<br />

populace blanokřídlého hmyzu ze skup<strong>in</strong>y Apocrita (Analysis of<br />

<strong>the</strong> impact of Sand Mart<strong>in</strong> management on populations of Apocrita,<br />

Hymenoptera). – Sdružení Calla, České Budějovice.<br />

Heneberg P. (2011): Výsledky pilotního průzkumu pavoukovců ve vybraných<br />

jihočeských pískovnách (Results of prelim<strong>in</strong>ary Arachnida<br />

survey <strong>in</strong> selected South Bohemian sandpits). – Sdružení<br />

Calla, České Budějovice.<br />

Holub J. & Procházka F. (2000): Red List of vascular plants of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>. – Preslia 72: 187–230.<br />

Řehounek J., Řehounková K. & Prach K. (2010): Ekologická obnova<br />

území narušených těžbou nerostných surov<strong>in</strong> a průmyslovými<br />

deponiemi (<strong>Ecological</strong> <strong>restoration</strong> of areas disturbed by m<strong>in</strong><strong>in</strong>g of<br />

m<strong>in</strong>erals and by <strong>in</strong>dustrial spoil heaps). – Sdružení Calla, České<br />

Budějovice.<br />

Řehounková K. & Prach K. (2006): Spontaneous vegetation succession<br />

<strong>in</strong> disused gravel-sand pits: role of local and landscape factors.<br />

– Journal of Vegetation Science 17: 583–590.<br />

Řehounková K. & Prach K. (2008): Spontaneous vegetation succession<br />

<strong>in</strong> gravel-sand pits: A potential for <strong>restoration</strong>. – Restoration<br />

Ecology 16: 305–312.<br />

Tropek R. & Řehounek J. (eds) (2012): Bezobratlí post<strong>in</strong>dustriálních<br />

stanovišť: význam, ochrana a management (Invertebrates of<br />

post-<strong>in</strong>dustrial habitats: importance, conservation and management).<br />

– Entomologický ústav AV Č R & Sdružení Calla, České<br />

Budějovice.<br />

96 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Coal m<strong>in</strong><strong>in</strong>g spoil heaps <strong>in</strong> <strong>the</strong> Most region: <strong>restoration</strong> potential of<br />

spontaneous succession<br />

<br />

Location<br />

Ecosystem types<br />

Restored area Approximately 150 km 2<br />

Costs<br />

Most Bas<strong>in</strong>, northwest <strong>Czech</strong> <strong>Republic</strong><br />

50°29'–50°34' N, 13°30'–13°51' E; altitude 260–300 m<br />

Various successional stages 1–55 years old, from aquatic to dry habitats; uniform technically reclaimed sites,<br />

mostly afforested<br />

Reclamation approximately €80,000 per ha, spontaneous succession without any cost<br />

Initial conditions<br />

Spoil heaps <strong>in</strong> <strong>the</strong> Most region are ma<strong>in</strong>ly formed by grey Tertiary<br />

clay sporadically mixed with sand and volcanic debris. Some spoil<br />

heaps or parts of <strong>the</strong>m are left unreclaimed, not because <strong>the</strong>y were<br />

scheduled for spontaneous development, but for o<strong>the</strong>r reasons, such<br />

as <strong>the</strong> presence of coal reserves underneath <strong>the</strong> heaps. As far as we<br />

know, only 60 ha of <strong>the</strong> heaps have been recently left to spontaneous<br />

succession, while <strong>in</strong> <strong>the</strong> rest of <strong>the</strong> area reclamation was or is <strong>in</strong> progress<br />

or planned.<br />

Heap<strong>in</strong>g mach<strong>in</strong>es make a system of parallel elevations and depressions<br />

of various depth and size, thus an undulat<strong>in</strong>g surface usually<br />

develops. Water often accumulates <strong>in</strong> <strong>the</strong> deeper depressions. In this<br />

way, heap<strong>in</strong>g creates a variety of microhabitats and promotes biodiversity.<br />

Reclamation predom<strong>in</strong>antly consists of <strong>the</strong> follow<strong>in</strong>g procedures.<br />

After stabilisation of <strong>the</strong> spoil substrate, usually after about eight years,<br />

<strong>the</strong> surface is levelled with heavy mach<strong>in</strong>ery and depressions with accumulated<br />

water are dra<strong>in</strong>ed. On such a surface, organic material like<br />

milled timber or bark, or a humus layer stripped from m<strong>in</strong><strong>in</strong>g sites is<br />

usually spread. When a heap is prepared <strong>in</strong> this way, trees are planted,<br />

usually one tree per m 2 . Tree species are sometimes <strong>in</strong>digenous, but<br />

not always. The second most common method of reclamation is directed<br />

at agricultural use. The heap surface is prepared similarly as <strong>in</strong><br />

<strong>the</strong> previous case (a humus layer is deposited on <strong>the</strong> levelled spoil),<br />

but <strong>the</strong>n it is sown with various commercial grass mixtures, usually<br />

with a large proportion of nitrogen-fix<strong>in</strong>g legumes. A third common<br />

way of reclamation is creat<strong>in</strong>g water bodies, <strong>in</strong> which <strong>the</strong> excavations<br />

of abandoned m<strong>in</strong>es are purposely flooded.<br />

Fig. 1. <br />

<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 97


Fig. 2. <br />

<br />

<br />

Average number of species<br />

<strong>in</strong> a sample<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

N.S.<br />

N.S.<br />

1-5 6-10 11-15 16-25 26-35 >35<br />

Age (years)<br />

Fig. 3. <br />

<br />

<br />

<br />

Objectives<br />

The follow<strong>in</strong>g ma<strong>in</strong> questions were addressed: (a) how fast is <strong>restoration</strong><br />

of vegetation if we rely on spontaneous succession <strong>in</strong> comparison<br />

with reclamation, and (b) how do spontaneous succession<br />

and reclamation differ <strong>in</strong> terms of species diversity?<br />

Spontaneous succession and its<br />

comparison with reclamation<br />

The ma<strong>in</strong> methodological approach to describe vegetation succession<br />

consisted of vegetation records (phytosociological relevés) made<br />

<strong>in</strong> representative stages of different age on various spoil heaps <strong>in</strong> <strong>the</strong><br />

region. Species cover was visually estimated (<strong>in</strong> %) <strong>in</strong> sampl<strong>in</strong>g plots<br />

of a regular size (5 × 5 m).<br />

Spontaneous succession usually proceeds <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g ways<br />

(Prach 1987, Hodačová & Prach 2003). Seeds of plants reach <strong>the</strong><br />

heaps by w<strong>in</strong>d, animals and sometimes also by man dur<strong>in</strong>g heap<strong>in</strong>g.<br />

Annual species (Atriplex sagittata, A. prostrata, Chenopodium spp.<br />

(ma<strong>in</strong>ly Chenopodium strictum), Persicaria lapathifolia, Polygonum<br />

arenastrum, and Senecio viscosus) and biennials (e.g. Carduus acanthoides)<br />

dom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> first few years. Between <strong>the</strong> 5 th and 15 th years<br />

of succession, broad-leaved herbs (e.g. Tanacetum vulgare and Artemisia<br />

vulgaris) prevail. Cirsium arvense, followed by grasses, ma<strong>in</strong>ly<br />

Elytrigia repens, Calamagrostis epigejos and Arrhena<strong>the</strong>rum elatius,<br />

form <strong>the</strong> next successional stage, <strong>in</strong> which <strong>the</strong> cover of ruderal species<br />

decreases and that of meadow species <strong>in</strong>creases. A more or less<br />

cont<strong>in</strong>uous vegetation cover is formed between <strong>the</strong> 10 th and 15 th year<br />

of spontaneous succession (Fig. 2). Sites without vegetation are quite<br />

..<br />

..<br />

...<br />

rare; <strong>the</strong>se are mostly found on acid sands (with pH < 3.5). However,<br />

even such habitats have <strong>the</strong>ir value, be<strong>in</strong>g important for some retreat<strong>in</strong>g<br />

groups of <strong>in</strong>vertebrates, ma<strong>in</strong>ly terrestrial bees and wasps, butterflies<br />

and neuropteran <strong>in</strong>sects. Because <strong>the</strong> Most region has a relatively<br />

warm and dry climate, woody species have a ra<strong>the</strong>r low cover (up to<br />

30%), even <strong>in</strong> late successional stages. After about 20 years of succession,<br />

anthropogenic (or semi-natural) forest steppe is formed, which<br />

obviously persists for a relatively long period. In that time, <strong>the</strong> vegetation<br />

is relatively well stabilised and <strong>in</strong>cludes Sambucus nigra, Salix<br />

caprea, Populus spp., and especially Betula pendula, occasionally Acer<br />

pseudoplatanus, Frax<strong>in</strong>us excelsior, Rosa can<strong>in</strong>a, Crataegus spp. and<br />

o<strong>the</strong>r shrubs and trees.<br />

Wetlands develop quickly <strong>in</strong> depressions <strong>in</strong>side or along <strong>the</strong> edges<br />

of <strong>the</strong> heaps. Usually a large number of small pools are found here,<br />

which are crucial for amphibians, for which spoil heaps are highly<br />

important even at <strong>the</strong> national level (Vojar 2006).<br />

Reclaimed heaps host a much lower number of species than those<br />

spontaneously re-vegetated (Fig. 3), as shown for higher plants by<br />

Hodačová & Prach (2003) and by Hendrychová et al. (2011) for some<br />

<strong>in</strong>vertebrates. In total, about 400 vascular plant species were found on<br />

spoil heaps of <strong>the</strong> Most district, which is approximately 15% of <strong>the</strong><br />

<strong>Czech</strong> flora.<br />

Conclusions<br />

Most of <strong>the</strong> spoil heaps can potentially be restored by spontaneous<br />

succession, which is sufficiently fast and provides ecologically much<br />

more valuable habitats than reclamation (Prach et al. 2011). In terms<br />

of landscape <strong>restoration</strong>, reclamation is a negative and expensive activity<br />

except at sites which are endangered by erosion, close to <strong>the</strong><br />

vic<strong>in</strong>ity of settlements, and <strong>in</strong> case recreation and sport activities are<br />

planned. In many cases, reclamation destroys valuable habitats and<br />

negatively impacts populations of endangered and rare species. Moreover,<br />

spontaneous succession runs without any cost.<br />

Acknowledgements<br />

The study was supported by grant GAČR P505/11/0256.<br />

References<br />

Hendrychová M., Šálek M., Tajovský K. & Řehoř M. (2011): Soil properties<br />

and species richness of <strong>in</strong>vertebrates on afforested sites after<br />

brown coal m<strong>in</strong><strong>in</strong>g. – Restoration Ecology, doi: 10.1111/j.1526-<br />

100X.2011.00841.x.<br />

Hodačová D. & Prach K. (2003): Spoil heaps from brown coal m<strong>in</strong><strong>in</strong>g:<br />

technical reclamation vs. spontaneous re-vegetation. – Restoration<br />

Ecology 11: 385–391.<br />

Prach K. (1987): Succession of vegetation on dumps from strip coal<br />

m<strong>in</strong><strong>in</strong>g, N. W. Bohemia, <strong>Czech</strong>oslovakia. – Folia Geobotanica et<br />

Phytotaxonomica 22: 339–354.<br />

Prach K., Řehounková K., Řehounek J. & Konval<strong>in</strong>ková P. (2011): Restoration<br />

of Central European m<strong>in</strong><strong>in</strong>g sites: a summary of a multisite<br />

analysis. – Landscape Research 36: 263–268.<br />

Vojar J. (2006): Colonization of post-m<strong>in</strong><strong>in</strong>g landscapes by Amphibians:<br />

a review. – Scientia Agriculturae Bohemica 37: 35–40.<br />

98 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Restoration of spoil heaps by spontaneous succession <strong>in</strong> <strong>the</strong> Sokolov coal<br />

m<strong>in</strong><strong>in</strong>g area<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Surround<strong>in</strong>g of <strong>the</strong> town of Sokolov, west <strong>Czech</strong> <strong>Republic</strong><br />

50°09'–50°16' N, 12°30'–12°46' E; altitude 500–650 m<br />

Regional biocentre (part)<br />

Various successional stages from <strong>in</strong>itial ones up to secondary forests<br />

300 ha<br />

Sokolovská uhelná coal m<strong>in</strong><strong>in</strong>g company, ENKI o.p.s.<br />

Reclaimed sites €20,000–60,000/ha, sites overgrown by succession €1,000–3,000/ha (despite <strong>the</strong> fact that <strong>the</strong><br />

overall cost of spontaneous succession is an order of magnitude lower than that of classical reclamation, it<br />

should be admitted that project preparation, preced<strong>in</strong>g research and monitor<strong>in</strong>g of spontaneous succession<br />

may be more expensive than <strong>the</strong> preparation of reclamation)<br />

Initial conditions<br />

Surface m<strong>in</strong><strong>in</strong>g of brown coal has been carried out <strong>in</strong> <strong>the</strong> Sokolov<br />

district s<strong>in</strong>ce <strong>the</strong> 1950s (Frouz et al. 2007). In this process a large<br />

amount of substrate above <strong>the</strong> coal (layers more than 100 m thick) has<br />

to be removed and deposited aside. The orig<strong>in</strong>al ecosystems are ei<strong>the</strong>r<br />

excavated or overla<strong>in</strong> by material from coal overburden. Restoration<br />

of natural values thus starts here on bare spoil substrate, which has<br />

cont<strong>in</strong>uously been deposited on <strong>the</strong> heaps s<strong>in</strong>ce <strong>the</strong> m<strong>in</strong><strong>in</strong>g began.<br />

The spoil heaps <strong>in</strong> <strong>the</strong> Sokolov district can potentially well be revegetated<br />

by means of spontaneous succession, as is apparent from<br />

several unreclaimed sites, but most of <strong>the</strong> heap area is reclaimed by<br />

means of traditional afforestation, whereby various tree species (both<br />

exotic and native) are planted directly <strong>in</strong>to a spoil substrate which is<br />

not improved.<br />

Abiotic conditions<br />

The substrate form<strong>in</strong>g <strong>the</strong> heaps is Miocene alkal<strong>in</strong>e clay of <strong>the</strong><br />

so-called Cypris formation (Rojík 2004). The pH (H 2<br />

O) of <strong>the</strong> freshly<br />

deposited material is between 8 and 9, but decreases dur<strong>in</strong>g <strong>the</strong> succession<br />

to 5 to 6 (Frouz et al. 2008). The total amount of phosphorus<br />

<strong>in</strong> <strong>the</strong> substrate is relatively high (around 1200 mg.kg -1 ), but due to <strong>the</strong><br />

high pH it is hardly available to plants. The availability of phosphorus<br />

<strong>in</strong>creases with site age. The amount of nitrogen is ra<strong>the</strong>r low after substrate<br />

heap<strong>in</strong>g, but later <strong>in</strong>creases to 1000–2500 mg.kg -1 depend<strong>in</strong>g on<br />

site conditions (Frouz et al. 2008, Šourková et al. 2005). The substrate<br />

is dumped as solid mudstones, which dis<strong>in</strong>tegrate dur<strong>in</strong>g wea<strong>the</strong>r<strong>in</strong>g<br />

<strong>in</strong>to smaller lamelloid fragments and f<strong>in</strong>ally (20–30 years after heap<strong>in</strong>g)<br />

become amorphous clay (Frouz et al. 2001). This process strongly<br />

affects <strong>the</strong> water regime of <strong>the</strong> substrate, because water is adhesively<br />

Fig. 1. <br />

<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 99


ound to amorphous clay and is thus less accessible to plants. Earlier<br />

<strong>in</strong> <strong>the</strong> succession, when lamelloid fragments are abundant <strong>in</strong> <strong>the</strong><br />

substrate, and later, when soil structures are formed <strong>in</strong> <strong>the</strong> pedogenic<br />

process, <strong>the</strong> water regime becomes more favourable for plants (Cejpek<br />

& Frouz, unpubl.).<br />

Objectives<br />

The objective of this project is to protect rare and endangered species<br />

of plants, animals and fungi occurr<strong>in</strong>g on spoil heaps, but also<br />

to preserve <strong>the</strong> successional processes capable of re<strong>in</strong>stat<strong>in</strong>g many<br />

non-productive functions of reclaimed sites. These <strong>in</strong>clude resoil<strong>in</strong>g,<br />

erosion control, and water regime improvement. Protection of unreclaimed<br />

sites also has high educative and scientific values, s<strong>in</strong>ce <strong>the</strong>y<br />

enable study<strong>in</strong>g succession on <strong>the</strong> landscape scale.<br />

Soil development<br />

Several studies have demonstrated that <strong>restoration</strong> success is<br />

clearly l<strong>in</strong>ked with <strong>the</strong> process of soil formation, which occurs spontaneously<br />

at unreclaimed re-vegetated sites as well as <strong>in</strong> tree plantations<br />

(Frouz et al. 2008, 2009). Many processes take place <strong>in</strong> soil formation,<br />

but on <strong>the</strong> spoil heaps <strong>the</strong> activity of soil macrofauna, namely<br />

earthworms, was found to be particularly important. Earthworms<br />

(Aporrectodea calig<strong>in</strong>osa, A. rosea, Dendrobaena octaedra, Dendrodrilus<br />

rubidus, Lumbricus rubellus, and Octolasion lacteum; Pižl 2001)<br />

colonise <strong>the</strong> heaps mostly without deliberate human <strong>in</strong>tervention.<br />

They are probably most often <strong>in</strong>troduced on <strong>the</strong> heaps with <strong>the</strong> soil<br />

on <strong>the</strong> roots of planted tree sapl<strong>in</strong>gs. Earthworms mix plant litter with<br />

<strong>the</strong> spoil, form stable soil aggregates and stabilise <strong>the</strong> organic matter<br />

<strong>in</strong> <strong>the</strong> soil by consumption of a large amount of substrate, which<br />

improves water regime and plant nutrition (Frouz et al. 2008). The<br />

composition of earthworm communities substantially differs between<br />

sites dom<strong>in</strong>ated by different tree species (Frouz et al. 2009). Especially<br />

<strong>the</strong> quality of litter produced by trees seems to be important here, as<br />

litter is a significant source of nutrition for earthworms, and structure,<br />

chemical composition and also palatability of <strong>the</strong> litter are speciesspecific<br />

(Frouz 2008, Lavelle et al. 1997). Soil formation is relatively<br />

fast under particular tree species. In <strong>the</strong> soil profile on sites with Alnus<br />

plantations (A. glut<strong>in</strong>osa and A. <strong>in</strong>cana) a layer of mull humus<br />

(A horizon) of 93 mm thick on average is formed with<strong>in</strong> 28 years. At<br />

unreclaimed sites <strong>the</strong> process of soil formation is slower. With<strong>in</strong> 28<br />

years only a 27 mm thick layer of A horizon is formed here (Frouz et<br />

al. 2009, Mudrák et al. 2010), but <strong>the</strong> difference disappears with time<br />

and sites of 40 years old have a similar A horizon thickness.<br />

Results<br />

Both <strong>in</strong> <strong>the</strong> forest plantations and at <strong>the</strong> unreclaimed sites, soil<br />

conditions were found to be important for plant communities. Shortly<br />

after <strong>the</strong> heap<strong>in</strong>g, unreclaimed sites are colonised by ma<strong>in</strong>ly ruderal<br />

species such as Poa compressa, Tanacetum vulgare and Tussilago<br />

farfara, but also tree seedl<strong>in</strong>gs of Goat Willow (Salix caprea), Birch<br />

(Betula pendula) and Aspen (Populus tremula) establish and later<br />

dom<strong>in</strong>ate <strong>the</strong> plant community. Around <strong>the</strong> 20 th year of succession,<br />

Salix caprea prevails <strong>in</strong> <strong>the</strong> vegetation, which is later outcompeted by<br />

Betula pendula and Populus tremula. Between <strong>the</strong> 20 th and 30 th year<br />

of succession <strong>the</strong> unreclaimed sites are colonised by earthworms. The<br />

subsequent changes <strong>in</strong> <strong>the</strong> soil profile support establishment of species<br />

native to meadow and forest communities. After more than 40<br />

years <strong>the</strong> succession leads to a development of sparse birch and aspen<br />

woodland with a species-rich understorey (up to 49 species per 25<br />

m 2 ) ma<strong>in</strong>ly dom<strong>in</strong>ated by meadow species such as Arrhena<strong>the</strong>rum<br />

elatius, Festuca rubra, Plantago lanceolata, and Lotus corniculatus. In<br />

Fig. 2. <br />

Fig. 3. <br />

Fig. 4. <br />

<strong>the</strong>se stages, however, also <strong>the</strong> competitively strong grass Calamagrostis<br />

epigejos <strong>in</strong>creases <strong>in</strong> dom<strong>in</strong>ance and often suppresses o<strong>the</strong>r species<br />

(Frouz et al. 2008).<br />

At <strong>the</strong> reclaimed afforested sites <strong>the</strong> effect of soil conditions co<strong>in</strong>cides<br />

ra<strong>the</strong>r with <strong>the</strong> productivity of understorey species than with<br />

<strong>the</strong>ir diversity. Sites with <strong>the</strong> best developed soil profile have <strong>the</strong> highest<br />

total cover and highest total understorey biomass. However, this<br />

100 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Number of species<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

b<br />

b<br />

b<br />

ab<br />

ab<br />

a<br />

a<br />

A L Pc Pn Q T U<br />

Forest type<br />

Fig. 5. -<br />

<br />

PiceaTilia-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

is ma<strong>in</strong>ly due to one species – Calamagrostis epigejos, whose cover<br />

negatively correlates with <strong>the</strong> number of o<strong>the</strong>r plant species. In a<br />

comparison of six forest types (planted <strong>in</strong> reclamation measures and<br />

aged 20–33 years) each dom<strong>in</strong>ated by a different tree genus (Alnus,<br />

Larix, Picea, P<strong>in</strong>us, Quercus, Tilia) with unreclaimed sites spontaneously<br />

colonised by Salix caprea, Betula pendula and Populus tremula,<br />

<strong>the</strong> highest number of species was found <strong>in</strong> <strong>the</strong> stands dom<strong>in</strong>ated<br />

by Quercus (19 per 25 m 2 ), which was comparable with <strong>the</strong> number<br />

observed <strong>in</strong> spontaneous succession plots (17 per 25 m 2 ). The lowest<br />

number of species was observed <strong>in</strong> <strong>the</strong> Alnus plots (10 per 25 m 2 )<br />

(Fig. 5).<br />

Spoil heaps and ma<strong>in</strong>ly unreclaimed sites host large numbers of<br />

rare and endangered species. They are for example <strong>in</strong>habited by <strong>the</strong><br />

largest stable population of <strong>the</strong> toad Bufo calamita <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.<br />

O<strong>the</strong>r amphibians liv<strong>in</strong>g here <strong>in</strong>clude Bufo viridis, Pelobates<br />

fuscus, Triturus cristatus, T. vulgaris, T. alpestris, Rana lessonae, R.<br />

ridibunda, and Hyla arborea. Rare birds to be mentioned are Rallus<br />

aquaticus, Lusc<strong>in</strong>ia svecica, Oenan<strong>the</strong> oenan<strong>the</strong>, and Remiz pendul<strong>in</strong>us<br />

(Frouz et al. 2007).<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Includ<strong>in</strong>g spontaneously develop<strong>in</strong>g sites <strong>in</strong>to <strong>the</strong> new post-m<strong>in</strong><strong>in</strong>g<br />

landscape substantially <strong>in</strong>creases diversity (on <strong>the</strong> level of both<br />

species and communities), improves <strong>the</strong> scenery and last but not least<br />

has a high educational value. Moreover, spontaneous processes can<br />

relatively quickly restore soil conditions <strong>in</strong> <strong>the</strong> spoil substrate. Expensive<br />

overlay<strong>in</strong>g of <strong>the</strong> spoil by an organic horizon (as is often done <strong>in</strong><br />

o<strong>the</strong>r coal m<strong>in</strong><strong>in</strong>g districts) is <strong>the</strong>refore unnecessary.<br />

An important threat to <strong>the</strong> ecological <strong>restoration</strong> of spoil heaps is<br />

<strong>the</strong> spread of <strong>the</strong> competitive grass Calamagrostis epigejos.<br />

Public support<br />

The local public as well as <strong>the</strong> coal m<strong>in</strong><strong>in</strong>g company are <strong>in</strong>terested<br />

<strong>in</strong> improv<strong>in</strong>g <strong>the</strong> scenery and ecosystem functions and services.<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> M<strong>in</strong>istry of Education, Youth and<br />

Sports of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (LC06066, 2B80023), <strong>the</strong> Agency of <strong>the</strong><br />

Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (grants nos. S600660505<br />

and P505/11/0256), <strong>the</strong> Research Plan of <strong>the</strong> Institute of Soil Biology<br />

(AV0Z60660521), <strong>the</strong> Research Plan of <strong>the</strong> Institute of Botany<br />

(AV0Z60050516), and Sokolovská uhelná a.s. Coal M<strong>in</strong><strong>in</strong>g Company.<br />

Fig. 6. <br />

<br />

<br />

References<br />

Frouz J. (2008): The effect of litter type and macrofauna community<br />

on litter decomposition and organic matter accumulation <strong>in</strong> postm<strong>in</strong><strong>in</strong>g<br />

sites. – Biologia 63: 249–253.<br />

Frouz J., Cienciala E., Pižl V. & Kalčík J. (2009): Carbon storage <strong>in</strong><br />

post-m<strong>in</strong><strong>in</strong>g forest soil, <strong>the</strong> role of tree biomass and soil bioturbation.<br />

– Biogeochemistry 94: 111–121.<br />

Frouz J., Kepl<strong>in</strong> B., Pižl V., Tajovský K., Starý J., Lukešová A., Novaková<br />

A., Balík V., Háněl L., Materna J., Duker C., Chalupský<br />

J., Rusek J. & He<strong>in</strong>kele T. (2001): Soil biota and upper soil layer<br />

development <strong>in</strong> two contrast<strong>in</strong>g post-m<strong>in</strong><strong>in</strong>g chronosequences. –<br />

<strong>Ecological</strong> Eng<strong>in</strong>eer<strong>in</strong>g 17: 275–284.<br />

Frouz J., Popperl J., Přikryl I. & Štrudl J. (2007): New landscape design<br />

<strong>in</strong> <strong>the</strong> region of Sokolov. – Sokolovská uhelná, právní nástupce<br />

a.s., Sokolov.<br />

Frouz J., Prach K., Pižl V., Háněl L., Starý J., Tajovský K., Materna J.,<br />

Balík V., Kalčík J. & Řehounková K. (2008): Interactions between<br />

soil development, vegetation and soil fauna dur<strong>in</strong>g spontaneous<br />

succession <strong>in</strong> post m<strong>in</strong><strong>in</strong>g sites. – European Journal of Soil Biology<br />

44: 109–121.<br />

Lavelle P., Bignell D., Lepage M., Wolters V., Rogers P., Ineson P., Heal<br />

O.W. & Dhillion S. (1997): Soil function <strong>in</strong> a chang<strong>in</strong>g world: <strong>the</strong><br />

role of <strong>in</strong>vertebrate ecosystem eng<strong>in</strong>eers. – European Journal of<br />

Soil Biology 33: 159–193.<br />

Mudrák O., Frouz J. & Velichová V. (2010): Understory vegetation <strong>in</strong><br />

reclaimed and unreclaimed post-m<strong>in</strong><strong>in</strong>g forest stands – <strong>Ecological</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g 36: 783–790.<br />

Pižl V. (2001): Earthworm succession <strong>in</strong> afforested colliery spoil heaps<br />

<strong>in</strong> <strong>the</strong> Sokolov region, <strong>Czech</strong> <strong>Republic</strong>. – Restoration Ecology 9:<br />

359–364.<br />

Rojík P. (2004): New stratigraphic subdivision of <strong>the</strong> Tertiary <strong>in</strong><br />

Sokolov Bas<strong>in</strong> <strong>in</strong> Northwestern Bohemia. – Journal of <strong>the</strong> <strong>Czech</strong><br />

Geological Society 49: 173–186.<br />

Šourková M., Frouz J. & Š antrůčková H. (2005): Accumulation of<br />

carbon, nitrogen and phosphorus dur<strong>in</strong>g soil formation on alder<br />

spoil heaps after brown-coal m<strong>in</strong><strong>in</strong>g, near Sokolov (<strong>Czech</strong> <strong>Republic</strong>).<br />

– Geoderma 124: 203–214.<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 101


Restoration of dry grassland vegetation <strong>in</strong> <strong>the</strong> abandoned Hády limestone<br />

quarry near Brno<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

NE of <strong>the</strong> city of Brno, sou<strong>the</strong>ast <strong>Czech</strong> <strong>Republic</strong><br />

49°12'58"–49°13'18" N, 16°40'03"–16°40'35" E; altitude 310–410 m<br />

SCI<br />

<br />

The ma<strong>in</strong> habitat types <strong>in</strong> <strong>the</strong> surround<strong>in</strong>gs of <strong>the</strong> restored area are semi-natural semi-dry grasslands<br />

(Cirsio-Brachypodion p<strong>in</strong>nati) and open <strong>the</strong>rmophilous oak forests (Quercion pubescenti-petraeae)<br />

6 ha mosaic <strong>in</strong> an area of 20 ha<br />

F<strong>in</strong>ancial support<br />

Českomoravský cement, a.s., nástupnická společnost (1998–2003), European Commission (LIFE Nature,<br />

2004–2007), <strong>Czech</strong> M<strong>in</strong>istry of <strong>the</strong> Environment (grants for NGOs, 2000–2009)<br />

Costs Approximately €80,000<br />

Initial conditions<br />

The Hády quarry borders <strong>the</strong> Moravian Karst (Moravský kras)<br />

PLA. The close surround<strong>in</strong>gs of <strong>the</strong> quarry are home to many rare<br />

<strong>the</strong>rmophilous <strong>in</strong>sects and 79 red-listed plant species (Holub &<br />

Procházka 2000, Tichý 2000; categories C1–C3). Archaeological evidence<br />

of limestone burn<strong>in</strong>g <strong>in</strong> <strong>the</strong> quarry goes back to <strong>the</strong> Middle<br />

Ages, but <strong>the</strong> recent history of <strong>the</strong> quarry started <strong>in</strong> 1907. Between<br />

1965 and 1997, up to 300,000 tonnes of limestone were m<strong>in</strong>ed annually.<br />

Excavation stopped 90 years after it started, <strong>in</strong> 1997. The quarry<br />

location and surviv<strong>in</strong>g remnants of species-rich forest-steppe vegetation<br />

<strong>in</strong> <strong>the</strong> close vic<strong>in</strong>ity were ideal to start a unique <strong>restoration</strong> project<br />

aimed at creat<strong>in</strong>g a mosaic of species-rich habitats.<br />

Abiotic conditions<br />

The entire locality has basic and nutrient-poor soils based on<br />

limestone. The dry conditions of <strong>the</strong> south-fac<strong>in</strong>g rocky slopes and<br />

terraces contrast with <strong>the</strong> large scree areas and <strong>the</strong> quarry bottom<br />

with artificial lakes surrounded by a small marsh spontaneously developed<br />

on m<strong>in</strong><strong>in</strong>g deposits.<br />

Restoration measures<br />

1998–2009 Seeds of about 70 <strong>the</strong>rmophilous plant species of<br />

Pannonian grassland vegetation were manually collected<br />

from natural vegetation <strong>in</strong> <strong>the</strong> close surround<strong>in</strong>gs<br />

of <strong>the</strong> quarry.<br />

1998, 2001,<br />

2005–2006<br />

A th<strong>in</strong> topsoil layer was artificially created <strong>in</strong> selected<br />

places of limestone terraces as a basis for <strong>the</strong><br />

follow<strong>in</strong>g <strong>restoration</strong>.<br />

1998–2010 Hay was taken from steppe grasslands and distributed<br />

over recently sown localities to support seed<br />

germ<strong>in</strong>ation.<br />

2005–2008 Alien species (Rob<strong>in</strong>ia pseudacacia, Amorpha fruticosa,<br />

genetically <strong>in</strong>trogressed populations of Populus<br />

nigra, Solidago canadensis, etc.) from newly established<br />

communities were widely removed (mow<strong>in</strong>g,<br />

manual eradication, cutt<strong>in</strong>g <strong>in</strong>cl. herbicide application)<br />

from <strong>the</strong> entire area of <strong>the</strong> former quarry.<br />

1999–2006 Scattered plant<strong>in</strong>g of native shrubs (Quercus<br />

pubescens, Q. petraea, Cornus mas, C. sangu<strong>in</strong>ea,<br />

Crataegus monogyna, Ligustrum vulgare).<br />

Objectives<br />

Restoration of dry grassland vegetation <strong>in</strong> a previously m<strong>in</strong>ed area<br />

with a m<strong>in</strong>imum of technical <strong>restoration</strong>; <strong>in</strong>creas<strong>in</strong>g biodiversity; improv<strong>in</strong>g<br />

scenery.<br />

Fig. 1. <br />

<br />

Results<br />

Dur<strong>in</strong>g 12 years, a total area of about 6 hectares was reclaimed<br />

<strong>in</strong> a mosaic of separate areas (0.1–0.5 ha) step-by-step. This strategy<br />

appeared to be speeded up by additional <strong>in</strong>troduction of some species<br />

to <strong>the</strong> quarry area (Fig. 2). Various <strong>restoration</strong> techniques were used:<br />

(A) addition of th<strong>in</strong> topsoil layer, (B) sow<strong>in</strong>g seeds of <strong>the</strong>rmophilous<br />

species, (C) addition of a th<strong>in</strong> hay layer with matur<strong>in</strong>g grass seeds,<br />

and locally also (D) plant<strong>in</strong>g of <strong>the</strong>rmophilous trees and shrubs. Altoge<strong>the</strong>r,<br />

17 endangered species of vascular plants were successfully<br />

sown and planted <strong>in</strong> <strong>the</strong> area of <strong>the</strong> quarry, after which some of <strong>the</strong>m<br />

formed large populations of hundreds and thousands of <strong>in</strong>dividuals:<br />

102 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Fig. 2. -<br />

<br />

<br />

References<br />

Holub J. & Procházka F. (2000): Red List of vascular plants of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>. – Preslia 72: 187–230.<br />

Tichý L. (2000): Současný stav vápencové stepi na jižních svazích<br />

Hádů u Brna. (Recent state of limestone steppe on sou<strong>the</strong>rn slopes<br />

of Hády hill near Brno.) – Zprávy České botanické společnosti 35:<br />

99–105.<br />

Tichý L. (2006): Diverzita vápencových lomů a možnosti jejich rekultivace<br />

s využitím přirozené sukcese na příkladu Růžen<strong>in</strong>a lomu.<br />

(Diversity of limestone quarries and possibilities of <strong>the</strong>ir <strong>restoration</strong><br />

by us<strong>in</strong>g natural succession on <strong>the</strong> example of ‘Růžen<strong>in</strong> lom’<br />

quarry.) – In: Prach K., Pyšek P., Tichý L., Kovář P., Jongepierová<br />

I. & Řehounková K., Botanika a ekologie obnovy, pp. 89–104,<br />

Zprávy České botanické společnosti, Materiály 21.<br />

e.g. Arabis auriculata, Aster amellus, A. l<strong>in</strong>osyris, Centaurium pulchellum,<br />

Crepis foetida subsp. rhoeadifolia, Epipactis palustris, Inula ensifolia,<br />

L<strong>in</strong>um tenuifolium, Melica ciliata, Onobrychis arenaria, Polygala<br />

major, Rosa sp<strong>in</strong>osissima, and Thymus pannonicus. The current environmental<br />

importance of <strong>the</strong> Hády quarry is fully comparable with<br />

o<strong>the</strong>r protected natural areas <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of Brno.<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Separate application of each of <strong>the</strong> above-mentioned <strong>restoration</strong><br />

methods had limited success. However, <strong>the</strong>ir comb<strong>in</strong>ation (th<strong>in</strong> topsoil<br />

layer addition, additional sow<strong>in</strong>g of <strong>the</strong>rmophilous species, cover<strong>in</strong>g<br />

with a th<strong>in</strong> layer of hay) resulted <strong>in</strong>to sparse, but sufficiently<br />

species-rich grassland communities with<strong>in</strong> 5–7 years. Such a new<br />

environment has several advantages for dry grassland species. It is<br />

relatively nutrient-poor, drier than natural habitats, <strong>the</strong> surface is usually<br />

flat, and <strong>the</strong> succession is blocked by <strong>the</strong> shallow soils. In such<br />

extreme conditions <strong>the</strong> newly established vegetation rema<strong>in</strong>s ra<strong>the</strong>r<br />

sparse and <strong>in</strong>cludes hardly any ruderal species. The new grasslands are<br />

relatively stable and need not be regularly grazed or mown.<br />

Fig. 3. <br />

Public support<br />

The ma<strong>in</strong> part of <strong>the</strong> quarry is currently owned by a local environmental<br />

NGO. Even though <strong>the</strong> establishment of new communities<br />

needs a longer time with this type of <strong>restoration</strong>, <strong>the</strong> f<strong>in</strong>al vegetation<br />

cover is more stable, valuable for its biodiversity and not susceptible to<br />

ruderalisation. It should be supported by m<strong>in</strong><strong>in</strong>g companies and local<br />

authorities as a relatively cheap and environmentally-friendly alternative<br />

of landscape <strong>restoration</strong> and environmental recovery.<br />

Acknowledgements<br />

This study was supported by <strong>the</strong> M<strong>in</strong>istry of Education of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong> (MSM0021622416).<br />

Fig. 4. <br />

<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 103


Experimental <strong>restoration</strong> of species-rich deciduous forest on m<strong>in</strong><strong>in</strong>g<br />

deposits <strong>in</strong> Mokrá limestone quarry<br />

Location<br />

Ecosystem types<br />

Restored area<br />

<br />

E of <strong>the</strong> city of Brno, east <strong>Czech</strong> <strong>Republic</strong><br />

49°13'36" N, 16°45'44" E; altitude 370–380 m<br />

Oak-hornbeam forests (Carp<strong>in</strong>ion) and open <strong>the</strong>rmophilous oak forests (Quercion pubescenti-petraeae) as<br />

target communities<br />

0.06 ha<br />

F<strong>in</strong>ancial support Českomoravský cement, a.s., nástupnická společnost (2008–2011)<br />

Costs Approximately €8,000<br />

Initial conditions<br />

Mokrá quarry is one <strong>the</strong> largest limestone quarries <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>. M<strong>in</strong><strong>in</strong>g started here <strong>in</strong> 1968 and <strong>the</strong> current quarry area<br />

is more than 1.2 km 2 <strong>in</strong> size. The quarry borders <strong>the</strong> sou<strong>the</strong>rn part<br />

of <strong>the</strong> Moravian Karst (Moravský kras) PLA. Most of <strong>the</strong> quarry is<br />

surrounded by relatively species-rich oak-hornbeam forests and some<br />

remnants of <strong>the</strong>rmophilous oak woodland. Animal and plant diversity<br />

is supported by <strong>the</strong> limestone bedrock and <strong>in</strong>cludes many endangered<br />

species of forests and forest-steppes (Holub & Procházka 2000).<br />

The destruction of valuable forest habitats was <strong>the</strong> reason to establish<br />

a small experimental area here to test methods which could<br />

enable forest <strong>restoration</strong> on m<strong>in</strong><strong>in</strong>g deposits. The project was <strong>in</strong>itiated<br />

and supported by <strong>the</strong> Českomoravský cement m<strong>in</strong><strong>in</strong>g company <strong>in</strong> cooperation<br />

with local environmental NGOs.<br />

Abiotic conditions<br />

The two experimental areas are covered by basic soils with pH<br />

rang<strong>in</strong>g from 7.7 to 8.0. Three plots (A) are situated on steep westfac<strong>in</strong>g<br />

slopes, while <strong>the</strong> o<strong>the</strong>r three plots (B) occupy steep east-fac<strong>in</strong>g<br />

slopes. The mean annual temperature is approximately 8.4 °C and <strong>the</strong><br />

annual ra<strong>in</strong>fall 509 mm (Airport Brno-Tuřany; http://www.airportbrno.cz).<br />

Objectives<br />

Creation of species-rich deciduous forests with typical forest species,<br />

<strong>in</strong>creas<strong>in</strong>g biodiversity, acceleration of forest ecosystem <strong>restoration</strong>,<br />

diversification of forest vegetation structure, improv<strong>in</strong>g of scenery.<br />

Methods<br />

A 14-year old tree plantation of Acer pseudoplatanus, Tilia cordata<br />

and P<strong>in</strong>us nigra on a reclaimed area of m<strong>in</strong><strong>in</strong>g deposits was selected<br />

for <strong>the</strong> experiment. Six 100 m 2 permanent plots were divided<br />

<strong>in</strong>to two groups. In area A, <strong>the</strong> first three plots, each with a 5-metre<br />

broad buffer zone, were protected with a 1.5 m tall fence. The o<strong>the</strong>r<br />

three plots <strong>in</strong> area B rema<strong>in</strong>ed unprotected. Only newly planted trees<br />

<strong>in</strong> that area were fenced <strong>in</strong>dividually. The vegetation structure of <strong>the</strong><br />

permanent plots was first recorded <strong>in</strong> September 2008. Then one plot<br />

from <strong>the</strong> first and one plot from <strong>the</strong> o<strong>the</strong>r group were covered with a<br />

th<strong>in</strong> layer of soil removed from an old semi-natural oak-hornbeam<br />

forest (dispersed over <strong>the</strong> area), conta<strong>in</strong><strong>in</strong>g roots, stems and seeds of<br />

many forest species. The second pair of plots was covered with forest<br />

litter (mostly dead leaves) collected and transported manually <strong>in</strong><br />

large bags. The third pair of plots rema<strong>in</strong>ed unaffected as a control.<br />

The tree canopy of <strong>the</strong> first four plots was opened (for about 20–40%)<br />

and young <strong>in</strong>dividuals of Cornus mas, Carp<strong>in</strong>us betulus and Crataegus<br />

monogyna were additionally planted <strong>in</strong> <strong>the</strong> open<strong>in</strong>gs.<br />

Restoration measures<br />

2008 Soil and litter were removed from a semi-natural<br />

oak-hornbeam forest and transported to <strong>the</strong> experimental<br />

plots.<br />

2008–2011 Former tree plantations were gradually opened by<br />

cutt<strong>in</strong>g about 20–40% of <strong>the</strong> trees. Bottom branches<br />

of o<strong>the</strong>r trees were trimmed.<br />

2009 New shrubs and trees were planted to <strong>in</strong>crease <strong>the</strong><br />

diversity of <strong>the</strong> future forest.<br />

One part of experimental area A was fenced. Young<br />

trees <strong>in</strong> experimental area B were fenced <strong>in</strong>dividually.<br />

Results<br />

At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> experiment, <strong>the</strong> herb layer of all plots consisted<br />

of mostly ruderal and heliophilous species. Three years later, we<br />

observed a significant <strong>in</strong>crease <strong>in</strong> species <strong>in</strong> both plots covered with<br />

new soil, while <strong>the</strong> diversity and species structure of <strong>the</strong> o<strong>the</strong>r ones rema<strong>in</strong>ed<br />

ra<strong>the</strong>r similar (Fig. 2). Even though some ruderal species persisted,<br />

many new species of semi-natural deciduous forests appeared<br />

<strong>in</strong> <strong>the</strong>se plots: Campanula persicifolia, Carex digitata, Convallaria majalis,<br />

Fragaria vesca, Galium odoratum, G. sylvaticum, Hieracium maculatum,<br />

H. murorum, H. sabaudum, Lathyrus niger, L. vernus, Luzula<br />

luzuloides, Scrophularia nodosa, Viola reichenbachiana, V. riv<strong>in</strong>iana.<br />

Fig. 1. <br />

<br />

104 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


O<strong>the</strong>r lessons learned and future prospects<br />

Even if this small prelim<strong>in</strong>ary experiment was started just three<br />

years ago, <strong>the</strong> presented results clearly show that forest ecosystem<br />

<strong>restoration</strong> can be accelerated. The <strong>in</strong>creas<strong>in</strong>g m<strong>in</strong><strong>in</strong>g area <strong>in</strong> large<br />

quarries sometimes repeatedly results <strong>in</strong> destruction of areas with<br />

semi-natural deciduous forest. The soil transferred from such forest<br />

vegetation before tree cutt<strong>in</strong>g and m<strong>in</strong><strong>in</strong>g may be a good source<br />

of typical forest vascular plants and probably also of soil organisms,<br />

fungi and anthropods. The tree plantation <strong>in</strong>tended for biodiversity<br />

<strong>in</strong>crease must be at least 10 years old and its establishment should<br />

already count with an additional supplement of fresh soil from areas<br />

prepared for m<strong>in</strong><strong>in</strong>g. The tree canopy must be well developed to protect<br />

<strong>the</strong> new soil aga<strong>in</strong>st direct sunlight. For optimal <strong>restoration</strong> of<br />

this vegetation type, an appropriate and long-term vision of quarry<br />

exploitation and subsequent reclamation is necessary. This sort of reclamation<br />

is best applied <strong>in</strong> larger quarries owned by companies with a<br />

highly developed environmental liability.<br />

Fig. 2. <br />

-<br />

<br />

-<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Public support<br />

The area is fully private, owned by <strong>the</strong> Českomoravský cement<br />

m<strong>in</strong><strong>in</strong>g company, without free public access. The results of this experiment<br />

are available to serve forest <strong>restoration</strong> of o<strong>the</strong>r m<strong>in</strong><strong>in</strong>g deposits.<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> M<strong>in</strong>istry of Education of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong> (MSM 0021622416).<br />

References<br />

Chytrý M. & Rafajová M. (2003): <strong>Czech</strong> National Phytosociological<br />

Database: basic statistics of <strong>the</strong> available vegetation-plot data. –<br />

Preslia 75: 1–15.<br />

Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W. & Paulissen<br />

D. (1992): Zeigerwerte von Pflanzen <strong>in</strong> Mitteleuropa. Ed. 2. –<br />

Scripta Geobotanica 18: 1–248.<br />

Holub J. & Procházka F. (2000): Red List of vascular plants of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>. – Preslia 72: 187–230.<br />

Fig. 3. <br />

<br />

<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 105


Experimental acceleration of primary succession on abandoned tail<strong>in</strong>gs:<br />

role of surface biological crust<br />

<br />

Location<br />

Ecosystem types<br />

Restored area<br />

Elbe river lowland near Chvaletice, East Bohemia, <strong>Czech</strong> <strong>Republic</strong><br />

50°02' N, 15°26' E; altitude 200 m<br />

Initial successional stages<br />

40 ha<br />

Initial conditions<br />

The <strong>in</strong>dustrial deposit system at Chvaletice consists of three tail<strong>in</strong>gs<br />

(ore-washery bas<strong>in</strong>s) as a result of former pyrite ore m<strong>in</strong><strong>in</strong>g.<br />

In 1952 a surface m<strong>in</strong>e was opened here. Sulphidic gneisses and<br />

carbonate Fe-Mn ore deposits were <strong>the</strong> ma<strong>in</strong> waste material orig<strong>in</strong>at<strong>in</strong>g<br />

as a by-product of sulphuric acid production. This material was<br />

transported as sludge (mixed with water) to sedimentation bas<strong>in</strong>s.<br />

After a bas<strong>in</strong> had been filled up, dikes were built around it to fill <strong>the</strong><br />

artificial bas<strong>in</strong> with more sludge. This was repeated several times thus<br />

creat<strong>in</strong>g a f<strong>in</strong>al body of <strong>in</strong>dustrial deposits 18 m high (Kovář 2004).<br />

The quarry at Chvaletice was f<strong>in</strong>ally closed <strong>in</strong> <strong>the</strong> mid-1970s, after<br />

which <strong>the</strong> two older tail<strong>in</strong>gs were reclaimed <strong>in</strong> a conventional way<br />

(partly agriculturally, partly by tree plant<strong>in</strong>g; Kovář 1979). The third,<br />

youngest bas<strong>in</strong> has never been filled <strong>in</strong> completely and its surface has<br />

rema<strong>in</strong>ed unreclaimed s<strong>in</strong>ce <strong>the</strong> early 1980s and has become an important<br />

experimental site for <strong>the</strong> monitor<strong>in</strong>g and test<strong>in</strong>g of spontaneous<br />

colonisation of <strong>the</strong> substrate (Kovář et al. 2011).<br />

The ecotoxicological character of <strong>the</strong> site plays an important role<br />

<strong>in</strong> its reclamation. The high heavy metal concentrations, extreme pH<br />

values, and high sulphur and phenol content of <strong>the</strong> substrate complicate<br />

spontaneous processes which would lead to natural recovery<br />

(Kovář 1990, Vos & Opdam 1993). The soil surface is moderately<br />

consolidated by salt efflorescences (from gypsum and jarosite). Soil<br />

development greatly varies over <strong>the</strong> bas<strong>in</strong>, accord<strong>in</strong>g to <strong>the</strong> microtopography<br />

determ<strong>in</strong>ed by oxidation of sulphides and leach<strong>in</strong>g of<br />

salts. Secondary salt accumulation is determ<strong>in</strong>ed by <strong>the</strong> length of dry<br />

periods <strong>in</strong> <strong>the</strong> grow<strong>in</strong>g season. A strongly cemented horizon with red<br />

ferric oxides and gypsum has developed at lower depths of soil profiles<br />

(Rauch <strong>in</strong> Kovář 2004: 45–58).<br />

The non-reclaimed bas<strong>in</strong> has <strong>the</strong>refore rema<strong>in</strong>ed largely treeless<br />

and non-vegetated, and no manipulations were carried out after<br />

abandonment. In <strong>the</strong> genesis of acid sulphate soils, chemical processes<br />

prevail over <strong>the</strong> role of vegetation, which is reflected <strong>in</strong> major<br />

adverse characteristics of <strong>the</strong> soil profiles. The vascular plant diversity<br />

Fig. 1. <br />

-<br />

<br />

Fig. 2. <br />

<br />

<br />

106 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Fig. 3. <br />

<br />

<br />

Fig. 4. <br />

-<br />

<br />

<br />

is usually low <strong>in</strong> this toxic environment. In such places, <strong>the</strong> surface<br />

is often covered with biological soil crusts, orig<strong>in</strong>at<strong>in</strong>g spontaneously<br />

and analogous to similar crusts frequent <strong>in</strong> semi-arid and desert environments<br />

(Evans & Johansen 1999, Hroudová & Zákravský <strong>in</strong> Kovář<br />

2004: 235–247, Neustupa et al. 2009). Both types of crust are usually<br />

composed of fungal mycelia, cyanobacteria, algae, lichens, mosses<br />

and liverworts (Kovář 2004, Neustupa et al. 2009). The <strong>in</strong>itial state<br />

of <strong>the</strong> substrate surface resists colonisation by vascular plants (Palice<br />

& Soldán <strong>in</strong> Kovář 2004: 200–221, Pohlová <strong>in</strong> Kovář 2004: 222–234)<br />

because its roughness is <strong>in</strong>sufficient (extremely low <strong>in</strong>terception and<br />

retention capacity for plant seeds transported by w<strong>in</strong>d) and a humus<br />

soil layer is miss<strong>in</strong>g (absence of biotic nitrogen and carbon fixation).<br />

Results<br />

The addition of dry plant biomass resulted <strong>in</strong> a very rapid appearance<br />

of numerous seedl<strong>in</strong>gs, predom<strong>in</strong>antly of Calamagrostis epigejos.<br />

This resistant pioneer grass species exhibits both anemochorous and<br />

zoochorous (myrmecochorous) dispersal strategies depend<strong>in</strong>g on <strong>the</strong><br />

properties of <strong>the</strong> tail<strong>in</strong>g substrate (Bryndová & Kovář <strong>in</strong> Kovář 2004:<br />

267–276, Jiráčková & Dostál <strong>in</strong> Kovář 2004: 59–76). Establishment of<br />

<strong>the</strong> light seeds depends on surface roughness (retention and fixation)<br />

and microhabitat conditions. The <strong>in</strong>troduced plant litter moderates<br />

extremes of sal<strong>in</strong>ity and microclimate (Fig. 4).<br />

The <strong>in</strong>itial stage is dom<strong>in</strong>ated by Calamagrostis epigejos due to<br />

its high abundance <strong>in</strong> <strong>the</strong> surround<strong>in</strong>gs. After <strong>in</strong>itial large differences<br />

between treatment and control plots, <strong>the</strong> abundance of this<br />

grass showed convergence, suggest<strong>in</strong>g that <strong>the</strong> development does not<br />

necessarily <strong>in</strong>dicate a negative trend towards a blocked successional<br />

stage with solely this clonal grass (e.g. Prach & Pyšek 1994). In <strong>the</strong>se<br />

extreme ecological conditions, Calamagrostis epigejos plays a positive<br />

role, <strong>in</strong> contrast to its behaviour <strong>in</strong> o<strong>the</strong>r habitats such as spoil heaps<br />

after coal m<strong>in</strong><strong>in</strong>g. In <strong>the</strong> second year of our experiment, seedl<strong>in</strong>gs of<br />

<strong>the</strong> follow<strong>in</strong>g plant species were recorded: Cerastium holosteoides, Conyza<br />

canadensis, Epilobium sp., Pucc<strong>in</strong>ellia distans, Sonchus oleraceus,<br />

Taraxacum sect. Ruderalia, Tanacetum vulgare, Betula pendula and<br />

Populus tremula (Dlouhá 2000).<br />

The <strong>in</strong>crease <strong>in</strong> species number cont<strong>in</strong>ued dur<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g<br />

years reach<strong>in</strong>g a stage <strong>in</strong> which <strong>the</strong> local stand has become similar to<br />

that of <strong>the</strong> species pool <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g. The tree layer has reached<br />

a height of ca. 5 m (for details, see Kovář et al. 2011).<br />

The revegetation was significantly enhanced by <strong>the</strong> organic litter<br />

cover, which protected <strong>the</strong> rhizosphere aga<strong>in</strong>st heat, drought and salt<br />

<strong>in</strong>crustation (Rauch <strong>in</strong> Kovář 2004: 45–58, Vaňková & Kovář <strong>in</strong> Kovář<br />

2004: 30–45). This creation of a biological crust was based on a synergy<br />

of two effects of <strong>the</strong> added organic material: nutrient enrichment<br />

by decomposition of dead matter (Kovářová & Frantík <strong>in</strong> Kovář 2004:<br />

153–175) and creat<strong>in</strong>g a vital environment for ants as distributors of<br />

zoochoric plants (Jarešová & Kovář <strong>in</strong> Kovář 2004: 300–310).<br />

Conclusions<br />

Addition of dry local aboveground plant biomass to <strong>the</strong> surface<br />

of an abandoned tail<strong>in</strong>g suggests <strong>the</strong> follow<strong>in</strong>g functions <strong>in</strong> assisted<br />

<strong>restoration</strong> of ecologically extreme sites:<br />

— it provides substrate roughness and retention of seeds transported<br />

by w<strong>in</strong>d,<br />

— it protects <strong>the</strong> rhizosphere aga<strong>in</strong>st extreme heat, drought and salt<br />

<strong>in</strong>crustation,<br />

Objectives<br />

Investigat<strong>in</strong>g <strong>the</strong> effectiveness of <strong>in</strong>troduc<strong>in</strong>g dead plant biomass<br />

added to <strong>the</strong> bare surface of a non-reclaimed tail<strong>in</strong>g <strong>in</strong> terms of plant<br />

colonisation and speed of vegetation succession, species diversity and<br />

<strong>the</strong> facilitation of natural processes.<br />

Methods<br />

Experimental plots were designed (1993) as paired quadrats<br />

(one treatment, one control) with eight replicates (i.e. 16 squares of<br />

1.5 × 1.5 m). The bare substrate surface was covered with a 10–15<br />

cm thick layer of dry local plant biomass. All plots were divided <strong>in</strong>to<br />

15 × 15 cm squares for record<strong>in</strong>g vegetation features (Dlouhá 2000).<br />

Abundance of <strong>the</strong> aboveground biomass was assessed (1995–1999) by<br />

means of us<strong>in</strong>g a n<strong>in</strong>e-po<strong>in</strong>t scale (0–8).<br />

Fig. 5. -<br />

<br />

M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites 107


Fig. 6. <br />

<br />

<br />

— it positively modifies <strong>the</strong> hydrological regime of microsites,<br />

— it commences <strong>the</strong> creation of a humus soil layer and enrichment<br />

of <strong>the</strong> substrate with nutrients,<br />

— it facilitates colonisation by plant seedl<strong>in</strong>gs from seeds transported<br />

by anemochorous or zoochorous mechanisms,<br />

— generally speak<strong>in</strong>g, it is <strong>the</strong> essential factor <strong>in</strong> creat<strong>in</strong>g an effective<br />

biological crust enhanc<strong>in</strong>g and accelerat<strong>in</strong>g species diversity dur<strong>in</strong>g<br />

succession.<br />

Acknowledgements<br />

The work was supported by grant no. 206/93/2256 of <strong>the</strong> Grant<br />

Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, grant no. 200/1997/B/BIO of <strong>the</strong> Grant<br />

Agency of Charles University, by three grants of <strong>the</strong> Fund for Development<br />

of Universities of <strong>the</strong> <strong>Czech</strong> M<strong>in</strong>istry of Education and by<br />

research project no. 31300042 of <strong>the</strong> <strong>Czech</strong> M<strong>in</strong>istry of Education.<br />

References<br />

Dlouhá V. (2000): Functions of dead organic matter <strong>in</strong> primary succession<br />

on abandoned ore washery sedimentations bas<strong>in</strong> <strong>in</strong> Chvaletice.<br />

– Ms.; Master <strong>the</strong>sis, Department of Botany, Charles University,<br />

Prague.<br />

Evans R.D. & Johansen J.R. (1999): Microbiotic crusts and ecosystem<br />

processes. – Critical Reviews <strong>in</strong> Plant Sciences 18: 183–225.<br />

Kovář P. (1979): Geobotanical aspects of <strong>the</strong> sedimentation pond<br />

reclamation after pyrite process<strong>in</strong>g near surface m<strong>in</strong><strong>in</strong>g at Chvaletice.<br />

– Práce a studie, Příroda 11: 63–78.<br />

Kovář P. (1990): Ecotoxicological contam<strong>in</strong>ation processes: <strong>in</strong>teraction<br />

with vegetation. – Folia Geobotanica et Phytotaxonomica 25:<br />

407–430.<br />

Kovář P. (ed.) (2004): Natural recovery of human-made deposits <strong>in</strong><br />

landscape (biotic <strong>in</strong>teractions and ore/ash-slag artificial ecosystems).<br />

– Academia, Prague.<br />

Kovář P., Štefánek M. & Mrázek J. (2011): Responses of vegetation<br />

stages with woody dom<strong>in</strong>ants to stress and disturbance dur<strong>in</strong>g<br />

succession of abandoned tail<strong>in</strong>gs <strong>in</strong> cultural landscape. – Journal<br />

of Landscape Ecology 4/2: 35–48.<br />

Neustupa J., Škaloud P., Peksa O., Kubátová A., Soldán Z, Černá<br />

K., Prášil K., Bukovská P., Vojta J., Pažoutová M., Veselá J. &<br />

Škaloudová M. (2009): The biological soil crusts <strong>in</strong> Central European<br />

ecosystems, with special reference to taxonomic structure<br />

and ecology of <strong>the</strong> surface crusts at <strong>Czech</strong> ore-waste and ash-slag<br />

sedimentation <strong>in</strong>dustrial bas<strong>in</strong>s. – Novitates Botanicae Universitatis<br />

Carol<strong>in</strong>ae 19 (2008): 9–99.<br />

Prach K. & Pyšek P. (1994): Clonal plants – What is <strong>the</strong>ir role <strong>in</strong> succession?<br />

– Folia Geobotanica et Phytotaxonomica 29: 307–320.<br />

Vos C.C. & Opdam P. (eds) (1993): Landscape ecology of a stressed<br />

environment. – Chapman & Hall, London.<br />

108 M<strong>in</strong><strong>in</strong>g and post-<strong>in</strong>dustrial sites


Abandoned military areas


Introduction<br />

<br />

Both active and abandoned military areas have recently begun to<br />

be perceived as areas with high species diversity, host<strong>in</strong>g many protected<br />

and endangered species. Biologists have gradually discovered<br />

that <strong>the</strong>y serve as refuges for organisms which are rare or vanish<strong>in</strong>g<br />

from <strong>the</strong> countryside (Reif et al. 2011). Research shows that <strong>the</strong>se sites<br />

are of <strong>the</strong> same, and for some taxa even of greater importance than<br />

nature reserves with similar types of habitats (Cizek et al. submitted).<br />

Areas <strong>in</strong>fluenced by military activities are of key importance especially<br />

to organisms requir<strong>in</strong>g disturbed and early successional stages, which<br />

have practically disappeared from <strong>the</strong> landscape <strong>in</strong> <strong>the</strong> past decades.<br />

Biodiversity and military activity<br />

How have <strong>the</strong>se sites become biodiversity hotspots of <strong>the</strong> <strong>Czech</strong><br />

landscape and what is <strong>the</strong> reason for such a large number of species<br />

liv<strong>in</strong>g here? In military areas several factors, to which we owe <strong>the</strong> preservation<br />

of <strong>the</strong>ir species richness, have come toge<strong>the</strong>r. Most tra<strong>in</strong><strong>in</strong>g<br />

areas and shoot<strong>in</strong>g ranges were established <strong>in</strong> <strong>the</strong> 1950s or even before.<br />

They were established <strong>in</strong> an agricultural landscape, <strong>in</strong> those days<br />

still markedly heterogeneous, composed of a mosaic of small fields,<br />

pastures and open forests and <strong>the</strong>refore on average ra<strong>the</strong>r species-rich.<br />

Moreover, <strong>the</strong> tra<strong>in</strong><strong>in</strong>g areas were established on large areas, <strong>in</strong>clud<strong>in</strong>g<br />

a wide range of habitats <strong>in</strong> various successional stages and thus also<br />

a large number of species. The actual military activities subsequently<br />

produced a sufficiently dense mosaic of habitats allow<strong>in</strong>g survival of<br />

viable populations at a smaller scale than <strong>the</strong> surround<strong>in</strong>g landscape.<br />

Experience has shown that agricultural areas of a similar size would<br />

not be able to susta<strong>in</strong> a sufficiently structured mosaic of habitats. Impacts<br />

of military activities are naturally not equally convenient for all<br />

species, but support especially <strong>the</strong> creation of early successional stages<br />

and organisms associated with <strong>the</strong>se. It is <strong>the</strong> permanent or repeated<br />

disturbance that is essential for <strong>the</strong> survival of many endangered species<br />

(e.g. White & Jentsch 2004, Jentsch 2007). Ano<strong>the</strong>r important<br />

factor <strong>in</strong>fluenc<strong>in</strong>g species diversity of areas used by <strong>the</strong> military is <strong>the</strong><br />

fact that <strong>the</strong>se sites have escaped from eutrophication.<br />

Fig. 1. -<br />

<br />

<br />

<br />

Fig. 2. <br />

<br />

Fig. 3. <br />

<br />

Nature conservation<br />

In many aspects, <strong>the</strong> development of <strong>the</strong> nature conservationist’s<br />

view of military areas has been similar to that of o<strong>the</strong>r sites created<br />

by human activities, such as quarries, dumps, waste ash dumps, and<br />

sludge lagoons. Also <strong>the</strong>ir view of military areas went through a stage<br />

of comparison to a moon landscape and weep<strong>in</strong>g over destroyed nature.<br />

F<strong>in</strong>ally we have realised that on <strong>the</strong> contrary we have created,<br />

or more precisely, assisted <strong>in</strong> mak<strong>in</strong>g, biologically <strong>in</strong>terest<strong>in</strong>g areas<br />

where <strong>the</strong> species diversity is high not despite military activities, but<br />

thanks to <strong>the</strong>m. Unfortunately we are still fail<strong>in</strong>g <strong>in</strong> apply<strong>in</strong>g this f<strong>in</strong>d<strong>in</strong>g<br />

more broadly <strong>in</strong> practice and <strong>in</strong> abandon<strong>in</strong>g classical methods<br />

when design<strong>in</strong>g <strong>the</strong> management of <strong>the</strong>se areas.<br />

Military tra<strong>in</strong><strong>in</strong>g activities are heterogeneous <strong>in</strong> space and time,<br />

which leads to formation and ma<strong>in</strong>tenance of a mosaic of variously<br />

chang<strong>in</strong>g habitats. It is <strong>the</strong> dynamics of army activities <strong>in</strong>clud<strong>in</strong>g<br />

strong disturbances that is <strong>the</strong> essential factor for ma<strong>in</strong>tenance of diversity.<br />

Impacts of military activities thus open up a liv<strong>in</strong>g space even<br />

for less competitive, mostly endangered species. This is a substantially<br />

different approach from <strong>the</strong> usual management of open habitat communities,<br />

which are currently restored by graz<strong>in</strong>g or mow<strong>in</strong>g, with<br />

<strong>the</strong> objective to preserve a more or less stable state. This sometimes<br />

garden<strong>in</strong>g-like ma<strong>in</strong>tenance of a successional stage of a certa<strong>in</strong> habi-<br />

Abandoned military areas 111


tat, however, is only convenient for some target species. Disturbances<br />

have not yet been fully appreciated <strong>in</strong> common conservation practice<br />

and are mostly understood as a factor block<strong>in</strong>g succession.<br />

At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> 1990s, <strong>the</strong> areas used by <strong>the</strong> army underwent<br />

a considerable transformation. After departure of <strong>the</strong> Soviet<br />

army and reduction of <strong>the</strong> <strong>Czech</strong> (<strong>Czech</strong>oslovak) army at most of <strong>the</strong><br />

tra<strong>in</strong><strong>in</strong>g grounds and shoot<strong>in</strong>g ranges, military activities were <strong>in</strong>hibited.<br />

Three tra<strong>in</strong><strong>in</strong>g areas, Milovice–Mladá, Mimoň (near Ralsko), and<br />

Dobrá Voda <strong>in</strong> <strong>the</strong> Šumava range, were even abandoned completely.<br />

Some sites have been used commercially, o<strong>the</strong>rs changed <strong>in</strong>to arable<br />

land or homogenous grasslands, and some were afforested, supported<br />

by subsidies. Several of <strong>the</strong>m were designated as nature reserves, e.g.<br />

Bzenec Tra<strong>in</strong><strong>in</strong>g Area, Na Plachtě 2 (Hradec Králové), Tankodrom<br />

(Rakovník), and Pod Benáteckým vrchem (Milovice). Most of <strong>the</strong> areas<br />

have however rema<strong>in</strong>ed unnoticed by both <strong>in</strong>vestors and nature<br />

conservation authorities.<br />

Development s<strong>in</strong>ce 1990<br />

Twenty years after military tra<strong>in</strong><strong>in</strong>g activities ended, bare soil<br />

has disappeared due to succession, grasslands have grown dense, and<br />

shrub and tree vegetation has expanded massively. Some tra<strong>in</strong><strong>in</strong>g areas<br />

or parts of <strong>the</strong>m have become practically impassable. It may be<br />

clear which negative <strong>in</strong>fluence <strong>the</strong>se changes have had to <strong>the</strong> species<br />

composition of <strong>the</strong>se sites. Unfortunately, not even <strong>the</strong> designated<br />

nature reserves have been managed optimally dur<strong>in</strong>g that period.<br />

Some have rema<strong>in</strong>ed practically without management (e.g. Tankodrom),<br />

at o<strong>the</strong>rs <strong>in</strong>appropriate management was implemented (e.g.<br />

homogenous mechanical mow<strong>in</strong>g at Pod Benáteckým vrchem), and<br />

elsewhere management with <strong>the</strong> ambition to preserve selected habitats<br />

(Na Plachtě 2) was applied. Designat<strong>in</strong>g abandoned military areas<br />

as nature reserves unfortunately meant exclusion of motocross riders<br />

and off-roaders, which actually helped avoid<strong>in</strong>g <strong>the</strong> worst <strong>in</strong> some unprotected<br />

areas of this type.<br />

Over <strong>the</strong> past few years <strong>the</strong>re has been a lot of agitation about military<br />

areas. At many sites various bus<strong>in</strong>ess projects are be<strong>in</strong>g planned<br />

or have been realised, e.g. solar power plants (Stříbro, Ralsko) and<br />

amusement centres (Ralsko). Also nature conservation was active and<br />

designated more than 20 sites as SCIs. However more importantly, <strong>the</strong><br />

management <strong>in</strong>terventions at <strong>the</strong>se sites have changed and <strong>the</strong> first<br />

projects simulat<strong>in</strong>g or us<strong>in</strong>g military activities have appeared. Activities<br />

at Milovice–Mladá and Na Plachtě are def<strong>in</strong>itely noteworthy; for<br />

details, see <strong>the</strong> case studies.<br />

Desired management<br />

Especially simulation or maximum use of military activities which<br />

have produced such species-rich places are <strong>the</strong> key to preserv<strong>in</strong>g <strong>the</strong><br />

biological qualities of <strong>the</strong> sites. No data are yet available to support<br />

this argument, but monitor<strong>in</strong>g is be<strong>in</strong>g carried out on <strong>the</strong> impact of<br />

particular activities and comb<strong>in</strong>ations of <strong>the</strong>m. There is, never<strong>the</strong>less,<br />

one unquestionable argument for <strong>the</strong> approach of simulat<strong>in</strong>g military<br />

activities. The army-used areas were usually established <strong>in</strong> a landscape<br />

of moderate quality at <strong>the</strong> time (<strong>the</strong> 1940s and 1950s). Military activities<br />

have not only preserved <strong>the</strong> local species to date, but <strong>the</strong> conditions<br />

at <strong>the</strong>se sites were so favourable that <strong>the</strong> species have survived<br />

even 20 years without management and are only vanish<strong>in</strong>g now.<br />

It <strong>the</strong>refore seems logical to cont<strong>in</strong>ue <strong>the</strong> methods <strong>in</strong>fluenc<strong>in</strong>g<br />

and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> areas for decades. It would def<strong>in</strong>itely be unfortunate<br />

to <strong>in</strong>troduce uniform types of management such as mow<strong>in</strong>g large<br />

Fig. 4. -<br />

<br />

112 Abandoned military areas


Fig. 5. <br />

<br />

<br />

areas, which cannot provide a heterogeneous mosaic of habitats with<br />

sufficient representation of open substrate and sparse grassland vegetation.<br />

The first results of <strong>in</strong>terventions at Milovice and Na Plachtě<br />

show that we are head<strong>in</strong>g <strong>in</strong> <strong>the</strong> right direction. These confirm that<br />

it is necessary to <strong>in</strong>corporate a wide range of disturbances simulat<strong>in</strong>g<br />

<strong>the</strong> impact of driv<strong>in</strong>g with tracked and wheeled vehicles <strong>in</strong> <strong>the</strong>se<br />

areas, and to restore m<strong>in</strong>or variations <strong>in</strong> <strong>the</strong> soil horizon formed while<br />

mak<strong>in</strong>g trenches and dugouts or by explosives. It is also essential to<br />

<strong>in</strong>clude burn<strong>in</strong>g <strong>in</strong> <strong>the</strong> management. These activities have of course to<br />

be comb<strong>in</strong>ed randomly <strong>in</strong> space and time.<br />

We have to po<strong>in</strong>t out here that <strong>the</strong>se methods do not only concern<br />

non-forest habitats. Most of all <strong>the</strong> sites Milovice–Mladá and<br />

Ralsko also <strong>in</strong>clude large forest stands, which are often ra<strong>the</strong>r atypical<br />

<strong>in</strong> character compared to common economically exploited forests,<br />

especially around shoot<strong>in</strong>g ranges and tank tra<strong>in</strong><strong>in</strong>g areas which have<br />

been formed by fire, explosions or disturbances by heavy equipment.<br />

The result is strongly differentiated stands <strong>in</strong> terms of age and structure,<br />

with a large proportion of pioneer trees. In some places we can<br />

see forests comparable to savannahs <strong>in</strong> <strong>the</strong>ir tree density. Forest stands<br />

<strong>in</strong>fluenced by military activities are characterised by a large proportion<br />

of dead and decay<strong>in</strong>g wood, a high rate of <strong>in</strong>solated trees and<br />

undergrowth, and by a considerable proportion of open soil. They are<br />

also a refuge of many protected and endangered organisms (cf. Vitner<br />

et al. 2001). These stands are unique <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> and are<br />

rapidly disappear<strong>in</strong>g due to succession and <strong>in</strong>troduction of standard<br />

forestry management.<br />

Introduc<strong>in</strong>g management <strong>in</strong> abandoned military areas and conserv<strong>in</strong>g<br />

<strong>the</strong>m also has ano<strong>the</strong>r substantial benefit for nature conservation.<br />

Proper care of military areas requires <strong>the</strong> presence and activity of<br />

people. Nature conservation can thus offer <strong>the</strong> public places to spend<br />

<strong>the</strong>ir leisure time, places practically miss<strong>in</strong>g from <strong>the</strong> current <strong>Czech</strong><br />

landscape, places where a nearly unlimited scale of activities can be<br />

performed. Off-roaders, quad-bikers, horse riders, and pa<strong>in</strong>tballers<br />

are all welcome. At many sites various meet<strong>in</strong>gs, musical and o<strong>the</strong>r<br />

events could be organised, because what is <strong>the</strong> difference between<br />

trampl<strong>in</strong>g of hundreds of soldiers and hundreds of techno dancers?<br />

Thanks to this approach nature conservation will have a chance to<br />

step a little out of <strong>the</strong>ir often unjustly understood position of a prohibit<strong>in</strong>g<br />

<strong>in</strong>stitution and an enemy of people who do not stay on <strong>the</strong><br />

marked trails <strong>in</strong> nature reserves.<br />

Military areas also provide a sufficiently large area for <strong>the</strong> return<br />

of large mammals, especially <strong>the</strong> European Bison, to our landscape.<br />

The first knowledge is collected by <strong>the</strong> Military Forests and Estates,<br />

Milovice, which is consider<strong>in</strong>g <strong>in</strong>troduction of <strong>the</strong> European Bison<br />

<strong>in</strong> <strong>the</strong> Doupov Mounta<strong>in</strong>s <strong>in</strong> collaboration with Nature Conservation<br />

Authority of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Restor<strong>in</strong>g populations of native herbivore<br />

species could be a good opportunity to restore and ma<strong>in</strong>ta<strong>in</strong><br />

naturally open forest and open vegetation <strong>in</strong> <strong>the</strong>se and o<strong>the</strong>r selected<br />

areas <strong>in</strong> a cost-effective way.<br />

Military areas are also important <strong>in</strong> offer<strong>in</strong>g an example of management<br />

<strong>in</strong> non-military protected areas. The species composition <strong>in</strong><br />

<strong>the</strong> areas <strong>in</strong>fluenced by <strong>the</strong> army, where we can encounter comb<strong>in</strong>ations<br />

of e.g. steppe and ruderal plants, shows us on a small scale how<br />

<strong>the</strong> landscape used to function <strong>in</strong> <strong>the</strong> past. Knowledge of this pr<strong>in</strong>ciple<br />

makes us understand why a lot of – especially <strong>in</strong>sect – species are<br />

dy<strong>in</strong>g out despite well-targeted management and why <strong>the</strong> landscape<br />

structure, particularly its current division <strong>in</strong>to e.g. meadows, forests<br />

and steppes, does not correspond with <strong>the</strong> requirements of a range<br />

of (most of all animal) species. We would be able to support a large<br />

number of endangered and protected species this way, <strong>in</strong>clud<strong>in</strong>g those<br />

preferr<strong>in</strong>g early successional stages, just by diversify<strong>in</strong>g <strong>the</strong> current<br />

management practice and adjust<strong>in</strong>g its objectives.<br />

Acknowledgements<br />

The research on abandoned military tra<strong>in</strong><strong>in</strong>g areas was supported<br />

by grant VaV/SP/2d3/153/08.<br />

References<br />

Cizek O., Vrba P., Benes J., Hrazsky Z., Koptik J., Kucera T., Marhoul<br />

P., Zamecnik J. & Konvicka M. (submitted): Conservation potential<br />

of abandoned military areas matches that of established reserves:<br />

Plants and butterflies <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. – PLoS ONE.<br />

Jentsch A. (2007): Restoration ecology <strong>in</strong> <strong>the</strong> need to restore process<br />

– <strong>the</strong> crucial role of disturbance regime. – Restoration Ecology<br />

15: 334–339.<br />

Reif J., Marhoul P., Čížek O. & Konvička M. (2011): Abandoned military<br />

tra<strong>in</strong><strong>in</strong>g sites are an overlooked refuge for at-risk open habitat<br />

bird species. – Biodiversity Conservation 20: 3645–3662.<br />

Vitner J., Vrabec V. & Matouš J. (2001): Předběžný soupis druhů<br />

členovců (Arthropoda: Crustacea, Araneida, Insecta) významných<br />

z hlediska územní ochrany bývalého VVP Mladá (Prelim<strong>in</strong>ary<br />

list of arthropods (Arthropoda: Crustacea, Araneida, Insecta)<br />

important <strong>in</strong> nature conservation of <strong>the</strong> former Mladá military<br />

tra<strong>in</strong><strong>in</strong>g area). – Příroda 8: 65–74.<br />

White P.S. & Jentsch A. (2004): Disturbance, succession and community<br />

assembly <strong>in</strong> terrestrial plant communities. – In: Temperton<br />

V.M., Hobbs R.J., Nuttle T. & Halle S. (eds), Assembly rules and<br />

<strong>restoration</strong> ecology: bridg<strong>in</strong>g <strong>the</strong> gap between <strong>the</strong>ory and practice,<br />

pp. 341–366, Island Press, Wash<strong>in</strong>gton, DC.<br />

Abandoned military areas 113


Disturbance management, a way to preserve species-rich communities <strong>in</strong><br />

abandoned military areas<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Milovice–Mladá, 40 km NE of Prague, central <strong>Czech</strong> <strong>Republic</strong><br />

50°16' N, 14°53' E; altitude 190–260 m<br />

NR (Pod Benáteckým vrchem), SCI (Milovice-Mladá – 1250 ha)<br />

Approximately half of <strong>the</strong> SCI consists of non-forest ecosystems with dom<strong>in</strong>ant xero<strong>the</strong>rmic, mostly dense<br />

grassland vegetation (predom<strong>in</strong>antly Bromion erecti and Arrhena<strong>the</strong>rion elatioris) and adjacent semi-ruderal<br />

and ruderal vegetation; <strong>the</strong> o<strong>the</strong>r half is covered by forest stands with prevail<strong>in</strong>g Quercus robur and Betula<br />

pendula (predom<strong>in</strong>antly Genisto germanicae-Quercion), still noticeable <strong>in</strong>fluenced by <strong>the</strong> military activities<br />

which have formed <strong>the</strong>m (Čížek & Zámečník 2007)<br />

135 ha: Pod Benáteckým vrchem NR 69 ha, Pozorovatelna ca. 60 ha, Trav<strong>in</strong>y ca. 6 ha<br />

Landscape management programmes, Operational Programme Environment, Agri-environmental schemes,<br />

Regional Authority of <strong>the</strong> Central Bohemian Region, Hutur NGO, Daphne CZ – Institute of Applied Ecology<br />

€300–500/year (management simulat<strong>in</strong>g military activities)<br />

Initial conditions<br />

The history of Milovice-Mladá Military Tra<strong>in</strong><strong>in</strong>g Area dates back<br />

to 1904, mak<strong>in</strong>g it one of our oldest areas reserved for military tra<strong>in</strong><strong>in</strong>g.<br />

S<strong>in</strong>ce <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g it was planned for tra<strong>in</strong><strong>in</strong>g of various troops<br />

and until 1950 even artillery fire was practised <strong>in</strong> <strong>the</strong> area. From <strong>the</strong><br />

1950s to 1991, when <strong>the</strong> army abandoned <strong>the</strong> area, tank tra<strong>in</strong><strong>in</strong>g prevailed.<br />

After abandonment of <strong>the</strong> 59 km 2 area, Pod Benáteckým vrchem<br />

NR was designated on an area of 70 ha. However, unsuitable man-<br />

agement was applied, consist<strong>in</strong>g of partial mechanical mow<strong>in</strong>g of <strong>the</strong><br />

area. The rema<strong>in</strong><strong>in</strong>g non-forest habitats of <strong>the</strong> tra<strong>in</strong><strong>in</strong>g area were left<br />

without management and <strong>the</strong> forests were managed <strong>in</strong> an economic<br />

way.<br />

Most habitats are currently biologically degraded and show a large<br />

proportion of expansive grass and shrub species. Long-term absence<br />

of <strong>in</strong>terventions has led to a dense sward and reduced proportion of<br />

dicotyledonous plants. The orig<strong>in</strong>ally mostly open forest stands have<br />

lost <strong>the</strong>ir character due to <strong>the</strong> cessation of military activities, subse-<br />

Fig. 1. <br />

114 Abandoned military areas


quent significant expansion of shrub and most of all by <strong>in</strong>troduc<strong>in</strong>g<br />

traditional forestry management. These changes have already led to<br />

<strong>the</strong> ext<strong>in</strong>ction of animals: many species associated with early successional<br />

stages are currently miss<strong>in</strong>g from <strong>the</strong> site, e.g. <strong>the</strong> butterflies<br />

Dusky Meadow Brown (Hyponephele lycaon), and Grayl<strong>in</strong>g (Hipparchia<br />

semele), and Woodlark (Lullula arborea), a rare bird.<br />

Abiotic conditions<br />

The m<strong>in</strong>eral bedrock consists of Turonian marly siltstones and<br />

sandstones of <strong>the</strong> <strong>Czech</strong> Cretaceous bas<strong>in</strong>, <strong>in</strong> places covered with fluvial<br />

sand and gravel sediments. Average annual temperature is 8 °C,<br />

average annual ra<strong>in</strong>fall is 578 mm.<br />

Objectives<br />

The objective of <strong>the</strong> management is to simulate impacts of army<br />

activities, first of all by repeated <strong>in</strong>itiation of succession.<br />

Results<br />

Three studies have been carried out <strong>in</strong> <strong>the</strong> area for three years and<br />

1.5 year, respectively. The results have not been analysed <strong>in</strong> detail yet<br />

and so <strong>the</strong> follow<strong>in</strong>g provides a verbal description of <strong>the</strong> ma<strong>in</strong> trends.<br />

The management implemented <strong>in</strong> Pod Benáteckým vrchem NR<br />

has led to a substantial <strong>in</strong>crease <strong>in</strong> <strong>the</strong> proportion of dicotyledonous<br />

plants (see Fig. 3) <strong>in</strong> structurally homogenous vegetation with dom<strong>in</strong>ant<br />

Bromus erectus or Brachypodium p<strong>in</strong>natum. The total <strong>in</strong>crease<br />

<strong>in</strong> proportion and number of dicotyledonous plant species, <strong>in</strong>clud<strong>in</strong>g<br />

semi-ruderal and ruderal ones, has caused an <strong>in</strong>crease <strong>in</strong> nectar. An<br />

<strong>in</strong>terest<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g is <strong>the</strong> fact that <strong>the</strong> same management <strong>in</strong>terventions<br />

has led to a stronger <strong>in</strong>crease <strong>in</strong> <strong>the</strong> number of xero<strong>the</strong>rmic species<br />

and <strong>the</strong>ir fertility <strong>in</strong> (ruderal) habitats richer <strong>in</strong> nutrients and humidity<br />

than <strong>in</strong> typical steppe vegetation, which is most likely a reflection<br />

of <strong>the</strong> ecological requirements of <strong>the</strong>se species.<br />

Restoration measures<br />

The <strong>in</strong>terventions are currently limited to <strong>the</strong> non-forest part of<br />

<strong>the</strong> Military Tra<strong>in</strong><strong>in</strong>g Area.<br />

2010–2011 Management simulat<strong>in</strong>g military activities was<br />

carried out on 69 ha (Pod Benáteckým vrchem<br />

NR): driv<strong>in</strong>g with wheeled and tracked vehicles,<br />

dragg<strong>in</strong>g a set of rails, remov<strong>in</strong>g <strong>the</strong> sward and<br />

topsoil with an excavator and a tracked bulldozer,<br />

annual burn<strong>in</strong>g of parts of grasslands, <strong>restoration</strong><br />

and creation of new depressions simulat<strong>in</strong>g craters<br />

after ammunition disposal and dugouts for equipment.<br />

All activities were distributed randomly,<br />

thus creat<strong>in</strong>g a chang<strong>in</strong>g mosaic of habitats differently<br />

disturbed and <strong>in</strong> various stages of succession.<br />

Disturbances were also carried out by off-road riders<br />

and cyclists. Sheep and goat graz<strong>in</strong>g is planned.<br />

2010–present Regular monitor<strong>in</strong>g of <strong>the</strong> abundance of plants<br />

and selected animal groups.<br />

2011 Burn<strong>in</strong>g, sheep graz<strong>in</strong>g and mow<strong>in</strong>g on approx. 60<br />

ha (Pozorovatelna). In <strong>the</strong> next years disturbances<br />

by military equipment should be added to <strong>the</strong><br />

management. Elim<strong>in</strong>ation of shrub and <strong>in</strong>troduction<br />

of graz<strong>in</strong>g on approx. 6 ha (Trav<strong>in</strong>y).<br />

Monitor<strong>in</strong>g <strong>the</strong> impact of management<br />

The objective of <strong>the</strong> research is to f<strong>in</strong>d out how <strong>the</strong> implemented<br />

activities lead to (a) denudation of <strong>the</strong> soil, (b) changes <strong>in</strong> grassland<br />

density, and (c) changes <strong>in</strong> <strong>the</strong> proportion of dicotyledonous plants,<br />

and what changes <strong>the</strong>n occur <strong>in</strong> species composition and abundance<br />

of <strong>in</strong>vertebrates and vertebrates. Results of <strong>the</strong> research should allow<br />

us to adjust possible negative <strong>in</strong>fluence of <strong>the</strong> management to <strong>the</strong> species<br />

composition and abundance of particular species, and to m<strong>in</strong>imise<br />

f<strong>in</strong>ancial costs.<br />

The follow<strong>in</strong>g methods were used.<br />

1. A series of permanent transects were marked out <strong>in</strong> <strong>the</strong> area,<br />

where data are collected on vegetation, selected groups of <strong>in</strong>vertebrates<br />

(butterflies, ground beetles, ants, spiders) and birds.<br />

2. In <strong>the</strong>rmophilous Bromion erecti and Cirsio-Brachypodion p<strong>in</strong>nati<br />

grasslands a small-scale experiment was set up <strong>in</strong> order to obta<strong>in</strong><br />

basic data on <strong>the</strong> progress of succession after various types of onetime<br />

disturbance: (a) driv<strong>in</strong>g with tracked vehicles, (b) remov<strong>in</strong>g<br />

<strong>the</strong> top soil layer with <strong>the</strong> sward, and (c) application of a gram<strong>in</strong>icide<br />

to elim<strong>in</strong>ate competitive, dom<strong>in</strong>ant grasses (cf. Hurst & John<br />

1999).<br />

Fig. 2. -<br />

-<br />

<br />

Long-term preservation of xero<strong>the</strong>rmic species <strong>in</strong> semi-ruderal<br />

habitats is thus often obta<strong>in</strong>ed by a suitable arrangement of <strong>in</strong>terventions<br />

limit<strong>in</strong>g succession and lead<strong>in</strong>g to its repeated permanent<br />

<strong>in</strong>itiation (cf. Konvička et al. 2005). Th is has been one of <strong>the</strong> basic<br />

reasons allow<strong>in</strong>g an <strong>in</strong>crease <strong>in</strong> abundance and fur<strong>the</strong>r expansion of<br />

many (but not only) protected and endangered <strong>in</strong>vertebrate species.<br />

This can be illustrated by e.g. <strong>in</strong>creas<strong>in</strong>g numbers of <strong>the</strong> critically endangered<br />

butterflies Phengaris alcon and Nemophora violellus. After<br />

<strong>in</strong>troduction of measures which are drastic at first glance, <strong>the</strong> dense<br />

semi-ruderal vegetation, <strong>in</strong> which Gentiana cruciata plants regenerate<br />

well, has substantially opened up, <strong>the</strong> number and size of flower<strong>in</strong>g<br />

shoots have <strong>in</strong>creased and many seedl<strong>in</strong>gs have been found around<br />

<strong>the</strong> plants. Also butterfly species such as Polyommatus daphnis, P.<br />

amandus, Zygaena ephialtes, and Z. angelicae have <strong>in</strong>creased <strong>in</strong> abundance.<br />

These species have rapidly settled areas with open, tall-sward<br />

grassland vegetation. There are however many <strong>in</strong>vertebrate species<br />

preferr<strong>in</strong>g low-sward xero<strong>the</strong>rmic grasslands, which do not settle <strong>in</strong><br />

semi-ruderal vegetation even though it is open vegetation. Accord<strong>in</strong>g<br />

to observations <strong>the</strong>se are Spialia sertorius, Zygaena carniolica and<br />

Jordanita globulariae. In xero<strong>the</strong>rmic grasslands, however, even <strong>the</strong>se<br />

species prefer disturbed spots with sparse vegetation.<br />

Prelim<strong>in</strong>ary analyses have demonstrated differences <strong>in</strong> <strong>the</strong> course<br />

of succession after us<strong>in</strong>g different types of disturbance. All types of<br />

basic disturbance show an <strong>in</strong>crease <strong>in</strong> proportion of dicotyledonous<br />

plants, but <strong>the</strong>re are differences <strong>in</strong> species composition. Mechanical<br />

disturbance, unlike gram<strong>in</strong>icide use, suppresses Thymus spp., Prunella<br />

spp., Dianthus spp., and Tetragonolobus maritimus.<br />

Abandoned military areas 115


Fig. 3. -<br />

<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Designation of <strong>the</strong> area as a SCI protects it aga<strong>in</strong>st strong pressures<br />

of economic utilisation (urban expansion, solar power plants,<br />

an airport, etc.). On <strong>the</strong> o<strong>the</strong>r hand, implementation of suitable management<br />

which is quite unusual <strong>in</strong> <strong>Czech</strong> nature conservation is hard<br />

to enforce. Moreover, any management is very costly due to <strong>the</strong> large<br />

size of <strong>the</strong> area. Restoration of non-forest habitats and re<strong>in</strong>troduction<br />

of disturbances has <strong>the</strong>refore raised conflicts between representatives<br />

of NGOs and state nature conservation authorities.<br />

Out of <strong>the</strong> total area of 600 ha of open vegetation, quality management<br />

has been implemented on only 70 ha (Pod Benáteckým vrchem<br />

NR). On ano<strong>the</strong>r approx. 70 ha (Pozorovatelna and Trav<strong>in</strong>y shoot<strong>in</strong>g<br />

ranges) efforts are be<strong>in</strong>g made to adjust <strong>the</strong> management appropriately.<br />

In contrast, <strong>the</strong>re is no activity on 600 ha of forest stands and,<br />

for various adm<strong>in</strong>istrative and fi nancial reasons, no conservation<br />

measures are planned ei<strong>the</strong>r. A greater effort of nature conservation<br />

authorities could <strong>the</strong>refore be aimed at us<strong>in</strong>g cost-free management<br />

offered by e.g. off-roaders and similar <strong>in</strong>terest groups.<br />

Public support<br />

Two military associations, seated <strong>in</strong> <strong>the</strong> neighbour<strong>in</strong>g villages<br />

have jo<strong>in</strong>ed <strong>the</strong> project. One of <strong>the</strong>m is currently us<strong>in</strong>g its equipment<br />

(tanks and <strong>in</strong>fantry combat vehicles), <strong>the</strong> o<strong>the</strong>r one is expected to do<br />

<strong>the</strong> same <strong>in</strong> <strong>the</strong> future.<br />

Acknowledgements<br />

We would like to thank especially Pavel Vaňhát (Regional Authority<br />

of <strong>the</strong> Central Bohemian Region), who has succeeded <strong>in</strong> enforc<strong>in</strong>g<br />

and implement<strong>in</strong>g management <strong>in</strong> <strong>the</strong> Pod Benáteckým vrchem NR.<br />

We would also like to thank all those who have recognised <strong>the</strong> considerable<br />

biological value of this area and supported its conservation. The<br />

research was f<strong>in</strong>ancially supported by grant VaV/SP/2d3/153/08 of <strong>the</strong><br />

M<strong>in</strong>istry of <strong>the</strong> Environment and a grant from <strong>the</strong> Regional Authority<br />

of <strong>the</strong> Central Bohemian Region (contract no. 361/OŽP/2008).<br />

References<br />

Čížek O. & Zámečník J. (2007): Plán péče o evropsky významnou<br />

lokalitu (návrh na vyhlášení přírodní památky) Milovice–Mladá<br />

a PR Pod Benáteckým vrchem na období 2008–2017 (Management<br />

plan for Milovice-Mladá SCI (proposed to be designated a<br />

Nature Monument) and Pod Benáteckým vrchem Nature Reserve<br />

for <strong>the</strong> period 2008–2017). – Ms.; management plan, Krajský úřad<br />

Středočeského kraje, Praha.<br />

Hurst A. & John E. (1999): The effectiveness of glyphosate for controll<strong>in</strong>g<br />

Brachypodium p<strong>in</strong>natum <strong>in</strong> chalk grassland. – Biological<br />

Conservation 89: 261–265.<br />

Konvička M., Beneš J. & Čížek L. (2005): Ohrožený hmyz nelesních<br />

stanovišť: ochrana a management (Endangered <strong>in</strong>sects of open<br />

habitats: conservation and management). – Sagittaria, Olomouc.<br />

116 Abandoned military areas


Restor<strong>in</strong>g disturbance and open vegetation <strong>in</strong> <strong>the</strong> former military tra<strong>in</strong><strong>in</strong>g<br />

area Na Plachtě<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Na Plachtě NR, SE outskirts of Hradec Králové, nor<strong>the</strong>ast Bohemia<br />

50°11'18" N, 15°51'35" E; altitude 230–250 m<br />

NR, SCI<br />

Temporary and permanent pools, open-sand vegetation (Koelerio-Corynephoretea), dry and moist grasslands<br />

(Violion can<strong>in</strong>ae, Moli nion caeruleae, Bromion erecti, and Trifolion medii), dry lowland heaths (Euphorbio<br />

cyparissiae-Callunion vulgaris), moist heathland (Genisto pilosae-Vacc<strong>in</strong>ion)<br />

12 ha<br />

Landscape management programmes, Hradec Králové Region Authority, volunteers (public, NGOs, East<br />

Bohemian Friends of Military Equipment Club)<br />

Travers<strong>in</strong>g by military vehicles €2000/ha, 85% f<strong>in</strong>anced by <strong>the</strong> East Bohemian Friends of Military Equipment<br />

Club; <strong>restoration</strong> of pools €2000 per year (ca. €12/m 3 ); mow<strong>in</strong>g €800/ha; elim<strong>in</strong>ation of scrub €0 (sold<br />

as firewood and wood chips); rotational sheep and goat graz<strong>in</strong>g <strong>in</strong>cl. supervision €2800/ha<br />

Initial conditions<br />

The nor<strong>the</strong>rn half of <strong>the</strong> area of <strong>in</strong>terest was communal property<br />

for centuries and used for graz<strong>in</strong>g. In 1897 <strong>the</strong> area became a military<br />

tra<strong>in</strong><strong>in</strong>g area (until 2000) and was expanded by fell<strong>in</strong>g forest <strong>in</strong> <strong>the</strong><br />

o<strong>the</strong>r part of <strong>the</strong> area. In <strong>the</strong> first half of <strong>the</strong> 20 th century <strong>the</strong> nor<strong>the</strong>rn<br />

part was also used as an airport.<br />

Military activity repeatedly disturbed <strong>the</strong> surface of <strong>the</strong> tra<strong>in</strong><strong>in</strong>g<br />

ground with heavy vehicles, and digg<strong>in</strong>g trenches created marshes.<br />

Sometimes fires occurred, which had a positive impact on species liv<strong>in</strong>g<br />

on <strong>the</strong> former pastures.<br />

Term<strong>in</strong>ation of military tra<strong>in</strong><strong>in</strong>g and consequently cessation of<br />

<strong>the</strong> regular disturbance have led to encroachment of <strong>the</strong> area with<br />

shrubs and trees (<strong>in</strong> 2008 over ca. 80% of <strong>the</strong> area). In <strong>the</strong> nor<strong>the</strong>rn<br />

part even a dump of construction waste, and partly also domestic<br />

waste, have appeared. Part of <strong>the</strong> area has been built up.<br />

These changes have led to a loss of early successional habitats and<br />

<strong>the</strong>refore also to a decl<strong>in</strong>e or disappearance of populations of a range<br />

of important species. For example, <strong>the</strong> last European Ground Squirrel<br />

(Spermophilus citellus) population <strong>in</strong> <strong>the</strong> Hradec Králové Region has<br />

gone ext<strong>in</strong>ct (Mikátová 1997).<br />

The biological value of <strong>the</strong> area was first reported <strong>in</strong> <strong>the</strong> 1970s.<br />

To date, approximately 720 plant, 69 moss, 107 mushroom and more<br />

than 2300 animal species have been recorded <strong>in</strong> <strong>the</strong> former tra<strong>in</strong><strong>in</strong>g<br />

area, <strong>in</strong>clud<strong>in</strong>g 900 beetles, 50 dragonflies, 750 butterflies, 220 Hymenoptera,<br />

114 Diptera, 40 molluscs, 16 amphibians, 5 reptiles, 140<br />

birds, and 14 mammals (Mikát et al. 2004).<br />

Fig. 1. <br />

Abandoned military areas 117


Restoration measures<br />

Fig. 2. <br />

<br />

Abiotic conditions<br />

The bedrock is marlstone with protrud<strong>in</strong>g marl, gravel and sand<br />

at <strong>the</strong> top. The groundwater table is strongly <strong>in</strong>fluenced by ra<strong>in</strong>fall,<br />

thickness of <strong>the</strong> sand layer and depth of <strong>the</strong> impermeable marl layer<br />

(mostly 0–2 m). Thus shallow temporary pools filled by ra<strong>in</strong>water as<br />

well as deeper pools <strong>in</strong>fluenced by <strong>the</strong> groundwater table occur. Annual<br />

precipitation is 590–630 mm and mean annual air temperature<br />

is 8.5 °C.<br />

Objectives<br />

Restoration and expansion of open vegetation habitats, i.e. grassland,<br />

heathland, open sand, pools and groups of <strong>in</strong>solated trees (exposed<br />

to sunlight).<br />

Fig. 3. <br />

<br />

Up to <strong>the</strong> late<br />

1970s<br />

S<strong>in</strong>ce <strong>the</strong><br />

1990s<br />

Around 2005<br />

First conservation attempts, at first limited to<br />

safeguard<strong>in</strong>g territorial protection and prevent<strong>in</strong>g<br />

dump<strong>in</strong>g.<br />

Mow<strong>in</strong>g by volunteers, and cleanup of small plots.<br />

Term<strong>in</strong>ation of encroachment of plots with preserved<br />

open vegetation, <strong>in</strong>troduction of systematic<br />

management of marshes and heaths, mow<strong>in</strong>g<br />

and ma<strong>in</strong>tenance of pools not overgrown by trees<br />

and large shrubs. Despite <strong>the</strong>se activities, 85% of<br />

<strong>the</strong> former tra<strong>in</strong><strong>in</strong>g area rema<strong>in</strong>ed unmanaged.<br />

2009 Part of <strong>the</strong> area tenured by <strong>the</strong> Nature Conservation<br />

Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, start of<br />

expand<strong>in</strong>g <strong>the</strong> open vegetation <strong>in</strong> collaboration<br />

with experts of <strong>the</strong> Museum of Eastern Bohemia,<br />

NGOs, etc.<br />

2009–2012 Cutt<strong>in</strong>g of ca. 7 ha of 25 to 30-year old shrubs and<br />

trees, <strong>restoration</strong> of 20 temporary and permanent<br />

pools where amphibians reproduce, <strong>in</strong>troduction<br />

of experimental sheep and goat graz<strong>in</strong>g <strong>in</strong> part of<br />

<strong>the</strong> area.<br />

Solitary trees and tree fragments were left and tall<br />

stubs were purposely created <strong>in</strong> <strong>the</strong> restored open<br />

vegetation <strong>in</strong> order to obta<strong>in</strong> weakened, <strong>in</strong>solated<br />

trees, <strong>in</strong> which hollows easily appear.<br />

October 2010<br />

and 2011<br />

Travers<strong>in</strong>g with tracked vehicles <strong>in</strong> an area of 4 ha<br />

and on 6 km of paths.<br />

Results<br />

Already <strong>in</strong> <strong>the</strong> second year after travers<strong>in</strong>g and disturbance by vehicles<br />

transport<strong>in</strong>g cut wood, dozens of temporary pools with populations<br />

of <strong>the</strong> Tadpole Shrimp (Triops cancriformis) and Fairy Shrimp<br />

(Branchipus schaefferi) reappeared.<br />

In 2011, <strong>the</strong> Skimmer (Leucorrh<strong>in</strong>ia pectoralis) and Nor<strong>the</strong>rn<br />

Crested Newt (Triturus cristatus), both Natura 2000 species for which<br />

<strong>the</strong> SCI was designated, were repeatedly observed <strong>in</strong> reconstructed<br />

marshes. After travers<strong>in</strong>g <strong>in</strong> 2010, <strong>the</strong> Triops cancriformis population<br />

<strong>in</strong>creased from a few dozen (2008–2010) to at least a few hundred<br />

<strong>in</strong>dividuals (2011), and Branchipus schaefferi <strong>in</strong>creased from dozens<br />

to thousands of <strong>in</strong>dividuals. Also <strong>the</strong> population of European Green<br />

Toad (Bufo viridis) <strong>in</strong>creased and <strong>the</strong> critically endangered Natterjack<br />

Toad (B. calamita) was recorded for <strong>the</strong> first time <strong>in</strong> 17 years.<br />

The military vehicles have restored thousands of square metres of<br />

habitat for <strong>in</strong>sects conf<strong>in</strong>ed to open sands on heathland, e.g. Coniocleonus<br />

weevils, solitary wasps and bees, and <strong>the</strong> parasitic bees and<br />

beetles associated with <strong>the</strong>m.<br />

The reta<strong>in</strong>ed solitary trees appeared to be suitable for <strong>the</strong> Ovalisia<br />

dives and Agrilus jewel beetles, <strong>the</strong> Longhorn Beetle Xylotrechus pan<strong>the</strong>r<strong>in</strong>us,<br />

mycophagous <strong>in</strong>sects, etc.<br />

As <strong>the</strong> management measures were carried out recently, <strong>the</strong>ir<br />

impact on <strong>in</strong>sects cannot yet be assessed <strong>in</strong> detail. However <strong>the</strong> suppression<br />

of Wood Small-reed (Calamagrostis epigejos) by travers<strong>in</strong>g<br />

with military vehicles <strong>in</strong> swards weakened by mow<strong>in</strong>g was surpris<strong>in</strong>gly<br />

successful.<br />

The <strong>restoration</strong> of open vegetation repeatedly met with ra<strong>the</strong>r <strong>in</strong>adequate<br />

attempts of some nature conservation authorities to protect<br />

and replace trees as compensation for ecological loss due to <strong>restoration</strong><br />

of open habitats.<br />

118 Abandoned military areas


O<strong>the</strong>r lessons learned and future prospects<br />

Realisation of <strong>the</strong> project has shown that <strong>the</strong>re is a potential for<br />

collaboration with non-environmental organisations when conserv<strong>in</strong>g<br />

nature. Active <strong>in</strong>tervention <strong>in</strong> <strong>the</strong> area enabled us to verify practical<br />

ways of manag<strong>in</strong>g a former tra<strong>in</strong><strong>in</strong>g area, its results, and costs of<br />

various approaches.<br />

The conservation of <strong>the</strong> area has unfortunately evoked conflicts<br />

between conservationists and developers. The greatest barrier <strong>in</strong> restor<strong>in</strong>g<br />

open vegetation is currently however formed by <strong>the</strong> unjustified<br />

and groundless fear of <strong>the</strong>se measures among some conservationists.<br />

To safeguard cont<strong>in</strong>uation of <strong>the</strong> project it is important that <strong>the</strong><br />

public and professionals are <strong>in</strong>formed sufficiently and are will<strong>in</strong>g to<br />

listen to professional arguments. The will to realise unusual measures<br />

and to try <strong>the</strong>m out <strong>in</strong> practice is no less important.<br />

Public support<br />

The project could not have been realised without support of <strong>the</strong><br />

East Bohemian Friends of Military Equipment Club. Part of <strong>the</strong> measures<br />

was carried out with <strong>the</strong> help of volunteers recruited from <strong>the</strong><br />

public and non-profit organisations.<br />

Thanks to its location on <strong>the</strong> outskirts of <strong>the</strong> town, <strong>the</strong> site is extensively<br />

used by schools to educate pupils and by residents of <strong>the</strong> nearby<br />

hous<strong>in</strong>g estates for recreation. Amateur and expert documentation is<br />

a source of important data on <strong>the</strong> occurrence of particular species.<br />

The very high visit rate is basically a positive factor (disturbance), but<br />

<strong>in</strong>creases <strong>the</strong> costs of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g facilities such as nature trails and<br />

fences, and of management work requir<strong>in</strong>g surveillance (e.g. graz<strong>in</strong>g).<br />

Acknowledgements<br />

The project was realised thanks to <strong>the</strong> enlightened attitude of <strong>the</strong><br />

Dept. of Environment and Agriculture of <strong>the</strong> Hradec Králové Region<br />

Authority (Miloš Čejka, Lenka Peterková), which also carried out part<br />

of <strong>the</strong> work <strong>in</strong> 2011.<br />

Thanks for its realisation also go out to Miroslav Tuček of <strong>the</strong> East<br />

Bohemian Friends of Military Equipment Club, Dr. Blanka Mikátová,<br />

and zoologists Miroslav Mikát and Dr. Bohuslav Mocek of <strong>the</strong> Museum<br />

of Eastern Bohemia for professional support and assistance with<br />

<strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> project.<br />

References<br />

Mikát M., Samková V., Prausová R. & Mikátová B. (2004): Přírodní<br />

památka Na Plachtě – průvodce naučnou stezkou (Na Plachtě Nature<br />

Monument – nature trail guide). – Agentura ochrany přírody<br />

a kraj<strong>in</strong>y a Muzeum Východních Čech, Hradec Králové.<br />

Mikátová B. (1997): K výskytu sysla (Spermophilus citellus) na lokalitě<br />

Hradec Králové – “Na Plachtě” (Occurrence of Spermophilus citellus<br />

at <strong>the</strong> site “Na Plachtě”, Hradec Králové). – Acta Musei Reg<strong>in</strong>aehradecensis,<br />

Ser. A 25: 227–229.<br />

Fig. 4. <br />

Abandoned military areas 119


Landscapes


Introduction<br />

<br />

The <strong>Czech</strong> <strong>Republic</strong> holds an exceptional position <strong>in</strong> European<br />

geography, be<strong>in</strong>g determ<strong>in</strong>ed by four geological units meet<strong>in</strong>g here<br />

(Hercynian, Carpathian, Polonian, and Pannonian). Its specific geological<br />

history is responsible for a great natural diversity. The Forecarpathian<br />

lowland at <strong>the</strong> foot of <strong>the</strong> Western Carpathians has created a<br />

natural migration route through Silesia and Moravia s<strong>in</strong>ce <strong>the</strong> Palaeolithic,<br />

used by plant and animal species as well as human populations.<br />

The landscape of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, situated <strong>in</strong> <strong>the</strong> imag<strong>in</strong>ary centre<br />

of Europe, has thus become an important crossroads, a place of transit<br />

and exchange of <strong>in</strong>formation between <strong>the</strong> Baltic, Mediterranean,<br />

Danubian lowlands, and western Europe. The variety of natural conditions<br />

and cultures has <strong>in</strong>fluenced <strong>the</strong> overall character of <strong>the</strong> cultural<br />

landscape – remarkably diverse despite its small size – made up of<br />

various river, mounta<strong>in</strong>, karst, and o<strong>the</strong>r ecological features, elements,<br />

and habitats, which is <strong>the</strong> basis for <strong>the</strong> development of structural and<br />

biological diversity of our landscape (Fanta 2011).<br />

Development of <strong>the</strong> cultural landscape<br />

For many centuries, <strong>the</strong> <strong>Czech</strong> landscape has been shaped by agriculture,<br />

forestry, and fish farm<strong>in</strong>g. S<strong>in</strong>ce <strong>the</strong> Middle Ages transport,<br />

m<strong>in</strong><strong>in</strong>g of m<strong>in</strong>eral resources, build<strong>in</strong>g, and power eng<strong>in</strong>eer<strong>in</strong>g have<br />

been added. Despite <strong>the</strong> significant <strong>in</strong>fluence of <strong>in</strong>dustrial and urban<br />

development, <strong>the</strong> landscapes of Bohemia, Moravia and Silesia have<br />

rema<strong>in</strong>ed predom<strong>in</strong>antly rural. The settlement structure of <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong> is still characterised by a high number of villages and small<br />

settlements. More than 90% of villages have less than 2,000 <strong>in</strong>habitants<br />

and 28% of all settlements <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> are communities<br />

with less than 200 <strong>in</strong>habitants (Anonymus 2009), whereby 26.2%<br />

of <strong>the</strong> population lives <strong>in</strong> <strong>the</strong> country (Střeleček & Zdeněk 2006).<br />

Although humans have <strong>in</strong>fluenced <strong>the</strong> landscape s<strong>in</strong>ce <strong>the</strong> Bronze<br />

Age, it was <strong>the</strong> spatial diversity of <strong>the</strong> landscape that determ<strong>in</strong>ed settlement<br />

structure and character until <strong>the</strong> early Middle Ages. Land use<br />

followed from man’s natural respect for <strong>the</strong> small-scale character of<br />

<strong>the</strong> local landscape for centuries.<br />

Significant changes <strong>in</strong> <strong>the</strong> landscape structure were caused by <strong>the</strong><br />

<strong>in</strong>dustrial development of <strong>the</strong> 19 th century. Technical opportunities<br />

and uncontrolled human activity took large areas to <strong>the</strong> edge of an<br />

ecological crisis.<br />

The time of land nationalisation and collectivisation of agriculture<br />

<strong>in</strong> <strong>the</strong> second half of <strong>the</strong> 20 th century exerted excessive pressure on <strong>the</strong><br />

landscape. Never before had <strong>the</strong> <strong>Czech</strong> farmland gone through such<br />

vast destruction of its structural and biological diversity. The environment<br />

became so unfavourable for over 70% of plant and animal species,<br />

that <strong>the</strong>y have rema<strong>in</strong>ed endangered and required special protection<br />

ever s<strong>in</strong>ce (Fanta 2011).<br />

The ‘leitmotiv’ of <strong>the</strong> socialist era (1948–1989) was self-sufficiency<br />

<strong>in</strong> agricultural production at any cost. Soviet farm<strong>in</strong>g methods were<br />

an imposed directive without respect for substantial differences <strong>in</strong><br />

natural conditions. All farm<strong>in</strong>g activities were targeted at achiev<strong>in</strong>g<br />

maximum yields. One of <strong>the</strong> consequences of this policy was consolidation<br />

of land plots <strong>in</strong>to very large agricultural units. The high<br />

species and ecosystem diversity of <strong>the</strong> landscape, which was typical<br />

of small-scale farm<strong>in</strong>g <strong>in</strong> <strong>the</strong> past, significantly decl<strong>in</strong>ed, erosion risk<br />

of <strong>the</strong> soils <strong>in</strong>creased, soils degraded, landscape accessibility was reduced,<br />

residential values decreased, and <strong>the</strong> ecological equilibrium of<br />

farmland was disturbed.<br />

The <strong>Czech</strong> <strong>Republic</strong> lost about 20% of its grassland, 800,000 km<br />

(about 145,000 ha) of baulks, 120,000 km of rural roads, 35,000 ha<br />

of small woodlands and hedges dur<strong>in</strong>g <strong>the</strong> post-war era. Moreover,<br />

most marshes and floodpla<strong>in</strong> forests were dra<strong>in</strong>ed and many river and<br />

stream courses channelised and re<strong>in</strong>forced (Weber & Hrochová 1992,<br />

Fanta 2011). Farmland changed <strong>in</strong>to a uniform space with only one<br />

function – production. Devastation of <strong>the</strong> farm<strong>in</strong>g landscape affected<br />

almost all regions of <strong>the</strong> country, although not <strong>in</strong> <strong>the</strong> same <strong>in</strong>tensity.<br />

In <strong>the</strong> early 1990s <strong>the</strong> follow<strong>in</strong>g landscape problems were found to<br />

be <strong>the</strong> ma<strong>in</strong> ones caused by <strong>in</strong>sensitive farm<strong>in</strong>g <strong>in</strong> <strong>the</strong> past:<br />

— strong simplification of <strong>the</strong> landscape pattern and overall unification<br />

of forest and agricultural land with prevail<strong>in</strong>g large-scale<br />

monoculture cropland;<br />

— reduced accessibility of <strong>the</strong> <strong>in</strong>tensively exploited landscape for<br />

man and o<strong>the</strong>r organisms;<br />

— heavily polluted soils and waters caused by eutrophication and<br />

pollutants (pesticide residues, oil products, heavy metals, nitrates,<br />

phosphorus and potassium compounds);<br />

— soils seriously affected and threatened by w<strong>in</strong>d and water erosion;<br />

— disturbed water regime by strong dra<strong>in</strong>age, regulation, and reduced<br />

retention capacity of watersheds;<br />

Fig. 1. <br />

<br />

Landscapes 123


Fig. 2. <br />

— forests damaged by <strong>in</strong>tensive management (preference of spruce<br />

plantations) and air pollution;<br />

— degradation of a significant area by underground and open-cast<br />

coal m<strong>in</strong><strong>in</strong>g;<br />

— disturbance of <strong>the</strong> landscape character and aes<strong>the</strong>tic values of <strong>the</strong><br />

landscape scenery;<br />

— loss of people’s relation to <strong>the</strong>ir land, ma<strong>in</strong>ly caused by forced<br />

ownership changes (transfer of private to state or co-operative<br />

ownership).<br />

Regeneration of <strong>the</strong> cultural landscape<br />

The political changes started <strong>in</strong> 1989 opened a wide public discussion<br />

on <strong>the</strong> state of <strong>the</strong> environment and started a long-term process<br />

of reclamation and regeneration of <strong>the</strong> cultural landscape <strong>in</strong> <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>. In <strong>the</strong> 1990s new national legislation was created.<br />

No landscape regeneration would have been possible without e.g. <strong>the</strong><br />

Environmental Act, <strong>the</strong> modern Act on Nature and Landscape Conservation,<br />

<strong>the</strong> Environmental Impact Assessment Act (all from 1992),<br />

which first brought EIA and SEA processes <strong>in</strong>to practice, <strong>the</strong> 1991 Act<br />

on Land Consolidation and Land Registries, which created conditions<br />

for land restitution and <strong>restoration</strong> of <strong>the</strong> agricultural landscape, as<br />

well as amendments of <strong>the</strong> 1976 Build<strong>in</strong>g Act, which <strong>in</strong>troduced <strong>the</strong><br />

obligation of <strong>in</strong>clud<strong>in</strong>g ecological networks <strong>in</strong>to land plann<strong>in</strong>g.<br />

Parallel with <strong>the</strong> preparation of new legislation, <strong>the</strong> <strong>Czech</strong> government<br />

announced several grant schemes to support landscape <strong>restoration</strong><br />

and reconstruction. It is quite remarkable that most of <strong>the</strong>m still<br />

exist, although <strong>in</strong> amended form. The most important grant schemes<br />

are <strong>the</strong> Rural Restoration Programme (1991), <strong>the</strong> Landscape Management<br />

Programme (1994), and <strong>the</strong> River System Revitalisation Programme<br />

(1991, replaced by a broader scheme, <strong>the</strong> Programme for <strong>the</strong><br />

Restoration of Natural Landscape Functions, <strong>in</strong> 2009). However, it<br />

has to be stated that <strong>the</strong> implementation of <strong>the</strong>se schemes has not always<br />

been fully successful <strong>in</strong> meet<strong>in</strong>g all <strong>the</strong> environmental demands,<br />

hence some of <strong>the</strong> results are ra<strong>the</strong>r poor.<br />

The lead<strong>in</strong>g programme is <strong>the</strong> Landscape Management Programme,<br />

which has significantly supported <strong>the</strong> implementation of<br />

specific measures across <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Its purpose is to protect<br />

and enhance important non-productive landscape functions, based<br />

on susta<strong>in</strong>able management – especially ecological and water management<br />

functions. The programme supports a broad range of <strong>restoration</strong><br />

activities, such as manag<strong>in</strong>g nature reserves, controll<strong>in</strong>g <strong>in</strong>vasive plant<br />

and animal species, establish<strong>in</strong>g environmental networks, and restor<strong>in</strong>g<br />

wetlands, permanent grasslands, extensive fruit orchards, l<strong>in</strong>es of<br />

tree, but also historic parks and gardens. Several examples are given <strong>in</strong><br />

<strong>the</strong> case studies on <strong>the</strong> follow<strong>in</strong>g pages.<br />

In order to realise landscape <strong>restoration</strong>, first of all new regional<br />

plans had to be elaborated and land ownership rearranged by means<br />

of land consolidation. These are all very costly and time-consum<strong>in</strong>g<br />

operations, which <strong>the</strong> state has performed s<strong>in</strong>ce 1989, but which have<br />

not yet been completed everywhere. Thanks to comprehensive land<br />

consolidation, measures to control erosion, water management adaptations,<br />

facilities to improve accessibility to <strong>the</strong> landscape, ecological<br />

network elements and o<strong>the</strong>r measures improv<strong>in</strong>g <strong>the</strong> landscape have<br />

been realised. At <strong>the</strong> same time farmland plots have been more efficiently<br />

arranged.<br />

In 1992–2002 a total of 21,000 simple land consolidation projects<br />

were carried out (rearrangement and regeneration of part of a municipal<br />

territory) and 146 complex land consolidation projects. Until<br />

2011, a total of 1,146 complex land consolidation projects were realised,<br />

slightly less than 11% of <strong>the</strong> country’s total area. Progress is hampered<br />

by a lack of f<strong>in</strong>ances which <strong>the</strong> state can allocate (Podhrázská<br />

2011). Ano<strong>the</strong>r problem with land consolidation projects is a lack of<br />

<strong>in</strong>terest by landowners.<br />

Current situation and problems of <strong>the</strong> landscape<br />

The <strong>Czech</strong> landscape has significantly changed over <strong>the</strong> past<br />

twenty years. The degradation of <strong>the</strong> landscape, started <strong>in</strong> <strong>the</strong> communist<br />

period, has cont<strong>in</strong>ued until <strong>the</strong> present day. It has not only affected<br />

<strong>the</strong> natural and spatial aspects of <strong>the</strong> <strong>Czech</strong> landscape, but also<br />

<strong>the</strong> cultural identity of man with respect to his landscape, reflected<br />

<strong>in</strong> <strong>the</strong> loss of relation to <strong>the</strong> land and lack of sense of landscape scale.<br />

This is proved by <strong>the</strong> decreas<strong>in</strong>g importance of cultural and historic<br />

values of <strong>the</strong> landscape and its structures, elim<strong>in</strong>ation of old orchards<br />

and l<strong>in</strong>es of trees, development of historic spaces, and by damag<strong>in</strong>g<br />

small religious objects <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> trees accompany<strong>in</strong>g <strong>the</strong>m. The<br />

landscape is def<strong>in</strong>itely los<strong>in</strong>g its historic memory and cultural content.<br />

124 Landscapes


Fig. 3. <br />

-<br />

<br />

It is becom<strong>in</strong>g just a space purposely exploited to produce marketable<br />

commodities, a space we only pass through.<br />

Differences between regions <strong>in</strong>crease depend<strong>in</strong>g on <strong>the</strong>ir socioeconomic<br />

and natural conditions. The ma<strong>in</strong> processes <strong>in</strong> productive<br />

and prom<strong>in</strong>ent regions are: a) urban sprawl tak<strong>in</strong>g up land and disqualify<strong>in</strong>g<br />

it from meet<strong>in</strong>g its ecological and production functions, b)<br />

<strong>in</strong>tensive farm<strong>in</strong>g oriented to a small number of crop species (cereal<br />

crops, maize, oilseed rape). Economically marg<strong>in</strong>al areas are nowadays<br />

characterised by extensification, most often afforestation and establishment<br />

of grassland, or complete farmland abandonment. These<br />

trends will lead to a permanent loss of some types of landscape (often<br />

environmentally valuable, such as Wallachia) or will be irreversibly<br />

altered (Miko & Hošek 2009).<br />

However, <strong>the</strong> same trend also has positive effects: it supports natural<br />

processes better, and many new habitats are formed, often with<br />

<strong>in</strong>terest<strong>in</strong>g succession (e.g. <strong>the</strong> case study ‘Restoration of semi-natural<br />

vegetation <strong>in</strong> old fields <strong>in</strong> <strong>the</strong> Bohemian Karst’).<br />

A positive trend seen <strong>in</strong> <strong>the</strong> past two decades is that agriculture<br />

does not merely focus on food production for <strong>the</strong> population and raw<br />

materials for food and light <strong>in</strong>dustries. More often, although not yet<br />

enough, it acts as a landscape ‘nurturer’, emphasis<strong>in</strong>g its non-productive<br />

functions. Th is trend is reflected <strong>in</strong> <strong>the</strong> ever-<strong>in</strong>creas<strong>in</strong>g public<br />

<strong>in</strong>terest <strong>in</strong> organic production methods, subsidised by governmental<br />

grant policies and <strong>the</strong> EU Common Agriculture Policy, especially<br />

through so-called Agri-environmental schemes. Introduction of alternative<br />

farm<strong>in</strong>g methods <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> is however problematic<br />

(<strong>in</strong>sufficient legislative and political support, <strong>in</strong>adequate economic<br />

environment), which substantially limit farmers and <strong>in</strong>hibits<br />

development of organic agriculture.<br />

The largest volume of funds from <strong>the</strong> Agri-environmental schemes<br />

is currently provided to grassland ma<strong>in</strong>tenance (approximately 60% of<br />

all farmland), organic farm<strong>in</strong>g (currently 8% of farmland, but fur<strong>the</strong>r<br />

<strong>in</strong>crease is expected), <strong>in</strong>tercropp<strong>in</strong>g, and establish<strong>in</strong>g of grasslands on<br />

arable land. The impact of <strong>the</strong>se schemes on nature and landscape is<br />

however often controversial. This counts ma<strong>in</strong>ly for grassland ma<strong>in</strong>tenance,<br />

where <strong>in</strong>appropriate uniform methods still prevail.<br />

The greatest current problems <strong>in</strong> <strong>the</strong> landscape of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

are urban and suburban sprawl along with development of<br />

<strong>in</strong>frastructures. Developed areas are <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> an unprecedented<br />

way, ma<strong>in</strong>ly to <strong>the</strong> detriment of farmland. Almost 11 hectares of farmland<br />

are developed every day, lead<strong>in</strong>g to a rapid growth <strong>in</strong> urbanised<br />

areas: s<strong>in</strong>ce 1990 <strong>the</strong>y have <strong>in</strong>creased by 245 km 2 , i.e. 5%. Th is is<br />

almost half of <strong>the</strong> farmland lost between 1990 and 2006, which accounted<br />

for 537 km 2 . If <strong>the</strong> current rate of urban development cont<strong>in</strong>ues<br />

until 2050, this number will grow by ano<strong>the</strong>r 1,350 km 2 (Miko<br />

& Hošek 2009).<br />

Globalisation versus protection of<br />

<strong>the</strong> cultural landscape identity<br />

Globalisation trends are <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> landscape <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong> more and more markedly. They change <strong>the</strong> layout of urban<br />

areas (suburban development) and <strong>the</strong> architecture of build<strong>in</strong>gs, and<br />

<strong>in</strong>crease <strong>the</strong> concentration of unified <strong>in</strong>frastructures. Moreover, aggressive<br />

billboards visually degrade <strong>the</strong> landscape. Globalisation also<br />

cont<strong>in</strong>ues to affect <strong>the</strong> open landscape. Typical examples of this are<br />

Figs. 4, 5. <br />

<br />

<br />

<br />

Landscapes 125


<strong>the</strong> <strong>in</strong>creas<strong>in</strong>g production of oilseed rape grown as a fuel crop and <strong>the</strong><br />

current boom of solar power plants on farmland.<br />

Land use is chang<strong>in</strong>g, ma<strong>in</strong>ly determ<strong>in</strong>ed by market mechanisms<br />

and fast profit. The economically less attractive small-scale landscape<br />

with a varied crop structure is gradually disappear<strong>in</strong>g, along with old<br />

terraced fields and open enclaves with<strong>in</strong> forests. Abandoned land is<br />

encroached by woodland or is developed.<br />

The <strong>Czech</strong> <strong>Republic</strong>, similarly to o<strong>the</strong>r countries of <strong>the</strong> EU (e.g.<br />

Swanwick 2002, Salašová 2000), has <strong>in</strong>cluded landscape protection<br />

<strong>in</strong>to its legislation. Protect<strong>in</strong>g <strong>the</strong> identity of <strong>the</strong> cultural landscape<br />

has become even more important after <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> ratified<br />

<strong>the</strong> European Landscape Convention <strong>in</strong> 2005 and consequently implemented<br />

it <strong>in</strong> <strong>the</strong> new Build<strong>in</strong>g Act (2006). Assessment of <strong>the</strong> landscape<br />

character became part of plann<strong>in</strong>g documents and regional<br />

development policies. Preventive landscape character assessments,<br />

<strong>in</strong>clud<strong>in</strong>g pr<strong>in</strong>ciples and recommendations on development of <strong>the</strong><br />

area <strong>in</strong> question and on conservation and <strong>restoration</strong> of valuable<br />

landscape features, have been elaborated <strong>in</strong> most protected landscape<br />

areas and a range of districts, towns and villages. Thanks to an active<br />

approach of communities, non-governmental organisations and <strong>in</strong>terest<br />

groups, measures to preserve characteristic landscape features<br />

are be<strong>in</strong>g gradually realised. On <strong>the</strong> o<strong>the</strong>r hand, landscape protection<br />

faces massive opposition by <strong>in</strong>vestors, developers, and local authorities<br />

preferr<strong>in</strong>g landscape changes yield<strong>in</strong>g fast profits.<br />

In areas where local people identify <strong>the</strong>mselves with <strong>the</strong> idea of<br />

restor<strong>in</strong>g a certa<strong>in</strong> site, attention is ma<strong>in</strong>ly paid to <strong>the</strong> <strong>restoration</strong> of<br />

characteristic l<strong>in</strong>es of trees along roads and extensive orchards with<br />

historic and regional fruit cultivars, <strong>the</strong> conservation and sanitation<br />

of solitary trees, <strong>the</strong> <strong>restoration</strong> of stone heaps, scattered greenery,<br />

small religious objects, wells and waterholes, and <strong>the</strong> ma<strong>in</strong>tenance of<br />

memorable sites.<br />

Landscape character assessment plays especially an important<br />

role <strong>in</strong> discussions with local people about <strong>the</strong> natural, cultural, historic,<br />

and aes<strong>the</strong>tic value of <strong>the</strong> landscape <strong>in</strong> which <strong>the</strong>y live. So far,<br />

people have not been used to th<strong>in</strong>k<strong>in</strong>g about <strong>the</strong> landscape and its<br />

values, and hence <strong>the</strong>y do not actively perceive and understand <strong>the</strong><br />

landscape, and do not participate <strong>in</strong> its conservation. Dialogues which<br />

occasionally take place between state authorities, experts and <strong>the</strong> public<br />

may help create better conditions for protection of <strong>the</strong> traditional<br />

cultural landscape values and <strong>the</strong>ir development <strong>in</strong> <strong>the</strong> full sense of<br />

<strong>the</strong> European Landscape Convention.<br />

Acknowledgements<br />

The study was supported by ‘A pilot project of prevention of soil<br />

biological degradation under conditions of arid climate’ under National<br />

Research Programme II, no. 2B08020.<br />

References<br />

Anonymus (2009): Regionální uspořádání a regiony soudržnosti ČR<br />

(Regional arrangement and cohesion regions of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>).<br />

– M<strong>in</strong>isterstvo pro místní rozvoj. (Available at: http://www.<br />

bus<strong>in</strong>ess<strong>in</strong>fo.cz/cz/clanek/rozvoj-regionu/regionalni-usporadania-regiony/1001179/9043/)<br />

Fanta J. (2011): Kraj<strong>in</strong>a V. Česká kraj<strong>in</strong>a (Landscape V. The <strong>Czech</strong><br />

landscape). – Živa 5: 224–226.<br />

Miko L. & Hošek M. (eds) (2009): Příroda a kraj<strong>in</strong>a České republiky.<br />

Zpráva o stavu 2009 (Report on <strong>the</strong> state of nature and landscape<br />

<strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> 2009). – Agentura ochrany přírody a kraj<strong>in</strong>y,<br />

Praha.<br />

Podhrázská J. (2011): 20 let pozemkových úprav v České republice<br />

(Twenty years of land consolidation <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). – In:<br />

Anonymus (ed.), Kraj<strong>in</strong>né <strong>in</strong>ženýrství 2011, Sborník konference,<br />

pp. 50–57, Česká společnost kraj<strong>in</strong>ných <strong>in</strong>ženýrů, Praha.<br />

Salašová A. (2000): Landscape character assessment <strong>in</strong> <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>. – In: Anonymus (ed.), VIII. International Conference<br />

“Modern Scientific Researches <strong>in</strong> Horticulture”, p. 127, International<br />

Association of Young Scientists-Horticulturists, Yalta,<br />

Crimea.<br />

Střeleček F. & Zdeněk R. (2006): Velikost obcí a ekonomická aktivita<br />

obyvatelstva (Size of towns and villages and economic activity of<br />

<strong>the</strong> population). – Veřejná správa. (Available at: http://www.dvs.<br />

cz/clanek.asp?id=6207352)<br />

Swanwick C. (ed.) (2002): Landscape character assessment – Guidance<br />

for England and Scotland CAX 84. – Countryside Agency,<br />

Cheltenham and Scottish Natural Heritage, Ed<strong>in</strong>burgh.<br />

Weber M. & Hrochová Z. (1992): Východiska obnovy venkovských<br />

sídel a kraj<strong>in</strong>y (Pr<strong>in</strong>ciples of <strong>restoration</strong> of rural settlements and<br />

landscapes). – In: Anonymus (ed.), Kraj<strong>in</strong>né plánování v Německu<br />

a možnosti využití v České republice, Sborník, pp. 113–20, Výzkumný<br />

ústav okrasného zahradnictví, Průhonice.<br />

Fig. 6. <br />

<br />

126 Landscapes


Reclamation of rural landscapes at Velké Bílovice<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Surround<strong>in</strong>gs of Velké Bílovice, sou<strong>the</strong>ast <strong>Czech</strong> <strong>Republic</strong><br />

48°51'–48°53' N, 16°50'–16°53' E; altitude 162–210 m<br />

NR (Trkmanec), SCI, most of <strong>the</strong> area however unprotected<br />

Areas A–B: orig<strong>in</strong>ally arable land; area C (Trkmanec): waterlogged terra<strong>in</strong> depressions <strong>in</strong> fields with<br />

halophyte and subhalophyte communities dom<strong>in</strong>ated by reed beds of eutrophic still waters with patches of<br />

halophilous reed and sedge beds and tall-sedge vegetation (Phragmito-Magno-Caricetea); fragments <strong>in</strong>clude<br />

salt marshes (Juncion gerardii), <strong>in</strong> irregularly ploughed banks of waterlogged depressions (which dry up <strong>in</strong><br />

periods of drought) also vegetation of exposed pond bottoms (Verbenion sup<strong>in</strong>ae and Bidentetea tripartitae)<br />

150 ha (10 sites)<br />

Landscape management programmes, Land Fund of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

Area A: €25,500, area B: €37,500 (establishment and 3-year ma<strong>in</strong>tenance, prices on <strong>the</strong> level of <strong>the</strong> period<br />

1997–2000), area C: €32,000 (plant<strong>in</strong>gs), €212,000 (construction of polders and modifications of o<strong>the</strong>r plots)<br />

Initial conditions<br />

Rural landscapes <strong>in</strong> <strong>the</strong> former <strong>Czech</strong>oslovakia underwent a<br />

series of substantial reorganisations <strong>in</strong> <strong>the</strong> second half of <strong>the</strong> 20 th<br />

century, chang<strong>in</strong>g <strong>the</strong> scenery of <strong>the</strong> entire landscape. Socialist land<br />

management led to consolidation of farmland <strong>in</strong>to large blocks for<br />

monoculture crop production and significant reduction of dispersed<br />

vegetation elements (avenues, l<strong>in</strong>ear vegetation accompany<strong>in</strong>g watercourses,<br />

field boundaries and hedges, grassland areas). The <strong>in</strong>creas<strong>in</strong>g<br />

production <strong>in</strong>tensity resulted <strong>in</strong> a high anthropogenic pressure on <strong>the</strong><br />

land, and land consolidation caused a significant decrease <strong>in</strong> species<br />

and ecosystem diversity of <strong>the</strong> agricultural landscape, and thus a decl<strong>in</strong>e<br />

of its overall ecological stability.<br />

After 1989, reclamation of farmland and <strong>restoration</strong> of ownership<br />

rights and relationships to land have become one of <strong>the</strong> ma<strong>in</strong> political<br />

tasks. To support this aim, comprehensive land arrangement schemes<br />

have been <strong>in</strong>troduced, <strong>in</strong>clud<strong>in</strong>g erosion-control measures, environmental<br />

network components, water management facilities, roads, and<br />

o<strong>the</strong>r measures improv<strong>in</strong>g <strong>the</strong> landscape. South Moravia has already<br />

seen many reclamation projects, such as <strong>the</strong> creation of biocentres and<br />

biocorridors, wetlands, and polders; grassland <strong>restoration</strong>, etc. Th is<br />

project at Velké Bílovice is one of many examples of this type of landscape<br />

<strong>restoration</strong> (Salašová 1996, 1998).<br />

Abiotic conditions and land use<br />

The area is situated on <strong>the</strong> boundary of <strong>the</strong> Central Moravian Carpathians<br />

and <strong>the</strong> Vienna Bas<strong>in</strong> <strong>in</strong> a warm and dry climate. Typical<br />

wea<strong>the</strong>r features <strong>in</strong>clude storm ra<strong>in</strong>falls and very dry and hot summers.<br />

The bedrock consists of Carpathian flysch covered with fluvial<br />

Fig. 1. <br />

<br />

Landscapes 127


sediments. As for soils, chernozems prevail, whereas solonchak phaeozems<br />

occur at Trkmanec.<br />

The Velké Bílovice territory (1999) is 2,572 ha <strong>in</strong> size and its forest<br />

rate is 0.046%, whereas farmland covers 89%.<br />

Objectives<br />

Increas<strong>in</strong>g biodiversity, reduc<strong>in</strong>g soil erosion and flood risk, improv<strong>in</strong>g<br />

<strong>the</strong> scenery, enhanc<strong>in</strong>g <strong>the</strong> residential function of <strong>the</strong> landscape,<br />

restor<strong>in</strong>g marshes.<br />

Restoration measures<br />

The system of vegetation elements described below was established<br />

gradually, accord<strong>in</strong>g to available f<strong>in</strong>ances. In all cases plants of<br />

certified orig<strong>in</strong> produced at local nurseries were used. As an example<br />

only <strong>the</strong> three largest elements have been selected. The municipality<br />

of Velké Bílovice was <strong>in</strong>vestor and executor of all plant<strong>in</strong>gs and is currently<br />

responsible for <strong>the</strong>ir ma<strong>in</strong>tenance.<br />

<br />

L<strong>in</strong>ear vegetation accompany<strong>in</strong>g <strong>the</strong> Trkmanka water course.<br />

Area 1.11 ha, grassland area 0.89 ha, area of plant<strong>in</strong>gs 0.23 ha. Proposed<br />

species composition: Acer campestre, Alnus glut<strong>in</strong>osa, Frax<strong>in</strong>us<br />

excelsior, Populus nigra, P. tremula, Quercus robur, Salix alba, S. fragilis,<br />

Tilia cordata, Corylus avellana, Euonymus europaea, Prunus padus,<br />

Rhamnus cathartica, Cornus sangu<strong>in</strong>ea, Viburnum opulus.<br />

1995 Project preparation.<br />

1996–1997 Plant<strong>in</strong>g <strong>in</strong> two stages – autumn and spr<strong>in</strong>g. The<br />

plant<strong>in</strong>gs were carried out <strong>in</strong> five sections of various<br />

nature (Type 1: trees and shrubs, Type 2: trees<br />

only, Type 3: shrubs only). Shrubs were planted as<br />

space-fillers or a commercial grass seed mixture<br />

was sown. Grassless areas were mulched with a 5<br />

cm thick layer of crushed bark.<br />

1997–1998 Basic ma<strong>in</strong>tenance.<br />

1999 Plant<strong>in</strong>g check-up, cutt<strong>in</strong>g for weed suppression,<br />

record<strong>in</strong>g phytosociological relevés.<br />

2000–present Annual check-up of <strong>the</strong> plant<strong>in</strong>g, cont<strong>in</strong>uous th<strong>in</strong>n<strong>in</strong>g<br />

of dense growths where required.<br />

<br />

Marsh and baulk at an <strong>in</strong>undation polder. Total area 12 ha. The<br />

project <strong>in</strong>volved <strong>the</strong> construction of an <strong>in</strong>undation polder for flood<br />

control. Plant<strong>in</strong>g was divided <strong>in</strong>to three areas – two of 0.3 ha <strong>in</strong> contact<br />

with <strong>the</strong> polder water designed as a lowland willow-poplar alluvial<br />

forest (Salicion albae), one of 0.6 ha planned as a lowland<br />

hardwood alluvial forest (Ulmenion). The established area connects<br />

to woodland planted south of <strong>the</strong> polder, which is also part of <strong>the</strong><br />

Trkmanec-Rybníčky NR.<br />

1997 Project preparation. Proposed species composition:<br />

Quercus robur, Frax<strong>in</strong>us excelsior, Ulmus<br />

laevis, Acer campestre, A. platanoides, Carp<strong>in</strong>us<br />

betulus, Tilia cordata; <strong>in</strong> marshy depressions:<br />

Alnus glut<strong>in</strong>osa; shrubs: Cornus sangu<strong>in</strong>ea, Ligustrum<br />

vulgare, Rhamnus cathartica, Salix vim<strong>in</strong>alis,<br />

Euonymus europaea, Corylus avellana. The shrubs<br />

were planted around <strong>the</strong> area on request of <strong>the</strong><br />

local hunters society.<br />

1998 Extensive terra<strong>in</strong> work, construction of <strong>in</strong>undation<br />

polder.<br />

1999 Plough<strong>in</strong>g of littoral zones, plant<strong>in</strong>g work. Bare<br />

root sapl<strong>in</strong>gs were used. Part of <strong>the</strong> reed beds <strong>in</strong><br />

<strong>the</strong> area was preserved.<br />

2000–2001 Plant<strong>in</strong>g of water plants <strong>in</strong> <strong>the</strong> polder. Basic ma<strong>in</strong>tenance<br />

after plant<strong>in</strong>g, record<strong>in</strong>g phytosociological<br />

relevés.<br />

2001–present Area left to succession, occasional reed bed reduction<br />

<strong>in</strong> <strong>the</strong> plant<strong>in</strong>gs.<br />

2006 Designation of Trkmanec-Rybníčky NR 44.59 ha<br />

<strong>in</strong> size.<br />

<br />

Two erosion-control measures on <strong>the</strong> slope (5 × 550 m each). The<br />

slope is shaped as a parabolic grassy contour furrow with shrubs and<br />

loosely spaced trees.<br />

1997 Project preparation. Orig<strong>in</strong>ally presumed length<br />

of <strong>the</strong> l<strong>in</strong>ear feature 3.74 km, width 3 m, proposed<br />

plant<strong>in</strong>g of 2000 shrub and 1000 tree sapl<strong>in</strong>gs<br />

of <strong>the</strong> follow<strong>in</strong>g composition: Acer campestre,<br />

Sorbus aria, S. torm<strong>in</strong>alis, Prunus padus, P. avium,<br />

Quercus petraea, Cornus mas, C. sangu<strong>in</strong>ea,<br />

Crataegus monogyna, C. laevigata, Prunus sp<strong>in</strong>osa,<br />

Rosa can<strong>in</strong>a.<br />

Spr<strong>in</strong>g 1998 L<strong>in</strong>ear plant<strong>in</strong>gs of <strong>the</strong> shrubs and trees.<br />

1998–1999 Basic ma<strong>in</strong>tenance.<br />

1999 Plant<strong>in</strong>g check-up, record<strong>in</strong>g phytosociological<br />

relevés.<br />

2000–present Annual check-up of <strong>the</strong> plant<strong>in</strong>gs, cutt<strong>in</strong>g for<br />

weed suppression while leav<strong>in</strong>g <strong>the</strong> biomass at <strong>the</strong><br />

site.<br />

Fig. 2. <br />

<br />

128 Landscapes


O<strong>the</strong>r lessons learned and future prospects<br />

The plant<strong>in</strong>gs were realised by local residents. The advantage of<br />

this process was cheap workforce and personal relationship of <strong>the</strong> local<br />

people to <strong>the</strong> plant<strong>in</strong>gs. Although performed by lay people (supervised<br />

by professionals) <strong>the</strong> plant<strong>in</strong>gs were very successful.<br />

At present reduction of especially Frax<strong>in</strong>us excelsior, Populus<br />

tremula, and Corylus avellana is needed.<br />

The plant<strong>in</strong>gs have become significant refuges for a large number<br />

of bird, <strong>in</strong>sect, and small mammal species, and are good examples of<br />

landscape <strong>restoration</strong> for o<strong>the</strong>r municipalities.<br />

Fig. 3. <br />

<br />

<br />

Management measures after plant<strong>in</strong>g<br />

— Cutt<strong>in</strong>g weeds at least once per year for 3–5 years.<br />

— Application of repellents aga<strong>in</strong>st brows<strong>in</strong>g by game.<br />

— Mow<strong>in</strong>g grass plots twice per year.<br />

— Remov<strong>in</strong>g plants <strong>in</strong> too dense plant<strong>in</strong>gs.<br />

— Occasional mow<strong>in</strong>g of reed beds <strong>in</strong> marshes.<br />

Results<br />

The sapl<strong>in</strong>gs took root successfully and had a very good vitality.<br />

Die-back was negligible thanks to <strong>the</strong> good care and <strong>the</strong> plant<strong>in</strong>gs<br />

were hardly damaged by game.<br />

In 2011 <strong>the</strong> cover of <strong>the</strong> tree layer at Járek was 80%, <strong>the</strong> shrub layer<br />

had a cover of 15% and <strong>the</strong> herb layer 10%. The most dom<strong>in</strong>ant plants<br />

were Frax<strong>in</strong>us excelsior, Populus tremula, Acer campestre and Cornus<br />

sangu<strong>in</strong>ea. At Úlehle, <strong>the</strong> tree layer had a cover of 40%, <strong>the</strong> shrub layer<br />

50%, and herbs 20%. Here, <strong>the</strong> dom<strong>in</strong>ants were Rosa can<strong>in</strong>a, Sambucus<br />

nigra and Crataegus monogyna agg. At Trkmanec <strong>the</strong> tree, shrub<br />

and herb layers had covers of 60%, 20%, and 70%, respectively, and<br />

<strong>the</strong> planted Frax<strong>in</strong>us excelsior, Quercus robur and Corylus avellana<br />

were <strong>the</strong> dom<strong>in</strong>ants. The oak growth figures for this site are quite <strong>in</strong>terest<strong>in</strong>g:<br />

over a 12-year period <strong>the</strong> oaks have grown from <strong>the</strong> orig<strong>in</strong>al<br />

1.5 m to a height of 6–7 m.<br />

A general problem was <strong>the</strong> protection of <strong>the</strong> plant<strong>in</strong>gs aga<strong>in</strong>st<br />

drought and competitive ruderal species, especially Convolvulus arvensis,<br />

Elytrigia repens, Rumex crispus, Calamagrostis epigejos and<br />

Artemisia vulgaris. The plots need to be ma<strong>in</strong>ta<strong>in</strong>ed for <strong>the</strong> follow<strong>in</strong>g<br />

10–15 years. It is appropriate to periodically cut dense reed beds,<br />

which are able to overgrow shallow marshes <strong>in</strong> a short time.<br />

However, particular competitive species (Sambucus nigra, Cornus<br />

alba, Rob<strong>in</strong>ia pseudacacia, Amorpha fruticosa) <strong>in</strong>vad<strong>in</strong>g from <strong>the</strong><br />

surround<strong>in</strong>g caused a problem at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g (Salašová 1999). The<br />

most effective measure appeared to be cutt<strong>in</strong>g of <strong>the</strong> stands and leav<strong>in</strong>g<br />

<strong>the</strong> cut biomass at <strong>the</strong> site to serve as mulch.<br />

At Trkmanec, six protected plant species were recorded after seven<br />

years, along with 13 plant species <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>Czech</strong> red list (e.g.<br />

Cirsium brachycephalum, Carex secal<strong>in</strong>a, Thalictrum flavum, Rumex<br />

stenophyllus, Lycopus exaltatus, Melilotus dentatus). In a survey, <strong>the</strong><br />

significant amphibians Bomb<strong>in</strong>a bomb<strong>in</strong>a, Pelobates fuscus, Hyla arborea,<br />

and Bufo viridis were recorded <strong>in</strong> <strong>the</strong> area. The marsh serves<br />

as a stop for migrant bird species. A total of 41 bird species have been<br />

recorded, e.g. Hen Harrier (Circus cyaneus), Western Marsh-harrier<br />

(C. aerug<strong>in</strong>osus), Eurasian Hobby (Falco subbuteo), Greylag Goose<br />

(Anser anser), Black-crowned Night Heron (Nycticorax nycticorax),<br />

Black Stork (Ciconia nigra), Common Sandpiper (Actitis hypoleucos),<br />

Spotted Crake (Porzana porzana), and Little Crake (P. parva). S<strong>in</strong>ce<br />

2000 <strong>the</strong> area has been <strong>in</strong>habited by <strong>the</strong> beaver (Castor fiber).<br />

Public support<br />

Active help with ma<strong>in</strong>tenance of <strong>the</strong> plant<strong>in</strong>gs by local <strong>in</strong>terest<br />

groups (firemen, hunters society). Interest <strong>in</strong> <strong>the</strong> quality of <strong>the</strong> plant<strong>in</strong>gs<br />

by landowners <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g.<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> follow<strong>in</strong>g grants: NPV II – A pilot<br />

project of prevention of soil biological degradation under conditions<br />

of arid climate, 2B08020, and VZ VÚKOZ Průhonice, Task 0232 –<br />

Woody species selection for <strong>the</strong> rural landscape revitalisation and<br />

new approach to <strong>the</strong>ir plant<strong>in</strong>g.<br />

References<br />

Salašová A. (1996): Village <strong>restoration</strong> <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. – International<br />

Journal of Heritage Studies 2/3: 160–171.<br />

Salašová A. (1998): <strong>Ecological</strong> cultivation criterions of woody plants<br />

selection <strong>in</strong> <strong>the</strong> agricultural landscape. – In: Gor<strong>in</strong>a V. (ed.),<br />

Problemy dendrologii, cvetovodstva, plodovodstva, Materialy<br />

VI. meždunarodnoj konferencii 5–8. 10. 1998, Jalta, pp. 60–63,<br />

Ukra<strong>in</strong>skaja akademija agrarnych nauk – Gosudarstvennyj nikitskij<br />

botaničeskij sad, Jalta.<br />

Salašová A. (1999): Studium dřev<strong>in</strong>ných formací v zemědělské kraj<strong>in</strong>ě<br />

okresu Břeclav. (Study of woody plant formations <strong>in</strong> <strong>the</strong> rural<br />

landscape of <strong>the</strong> Břeclav district.) – Acta Universitatis agriculturae<br />

et silviculturae Mendeleianae Brunensis 47/1: 67–81.<br />

Fig. 4. <br />

<br />

<br />

Landscapes 129


Restoration of <strong>the</strong> Včelnička stream catchment, Bohemian-Moravian<br />

Uplands<br />

<br />

Location<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Benešov near Kamenice nad Lipou, SW marg<strong>in</strong> of <strong>the</strong> Bohemian-Moravian Uplands, south <strong>Czech</strong> <strong>Republic</strong>,<br />

93 km SSE of Prague;<br />

49°20' N, 15°00' E; altitude 629–657 m<br />

Agricultural land and abandoned mesic and wet meadows (Mol<strong>in</strong>io-Arrhena<strong>the</strong>retea), total area ca. 180 ha;<br />

<strong>in</strong> 1995: arable land 135 ha (75%), mesic and wet meadows and pastures 45 ha (25%);<br />

<strong>in</strong> 2011: arable land 99.7 ha (55.4%), mesic and wet meadows and pastures 80.3 ha (44.6%)<br />

Territory of Benešov and a 6-km section of <strong>the</strong> Včelnička stream and <strong>the</strong> upper part of its catchment area<br />

(16.2 km 2 )<br />

Landscape management programmes, Agri-environmental schemes<br />

a) Conversion of part of arable land (30 ha) to mesic meadows and pastures with high species diversity:<br />

€20,000;<br />

b) Revitalisation of Včelnička stream and its pond system: septic tank and wastewater treatment plant –<br />

€18,000; settl<strong>in</strong>g pond for <strong>the</strong> waste water treatment plant – €12,000; fishpond – €24,000; revitalisation<br />

of upper part of Včelnička stream – €70,000;<br />

c) Restoration of wet meadows, <strong>in</strong>cl. construction of three pools: €64,000;<br />

d) Reconstruction of bio-corridors – shrub and tree plant<strong>in</strong>gs: €80,000<br />

Initial conditions<br />

S<strong>in</strong>ce <strong>the</strong> 1950s, <strong>the</strong> Benešov area has suffered from <strong>in</strong>tensification<br />

of agriculture and forestry. Dur<strong>in</strong>g collectivisation <strong>in</strong> 1950s small<br />

fields and meadows were comb<strong>in</strong>ed to form larger units. Trees were<br />

cut and hedges removed. Outside forests, <strong>the</strong> Včelnička stream and its<br />

tributaries were regulated to form open channels without naturally<br />

meander<strong>in</strong>g courses (Šrůtek & Čašek 1995). The wet meadows <strong>in</strong> <strong>the</strong><br />

stream floodpla<strong>in</strong> were mostly dra<strong>in</strong>ed. Dur<strong>in</strong>g <strong>the</strong> 20 th century, native<br />

fir-beech forest (Abies alba, Fagus sylvatica) was replaced by Norway<br />

spruce (Picea abies) plantations.<br />

In 1992 <strong>the</strong> Šrůtek family’s local farm commenced organic agriculture<br />

on about 40 ha of arable land and meadows, which <strong>the</strong>y considered<br />

a first step to restore <strong>the</strong> landscape. After <strong>the</strong> farm build<strong>in</strong>gs<br />

were reconstructed, conventional agriculture was stepwise converted<br />

to organic farm<strong>in</strong>g (for def<strong>in</strong>ition of organic farm<strong>in</strong>g, see Šrůtek &<br />

Urban 2008).<br />

The current organically run farm area is 220 ha, <strong>the</strong> ma<strong>in</strong> product<br />

of <strong>the</strong> farm is raw organic milk from 40 dairy cows. The herd <strong>in</strong>cludes<br />

ano<strong>the</strong>r 35 calves and heifers (Fig. 1).<br />

The mean annual flow rate of <strong>the</strong> Včelnička stream is ca. 200 l.s -1 .<br />

Fig. 1. <br />

130 Landscapes


Abiotic conditions<br />

The mean annual temperature is 6.4 °C (Černovice station), mean<br />

annual precipitation 677 mm (Kamenice nad Lipou station) (Vesecký<br />

1961), but 775 mm accord<strong>in</strong>g to private standard measurements <strong>in</strong><br />

Benešov from 1997 to 2010; <strong>the</strong> geological substrate is biotitic gneiss.<br />

Soil chemical analyses for <strong>the</strong> Benešov District have <strong>in</strong>dicated<br />

acidic soils: pH 4.90–5.50, Ca 907–2140 mg.kg −1 , Mg 62–189 mg.kg −1 ,<br />

P 8–112 mg.kg −1 , K 132–377 mg.kg −1 (www.eagri.cz, farmer portal,<br />

2007).<br />

Objectives<br />

Slow<strong>in</strong>g down <strong>the</strong> m<strong>in</strong>eralisation rate of organic matter <strong>in</strong> <strong>the</strong> soil,<br />

to be achieved by a rise of <strong>the</strong> groundwater level and development of<br />

a rich and dense root zone <strong>in</strong> mesic meadows (cf. Ripl et al. 1994).<br />

Restoration measures<br />

1993 A concrete septic tank, wastewater treatment plant<br />

and settl<strong>in</strong>g pond (Fig. 7) were built for <strong>the</strong> village<br />

with a population of almost 100 people; a fish<br />

pond 1,500 m 2 <strong>in</strong> size on <strong>the</strong> Včelnička stream was<br />

reconstructed.<br />

1992–1993 Conversion of part of <strong>the</strong> arable land to mesic<br />

meadows and pastures commenced (Fig. 6) as well<br />

as <strong>restoration</strong> of wet meadows (regular mow<strong>in</strong>g of<br />

ca. 12 ha).<br />

1993–1994 Construction and reconstruction of private farm<br />

build<strong>in</strong>gs; <strong>the</strong> first 20 dairy cows were purchased<br />

and milk production started.<br />

1996 Revitalisation of <strong>the</strong> Včelnička stream: creation of<br />

meanders over ca. 950 m (Fig. 2); stone constrictions<br />

prolong<strong>in</strong>g <strong>the</strong> water course over ca. 1,300 m<br />

(Fig. 3); ca. 4,000 m of l<strong>in</strong>e plant<strong>in</strong>gs of trees<br />

(Alnus glut<strong>in</strong>osa, Salix fragilis) and shrubs (Salix<br />

aurita, S. triandra); construction of three water<br />

pools of ca. 3,200 m 2 <strong>in</strong> total.<br />

Reconstruction of biocorridors: plant<strong>in</strong>g of three<br />

game refuges ca. 1,700 m 2 <strong>in</strong> total (Fig. 5) with<br />

locally <strong>in</strong>digenous trees and shrubs such as Sorbus<br />

aucuparia, Acer pseudoplatanus, A. platanoides,<br />

Frax<strong>in</strong>us excelsior, Crataegus spp., Rosa spp., Prunus<br />

avium, Salix aurita, S. caprea, Populus tremula,<br />

Betula pendula, Quercus robur, Prunus sp<strong>in</strong>osa,<br />

and Tilia cordata; ca. 5,000 m of l<strong>in</strong>e plant<strong>in</strong>gs of<br />

selected fruit trees (Prunus avium, P. domestica,<br />

Malus domestica, Pyrus communis) and woody<br />

plants mentioned above.<br />

1997–2008 Monitor<strong>in</strong>g of <strong>the</strong> chemistry of runn<strong>in</strong>g waters<br />

to reveal effects of changes made <strong>in</strong> <strong>the</strong> Benešov<br />

District.<br />

1994–present Monitor<strong>in</strong>g of secondary succession of mesic<br />

meadows on former arable land (van der Putten<br />

at al. 2000, Hedlund et al. 2003, Lepš et al. 2001,<br />

2007, Pakeman et al. 2008, Fortunel et al. 2009).<br />

Results<br />

The rules of organic farm<strong>in</strong>g are applied strictly on <strong>the</strong> farmland,<br />

e.g. <strong>in</strong>organic fertilisers and pesticides are avoided. One of <strong>the</strong> most<br />

positive results is that organic matter <strong>in</strong> <strong>the</strong> soil <strong>in</strong>creases.<br />

Prelim<strong>in</strong>ary monitor<strong>in</strong>g of <strong>the</strong> wastewater treatment system has<br />

revealed its effectiveness <strong>in</strong> remov<strong>in</strong>g contam<strong>in</strong>ants from wastewater.<br />

The mean maximum removal rates of NH 4<br />

+<br />

nitrogen, NO 3<br />

−<br />

nitrogen<br />

and PO 4<br />

3−<br />

phosphorus were 67.0, 58.3 and 37.4%, respectively, from<br />

<strong>the</strong> sewage plant beds with Phragmites australis, and 61.8, 42.4 and<br />

79.8%, respectively, from <strong>the</strong> beds with Glyceria maxima (Riemersma<br />

et al. 1997).<br />

New mesic meadows and pastures on <strong>the</strong> arable land created by<br />

means of conventional seed mixtures have s<strong>in</strong>ce 1992 gradually been<br />

occupied by native plant species from <strong>the</strong> surround<strong>in</strong>g landscape (e.g.<br />

Leucan<strong>the</strong>mum vulgare agg., Bistorta major, Lychnis flos-cuculi, Scorzonera<br />

humilis, Lotus corniculatus, etc.).<br />

In <strong>the</strong> man-made meanders <strong>in</strong> <strong>the</strong> Včelnička stream natural erosion<br />

and accumulation zones are spontaneously be<strong>in</strong>g created, both<br />

contribut<strong>in</strong>g to an <strong>in</strong>crease <strong>in</strong> algae and bacteria, which <strong>in</strong>crease <strong>the</strong><br />

self-purification capacity of <strong>the</strong> stream. A streambed adapted this way<br />

provides at <strong>the</strong> same time a better refugium for aquatic fauna. For example,<br />

<strong>the</strong> occurrence of Common M<strong>in</strong>now (Phox<strong>in</strong>us phox<strong>in</strong>us) and<br />

European Bullhead (Cottus gobio) has been observed here.<br />

The constructed pools and <strong>the</strong> managed wet meadows support<br />

amphibians such as Common Frog (Rana temporaria), Edible Frog<br />

(Rana kl. esculenta), European Toad (Bufo bufo), European Tree Frog<br />

(Hyla arborea) and Smooth Newt (Triturus vulgaris) recorded <strong>in</strong> <strong>the</strong><br />

area (Pechová 1996).<br />

Although <strong>the</strong> planted trees and shrubs <strong>in</strong> <strong>the</strong> biocorridors have<br />

been damaged and/or destroyed especially by European Roe Deer<br />

(Capreolus capreolus) and European Hare (Lepus europaeus), <strong>the</strong>re are<br />

still good refugia for many birds and o<strong>the</strong>r animals to be found.<br />

Fig. 2. <br />

<br />

Fig. 3. <br />

Landscapes 131


20,0<br />

y = 10,1x -0,57<br />

R 2 = 0,92<br />

NO3-N concetration (mg.l-1)<br />

15,0<br />

10,0<br />

5,0<br />

0,0<br />

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008<br />

Fig. 4. <br />

-<br />

<br />

Long-term monitor<strong>in</strong>g (1992–2008) of NO 3<br />

−<br />

nitrogen concentration<br />

<strong>in</strong> <strong>the</strong> runn<strong>in</strong>g waters revealed a gradual decrease of this component<br />

<strong>in</strong> <strong>the</strong> landscape (Fig. 4).<br />

The study of secondary succession <strong>in</strong> experimental mesic meadows<br />

on former arable land revealed current dom<strong>in</strong>ance of Trisetum<br />

flavescens, Lathyrus pratensis and Lotus corniculatus, <strong>in</strong>dicat<strong>in</strong>g a significant<br />

effect of high nutrient doses after fertilis<strong>in</strong>g was ceased 15<br />

years ago. This limits <strong>the</strong>ir development <strong>in</strong>to species-rich mesophilous<br />

grasslands (cf. Pavlů et al. 2011).<br />

Acknowledgements<br />

We s<strong>in</strong>cerely appreciate logistic, scientific and fi nancial support<br />

by Dr. Jan Pokorný (ENKI, Třeboň).<br />

Fig. 5. <br />

<br />

References<br />

Fortunel C., Garnier E., Joffre R., Kazakou E., Quested H., Grigulis<br />

K., Lavorel S., Ansquer P., Castro H., Cruz P., Doležal J., Eriksson<br />

O., Freitas H., Golodets C., Jouany C., Kigel J., Kleyer M., Lehsten<br />

V., Lepš J., Meier T., Pakeman R., Papadimitriou M., Papanastasis<br />

V.P., Quetier F., Robson M., Sternberg M., Theau J. P., Thebault A.<br />

& Zarovali M. (2009): Leaf traits capture <strong>the</strong> effects of land use<br />

changes and climate on litter decomposability of grasslands across<br />

Europe. – Ecology 90: 598–611.<br />

Hedlund K., Santa Reg<strong>in</strong>a I., van der Putten W.H., Lepš J., Díaz T.,<br />

Korthals G.W., Lavorel S., Brown V.K., Gormsen D., Mortimer<br />

S.R., Rodríguez Barrueco C., Roy J., Šmilauer P., Šmilauerová M.<br />

& van Dijk C. (2003): Plant species diversity plant biomass and<br />

responses of <strong>the</strong> soil community on abandoned land across Europe:<br />

idiosyncracy or above-belowground time lags. – Oikos 103:<br />

45–58.<br />

Lepš J., Brown V.K., DiazLen T.A., Gormsen D., Hedlund K., Kailová<br />

J., Korthals G.W., Mortimer S.R., Rodriguez-Barrueco C., Roy J.,<br />

Santa Reg<strong>in</strong>a I., van Dijk C. & van der Putten W. (2001): Separat<strong>in</strong>g<br />

<strong>the</strong> chance effect from <strong>the</strong> o<strong>the</strong>r diversity effects <strong>in</strong> <strong>the</strong> function<strong>in</strong>g<br />

of plant communities. – Oikos 92: 123–134<br />

Lepš J., Doležal J., Bezemer T.M., Brown V.K., Hedlund K., Igual A.M.,<br />

Jörgensen H.B., Lawson C., Mortimer S.R, Peix G.A., Rodríguez<br />

Barrueco C., Santa Reg<strong>in</strong>a I., Šmilauer P. & van der Putten W.H.<br />

(2007): Long-term effectiveness of sow<strong>in</strong>g high and low diversity<br />

seed mixtures to enhance plant community development on exarable<br />

fields. – Applied Vegetation Science 10: 97–110.<br />

Pakeman R.J., Garnier E., Lavorel S., Ansquer P., Castro H., Cruz P.,<br />

Doležal J., Eriksson O., Freitas H., Golodets C., Kigel J., Kleyer M.,<br />

Lepš J., Meier T., Papadimitriou M., Papanastasis V.P., Quested H.,<br />

Quetier F., Rusch G., Sternberg M., Theau J.P., Thebault A. & Vile<br />

D. (2008): Impact of abundance weight<strong>in</strong>g on <strong>the</strong> response of seed<br />

traits to climate and land use. – Journal of Ecology 96: 355–366.<br />

Pavlů L., Pavlů V., Gaisler J., Hejcman M. & Mikulka J. (2011): Effect<br />

of long-term cutt<strong>in</strong>g versus abandonment on <strong>the</strong> vegetation of a<br />

mounta<strong>in</strong> hay meadow (Polygono-Trisetion) <strong>in</strong> Central Europe. –<br />

Flora 206: 1020–1029.<br />

Pechová D. (1996): Druhová bohatost obojživelníků a jejich fenologie<br />

v k.ú. Benešov a blízkém okolí, JZ okraj Českomoravské vysoč<strong>in</strong>y<br />

(Species richness of amphibians and <strong>the</strong>ir phenology <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity<br />

of <strong>the</strong> village Benešov, SW marg<strong>in</strong> of <strong>the</strong> Bohemian-Moravian<br />

Uplands). – Ms.; Bachelor <strong>the</strong>sis, Institut pedagogiky volného<br />

času, Český Krumlov.<br />

132 Landscapes


Riemersma S., Rauch O. & Květ J. (1996): A review of <strong>the</strong> Benešov<br />

constructed wetland. – Ms., technical report, Institute of Botany,<br />

Section of Plant Ecology, Třeboň.<br />

Ripl W., Pokorný J., Eiseltová M. & Ridgill S. (1994): A holistic approach<br />

to <strong>the</strong> structure and function<strong>in</strong>g of wetlands, and <strong>the</strong>ir<br />

degradation. – In: Eiseltová M. (ed.), Restoration of lake ecosystems:<br />

a holistic approach, pp. 16–35, IWRB (Publication 32),<br />

Slimbridge.<br />

Šrůtek M. & Čašek J. (1995): Restoration of a small stream catchment:<br />

Včelnička catchment, <strong>Czech</strong> <strong>Republic</strong>. – In: Eiseltová M. & Biggs<br />

J. (eds), Restoration of stream ecosystems: an <strong>in</strong>tegrated catchment<br />

approach, pp. 119–125, IWRB (Publication 37), Slimbridge.<br />

Šrůtek M. & Urban J. (2008): Organic farm<strong>in</strong>g. – In: Jørgensen S.E. &<br />

Fath B.D. (eds), Encyclopedia of Ecology, pp. 2582–2587, Elsevier,<br />

Oxford.<br />

van der Putten W.H., Mortimer S.R., Hedlund K., van Dijk C., Brown<br />

V.K., Lepš J., Rodriguez-Barrueco C., Roy J., Diaz Len T.A., Gormsen<br />

D., Korthals G.W., Lavorel S., Santa Reg<strong>in</strong>a I. & Šmilauer P.<br />

(2000): Plant species diversity as a driver of early succession <strong>in</strong><br />

abandoned fields: a multi-site approach. – Oecologia 124: 91–99.<br />

Vesecký A. (ed.) (1961): Podnebí Československé socialistické republiky.<br />

Tabulky (Climate of <strong>the</strong> <strong>Czech</strong>oslovak Socialist <strong>Republic</strong>. Tables).<br />

– Hydrometeorologický ústav, Praha.<br />

Fig. 6. <br />

Fig. 7. <br />

<br />

<br />

Landscapes 133


Restoration of greenery elements <strong>in</strong> <strong>the</strong> Podblanicko region<br />

<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

Benešov District, sou<strong>the</strong>ast Central Bohemian Region<br />

49°25'–50°03' N, 14°24'–15°13' E; altitude 280–630 m<br />

PLA (Blaník – 7 l<strong>in</strong>es of trees), general protection of greenery accord<strong>in</strong>g to <strong>the</strong> Nature Conservation Act<br />

Mostly formerly arable land, to a lesser extent eutrophic grassland (Arrhena<strong>the</strong>rion elatioris)<br />

417.2 ha (295 sites)<br />

Landscape management programmes (80%), own resources (20%), voluntary work<br />

Initial costs: fruit tree plant<strong>in</strong>g av. €2,000/km, deciduous tree plant<strong>in</strong>g av. €3,200/km, plant<strong>in</strong>g of orchards<br />

€2,000/ha, plant<strong>in</strong>g of hedges €10,000/ha; annual costs: repair of nett<strong>in</strong>g aga<strong>in</strong>st brows<strong>in</strong>g, mow<strong>in</strong>g €4–100/<br />

km, graz<strong>in</strong>g <strong>in</strong> orchards av. €800/ha, hedges practically costless (occasional check<strong>in</strong>g of fences, no management)<br />

Initial conditions<br />

The landscape of <strong>the</strong> Podblanicko region has gone through<br />

strongly negative changes as a result of land consolidation due to agricultural<br />

collectivisation, elim<strong>in</strong>ation of baulks, cart tracks, walls, wayside<br />

shr<strong>in</strong>es etc. <strong>in</strong> <strong>the</strong> 1950s and 60s, and due to reclamation mostly<br />

<strong>in</strong> <strong>the</strong> 1970s and 80s. All <strong>the</strong>se changes have led to biodiversity loss,<br />

extensive water and w<strong>in</strong>d erosion and water regime alterations.<br />

S<strong>in</strong>ce 1998, <strong>the</strong> <strong>Czech</strong> Union for Nature Conservation has <strong>the</strong>refore<br />

been realis<strong>in</strong>g a programme for <strong>the</strong> <strong>restoration</strong> of small landscape<br />

elements, mostly l<strong>in</strong>es of trees and hedges as “first aid” for <strong>the</strong> agricultural<br />

landscape of Podblanicko (Kříž 2003, 2006, Kříž & Pešout 2004).<br />

Most sites are located on <strong>in</strong>tensively farmed and strongly eutrophicated<br />

farmland, where <strong>the</strong>se plant<strong>in</strong>gs significantly contribute to biodiversity<br />

<strong>in</strong>crease as well as reduction of w<strong>in</strong>d and water erosion. Local<br />

communities, <strong>the</strong> owners of most cart tracks and local roads as well as<br />

enlightened landowners have been important partners.<br />

Objectives<br />

— Restoration of landscape structures, particularly greenery elements,<br />

on farmland.<br />

— Re-accession of <strong>the</strong> landscape.<br />

Restoration measures<br />

The measures consist of two types: <strong>restoration</strong> of decl<strong>in</strong><strong>in</strong>g greenery<br />

elements (e.g. stabilisation of dis<strong>in</strong>tegrat<strong>in</strong>g l<strong>in</strong>es of trees and<br />

hedges, usually with a conserved herb or shrub layer) and renewal<br />

of defunct and ploughed elements (mostly on arable land). In <strong>the</strong> latter<br />

case it is necessary to reduce ruderal species, prepare <strong>the</strong> soil and<br />

sow an appropriate grass mixture (or at least w<strong>in</strong>ter gra<strong>in</strong>) before <strong>the</strong><br />

element can be established. In <strong>the</strong> case of plant<strong>in</strong>gs of l<strong>in</strong>es of trees<br />

mow<strong>in</strong>g has to follow.<br />

1998–1999 Restoration of still exist<strong>in</strong>g old l<strong>in</strong>es of trees (cutt<strong>in</strong>g<br />

self-seeded shrubs, treatment of old trees, plant<strong>in</strong>g<br />

new trees).<br />

1998–2006 Phase 1: Restoration of <strong>the</strong> first 100 km of l<strong>in</strong>es of<br />

trees, hedge plant<strong>in</strong>g, <strong>restoration</strong> of two extensive<br />

orchards.<br />

2007–2011 Phase 2: Ma<strong>in</strong>tenance of restored elements <strong>in</strong> collaboration<br />

with landowners, <strong>restoration</strong> of ano<strong>the</strong>r<br />

61.3 km of l<strong>in</strong>es of trees, hedge plant<strong>in</strong>g.<br />

Fig. 1. <br />

<br />

Results<br />

L<strong>in</strong>es of fruit trees with a length of 86.63 km have been planted<br />

and restored to date (Tab. 1), mostly consist<strong>in</strong>g of tall-trunk apple,<br />

pear, plum, cherry and walnut trees. In one case a l<strong>in</strong>e of mulberry<br />

trees was planted. Also l<strong>in</strong>es of deciduous trees with a length of<br />

74.67 km have been realised. These mostly consist of Tilia cordata, T.<br />

platyphyllos, Acer pseudoplatanus, A. platanoides, Frax<strong>in</strong>us excelsior,<br />

Quercus robur, and admixed Ulmus glabra.<br />

The species compositions of hedges differ accord<strong>in</strong>g to <strong>the</strong> function<br />

<strong>the</strong>y have. In l<strong>in</strong>ear hedges, shrubs prevail and trees are scattered,<br />

134 Landscapes


Tab. 1. <br />

Elements<br />

L<strong>in</strong>es of fruit trees<br />

L<strong>in</strong>es of non-fruit trees<br />

Newly planted Restored Newly planted Restored<br />

Hedges Extensive orchards Total<br />

Number 122 24 101 4 42 2 295<br />

Area (ha) 132 41 212 10 13 9 417<br />

O<strong>the</strong>r lessons learned and future prospects<br />

In <strong>the</strong> 14 years <strong>the</strong> programme has been runn<strong>in</strong>g we have ga<strong>in</strong>ed<br />

some essential experience thanks to which <strong>the</strong> plant<strong>in</strong>gs have not only<br />

been realised but also ma<strong>in</strong>ta<strong>in</strong>ed for a longer period of time.<br />

— When plann<strong>in</strong>g landscape element <strong>restoration</strong>, <strong>the</strong> easiest way is<br />

to use registered old (ploughed up) tracks and baulks.<br />

— It is advised to make appo<strong>in</strong>tments with <strong>the</strong> person who is <strong>in</strong><br />

charge of <strong>the</strong> land use. Leav<strong>in</strong>g enough passage space prevents<br />

<strong>in</strong>tentional damage or destruction.<br />

— Conversely, <strong>in</strong> <strong>the</strong> case of <strong>in</strong>tentional damage it is good to repair<br />

<strong>the</strong> damaged parts relentlessly. In most cases <strong>the</strong> damag<strong>in</strong>g stops<br />

after a few years.<br />

— Adequate sapl<strong>in</strong>gs should be used for plant<strong>in</strong>g: deciduous trees<br />

up to 150–200 cm tall, best with clod, and tall-trunk fruit trees.<br />

Taller trees do not survive <strong>in</strong> <strong>the</strong> landscape, s<strong>in</strong>ce <strong>the</strong>y cannot<br />

receive as much care as <strong>in</strong> a town or village. Moreover, <strong>the</strong>y are<br />

unnecessarily expensive. In hedges, it is better to plant sapl<strong>in</strong>gs<br />

used <strong>in</strong> forestry practice (30–50 cm tall). It is good to comb<strong>in</strong>e<br />

bare-root<strong>in</strong>g sapl<strong>in</strong>gs for two thirds and sapl<strong>in</strong>gs with clods for<br />

one third, which offers very good root<strong>in</strong>g at a yet acceptable price.<br />

— Plant<strong>in</strong>g <strong>in</strong> <strong>the</strong> open must be carried out <strong>in</strong> autumn. Spr<strong>in</strong>g is often<br />

followed by spells of drought, which demands <strong>in</strong>tensive water<strong>in</strong>g.<br />

O<strong>the</strong>rwise <strong>the</strong> sapl<strong>in</strong>gs die.<br />

— Sapl<strong>in</strong>gs have to be protected aga<strong>in</strong>st brows<strong>in</strong>g by game. The nett<strong>in</strong>g<br />

must be checked regularly, especially before and dur<strong>in</strong>g w<strong>in</strong>ter.<br />

If this task is neglected, one w<strong>in</strong>ter night can ru<strong>in</strong> <strong>the</strong> whole<br />

work.<br />

— The sward under <strong>the</strong> l<strong>in</strong>es of trees must not be mown. Sapl<strong>in</strong>gs<br />

(particularly shrubs) are poorly visible among weeds, so that a<br />

large number of <strong>the</strong>m may be cut off. With<strong>in</strong> 3–5 years <strong>the</strong> sapl<strong>in</strong>gs<br />

will outgrow <strong>the</strong> weeds.<br />

— Aftercare should not be neglected, especially check<strong>in</strong>g <strong>the</strong> nett<strong>in</strong>g<br />

aga<strong>in</strong>st game brows<strong>in</strong>g and prun<strong>in</strong>g tree crowns (ma<strong>in</strong>ly cutt<strong>in</strong>g<br />

away co-dom<strong>in</strong>ant shoots).<br />

Fig. 2. <br />

<br />

whereas <strong>in</strong> wide hedges ma<strong>in</strong>ly trees are planted and shrubs only create<br />

a fr<strong>in</strong>ge. Species used <strong>in</strong> hedges are Prunus sp<strong>in</strong>osa, P. avium, Rosa<br />

can<strong>in</strong>a, Crataegus sp., Viburnum opulus, Cornus sangu<strong>in</strong>ea, Corylus<br />

avellana, Lonicera xylosteum, Quercus robur, Q. petraea, Carp<strong>in</strong>us<br />

betulus, Sorbus aucuparia, Malus sylvestris, and Pyrus pyraster.<br />

It can be concluded that over 80% of <strong>the</strong> restored l<strong>in</strong>es of trees are<br />

currently viable and <strong>the</strong> rema<strong>in</strong>der (where <strong>in</strong> most cases <strong>the</strong> subsequent<br />

ma<strong>in</strong>tenance has not been realised) is gradually supplemented<br />

with new sapl<strong>in</strong>gs. Hedges have successfully been realised <strong>in</strong> 100% of<br />

<strong>the</strong> cases (also due to conceiv<strong>in</strong>g <strong>the</strong>m as non-managed).<br />

Public support<br />

Introduc<strong>in</strong>g new elements <strong>in</strong>to <strong>the</strong> landscape, especially l<strong>in</strong>es of<br />

trees, is very much appreciated by <strong>the</strong> public, just as <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

accessibility of <strong>the</strong> landscape is: along l<strong>in</strong>es of trees or l<strong>in</strong>ear hedges<br />

a path is formed after some time. Generally, if somewhere new landscape<br />

elements (especially l<strong>in</strong>es of trees) appear, also <strong>in</strong>terest <strong>in</strong> <strong>the</strong>se<br />

works from adjacent villages can be expected.<br />

Acknowledgements<br />

Our thanks go most of all out to representatives of <strong>the</strong> communities<br />

<strong>in</strong>volved and enlightened landowners, without whom such a<br />

number of landscape elements would not have been realised on <strong>the</strong><br />

territory of <strong>the</strong> Podblanicko region.<br />

References<br />

Kříž K. (2003): Nové aleje na Podblanicku (New avenues <strong>in</strong> <strong>the</strong> Podblanicko<br />

region). – Pod Blaníkem 7/4: 2–5.<br />

Kříž K. (2006): Výsadba stého kilometru alejí na Podblanicku (Plant<strong>in</strong>g<br />

<strong>the</strong> hundredth kilometre of avenue <strong>in</strong> <strong>the</strong> Podblanicko region).<br />

– Pod Blaníkem 10/1: 2–4.<br />

Kříž K. & Pešout P. (2004): Obnova stromořadí na Podblanicku (Restoration<br />

of l<strong>in</strong>es of trees <strong>in</strong> <strong>the</strong> Podblanicko region). – Veronica<br />

18/3: 10–13.<br />

Fig. 3. <br />

<br />

Landscapes 135


Restoration of standard orchard at Habrůvka<br />

<br />

Location<br />

Protection status<br />

Restored area<br />

F<strong>in</strong>ancial support<br />

Costs<br />

SW of <strong>the</strong> village of Habrůvka (see Fig. 2), N of Brno, sou<strong>the</strong>ast <strong>Czech</strong> <strong>Republic</strong><br />

49°18' N, 16°43' E; altitude 490 m<br />

PLA (Moravský kras)<br />

3 ha<br />

Landscape management programmes, South Moravian Region<br />

€1900/ha (removal of <strong>in</strong>vasive species with a brushcutter, mow<strong>in</strong>g of <strong>the</strong> grassland and subsequent removal<br />

of <strong>the</strong> biomass, plant<strong>in</strong>g of 10 young standard apple trees)<br />

Initial conditions<br />

Around 1932, an orchard was established on <strong>the</strong> “Na stání” commons<br />

and named Tyrš Orchard <strong>in</strong> honour of <strong>the</strong> founder of <strong>the</strong> Sokol<br />

sport organisation. It was gradually expanded to a size of 3.8 ha. The<br />

former ma<strong>in</strong>tenance <strong>in</strong>cluded gradual replacement of old trees, plant<strong>in</strong>g<br />

of new trees, grass mow<strong>in</strong>g and fruit harvest<strong>in</strong>g by local citizens.<br />

In 1982–1995 <strong>the</strong> management was carried out by members of <strong>the</strong><br />

local gardeners society.<br />

After 1995, <strong>the</strong> orchard was not systematically managed and became<br />

gradually overgrown by self-seeded and <strong>in</strong>vasive shrubs and<br />

trees (mostly Rob<strong>in</strong>ia pseudacacia and Rosa can<strong>in</strong>a) and suckers from<br />

<strong>the</strong> rootstock (Prunus cerasifera) of planted plum trees. Some old trees<br />

(especially cherries) are <strong>in</strong>stable, <strong>the</strong>ir trunks damaged, branches broken<br />

and crowns desiccated. The orchard has also been negatively affected<br />

by <strong>the</strong> presence of an illegal waste dump nearby.<br />

In 2010 a new non-governmental organisation called Habrůvka<br />

– Traditional Village was founded. It set <strong>the</strong> ma<strong>in</strong> target of its activities<br />

to restor<strong>in</strong>g Tyrš Orchard, and a management plan was drawn up<br />

<strong>in</strong> cooperation with Biosférická rezervace Dolní Morava, o.p.s. (Biosphere<br />

Reserve Authority) and Mendel University, Brno.<br />

Fig. 1. -<br />

<br />

Objectives<br />

Restoration and creation of an extensively managed, species- and<br />

variety-rich orchard, formation of a gene bank, <strong>in</strong>creas<strong>in</strong>g biodiversity,<br />

creat<strong>in</strong>g a meet<strong>in</strong>g po<strong>in</strong>t for local citizens.<br />

Fig. 2. <br />

Restoration measures<br />

2011<br />

— Inventory of <strong>the</strong> fruit trees <strong>in</strong>clud<strong>in</strong>g assessment of<br />

<strong>the</strong>ir health and general value.<br />

— Removal of self-seeded and <strong>in</strong>vasive woody species,<br />

especially Black Locust (Rob<strong>in</strong>ia pseudacacia).<br />

— Removal of remnants of illegal waste dump, terra<strong>in</strong><br />

levell<strong>in</strong>g.<br />

— Summer prun<strong>in</strong>g of stone fruit trees (cherries) – removal<br />

of diseased and dead branches (while reta<strong>in</strong><strong>in</strong>g<br />

dy<strong>in</strong>g and dead trees <strong>in</strong> <strong>the</strong> orchards if <strong>the</strong>y are not a<br />

risk to people’s safety).<br />

— Mow<strong>in</strong>g grass with a brushcutter <strong>in</strong>clud<strong>in</strong>g subsequent<br />

biomass removal.<br />

— Plant<strong>in</strong>g 30 apple trees of different historical varieties<br />

(e.g. ‘Oranienapfel’, ‘Wesener’, ‘Graham’s Royal Jubilee’,<br />

‘Coulon’s Renette’) and landraces (e.g. ‘Granatapfel aus<br />

Třiblice’, ‘Korbapfel’, ‘Sudeten Renette’, ‘Vlk’s Seedl<strong>in</strong>g’,<br />

‘Himbeerapfel von Holowaus’).<br />

Management measures<br />

— Ma<strong>in</strong>tenance of fruit trees by prun<strong>in</strong>g.<br />

— Mosaic mow<strong>in</strong>g of <strong>the</strong> grass twice a year with subsequent biomass<br />

removal (graz<strong>in</strong>g by domestic animals could be an alternative).<br />

— Plant<strong>in</strong>g new trees, ma<strong>in</strong>ly pome fruit (apple, pear).<br />

— Subsequent ma<strong>in</strong>tenance of newly planted trees (improvement<br />

cutt<strong>in</strong>g of young trees and hoe<strong>in</strong>g <strong>the</strong> soil around <strong>the</strong> trees for at<br />

least 3 years after plant<strong>in</strong>g).<br />

136 Landscapes


Fig. 3. <br />

Fig. 4. <br />

Methods<br />

In 2011 a detailed <strong>in</strong>ventory of <strong>the</strong> fruit trees <strong>in</strong> <strong>the</strong> orchard was<br />

conducted <strong>in</strong> order to identify <strong>the</strong> fruit cultivars present. For each<br />

tree, we assessed <strong>the</strong> follow<strong>in</strong>g features on a five-po<strong>in</strong>t scale (exclud<strong>in</strong>g<br />

<strong>the</strong> rate of crown desiccation):<br />

— General value of <strong>the</strong> tree (1 – high value; 5 – low value) (Pejchal<br />

& Šimek 2011).<br />

— General state of health (1 – completely healthy <strong>in</strong>dividual; 5 –<br />

heavily damaged <strong>in</strong>dividual).<br />

— Trunk damage (1 – none; 5 – extensively damaged).<br />

— Rate of crown desiccation (0–100%).<br />

Results<br />

The orchard comprises a total of 416 planted fruit trees: 9 pear<br />

trees (cv. ‘Hardy’), 33 apple trees (cv. ‘Gascoyne’s Scarlet Seedl<strong>in</strong>g’,<br />

‘Kuhländer Gulderl<strong>in</strong>g’, ‘The Queen’, ‘Roter Böhmischer Jungfernapfel’,<br />

‘W<strong>in</strong>ter Goldparmäne’, ‘Sudeten Renette’), 37 Persian walnut trees<br />

(sapl<strong>in</strong>gs), 127 plum trees (cv. ‘Common Prune’, ‘Durancie’, ‘Wangenheim’),<br />

and 210 cherry trees (cv. ‘Annonay’, ‘Hedelf<strong>in</strong>gern’, ‘Kaštánka’,<br />

‘Karešova’, ‘Libějovická’, ‘Napoleon’, ‘Früheste der Mark’, ‘Skalka’). Tyrš<br />

Orchard is not significant from <strong>the</strong> viewpo<strong>in</strong>t of gene pool conservation.<br />

Except for <strong>the</strong> relatively rare varieties ‘The Queen’ and ‘Skalka’,<br />

<strong>the</strong> orchard <strong>in</strong>cludes a range of common, old standard fruit trees.<br />

The average values of <strong>the</strong> assessed features were as follows: overall<br />

state of health 2.8, trunk damage 1.9, crown desiccation 30.8%. The<br />

general value of all assessed trees reached a mean score of 3.0, which<br />

<strong>in</strong>dicates moderately valuable trees supposed to live long, possibly<br />

with reduced vitality and health. The trees can be utilised for fruit production<br />

as well as ornamental or compositional vegetation elements.<br />

O<strong>the</strong>r lessons learned and future prospects<br />

Long-neglected extensive orchards can be restored relatively<br />

quickly us<strong>in</strong>g appropriate agrotechnical operations <strong>in</strong>clud<strong>in</strong>g special<br />

prun<strong>in</strong>g for tree improvement and ma<strong>in</strong>tenance, clean<strong>in</strong>g <strong>the</strong> area<br />

from unwanted vegetation (self-seeded trees, rootstocks), and plant<strong>in</strong>g<br />

new trees. Reta<strong>in</strong><strong>in</strong>g dead or unviable trees creates suitable habitats<br />

for xylophagous <strong>in</strong>sects and o<strong>the</strong>r organisms.<br />

Traditional extensive orchard<strong>in</strong>g seems to be <strong>the</strong> optimal way of<br />

conserv<strong>in</strong>g on farm genetic resources of vegetatively propagated species<br />

(Holubec & Papršte<strong>in</strong> 2005), especially old and regional cultivars<br />

found <strong>in</strong> a particular area (Papršte<strong>in</strong> & Kloutvor 2006, Boček & Tetera<br />

2008).<br />

Public support<br />

Local citizens are <strong>in</strong>terested <strong>in</strong> actively participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> management<br />

of Tyrš Orchard. The orchard is suitable for educational sem<strong>in</strong>ars<br />

(prun<strong>in</strong>g trees, biological fruit crop control, etc.).<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> <strong>Czech</strong> M<strong>in</strong>istry of Agriculture<br />

under project no. QI112A138 ‘Local identity of greenery <strong>in</strong> countryside<br />

and villages’.<br />

References<br />

Boček S. & Tetera V. (2008): Ovocné dřev<strong>in</strong>y Bílých Karpat (Fruit<br />

trees of <strong>the</strong> White Carpathian Mts.). – Zahradnictví 1: 10–12.<br />

Holubec V. & Papršte<strong>in</strong> F. (2005): Možnosti uplatnění <strong>in</strong> situ a on<br />

farm konzervace v Č R (Possibilities of apply<strong>in</strong>g <strong>in</strong> situ and on<br />

farm conservation <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). – In: Faberová I.<br />

(ed.), Konzervace a regenerace genetických zdrojů vegetativně<br />

množených druhů rostl<strong>in</strong> a Dostupnost a využívání genetických<br />

zdrojů rostl<strong>in</strong> a podpora biodiversity, pp. 92–96, Výzkumný ústav<br />

rostl<strong>in</strong>né výroby, Praha.<br />

Papršte<strong>in</strong> F. & Kloutvor J. (2006): Záchrana krajových odrůd ovocných<br />

dřev<strong>in</strong> v České republice (Conservation of local fruit cultivars <strong>in</strong><br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>). – Vědecké práce ovocnářské 20: 115–120.<br />

Pejchal M. & Šimek P. (2011): Sadovnická hodnota: oborový standard<br />

v zahradní a kraj<strong>in</strong>ářské architektuře (Orchard value: professional<br />

norm <strong>in</strong> garden and landscape architecture). – In: Anonymus<br />

(ed.), Odborný sem<strong>in</strong>ář Provozní bezpečnost stromů, 24.–25.<br />

března 2011, Brno, Sborník přednášek, pp. 20–28, Agentura ochrany<br />

přírody a kraj<strong>in</strong>y Č R a Lesnická a dřevařská fakulta Mendelovy<br />

univerzity, Brno. (CD-ROM)<br />

Landscapes 137


Restoration of semi-natural vegetation <strong>in</strong> old fields <strong>in</strong> <strong>the</strong> Bohemian Karst<br />

Location<br />

Protection status<br />

Ecosystem types<br />

Restored area<br />

Costs €0<br />

Bohemian Karst (Český kras) PLA, SW of Prague, <strong>Czech</strong> <strong>Republic</strong><br />

49°52'–50°00' N, 14°03'–14°21' E; altitude 251–488 m<br />

PLA<br />

<br />

Deciduous woodland (dom<strong>in</strong>ated by mesophilous oak-hornbeam and <strong>the</strong>rmophilous oak woods), mesic<br />

meadows, shrubland, dry grasslands<br />

91.7 ha (110 orig<strong>in</strong>al old fields dat<strong>in</strong>g from 1975), 18 ha (46 still exist<strong>in</strong>g, spontaneously developed fields)<br />

Initial conditions<br />

Arable land <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, just as <strong>in</strong> o<strong>the</strong>r central and<br />

eastern European countries, was extensively abandoned <strong>in</strong> <strong>the</strong> 1990s<br />

as a result of political and economic changes (Brouwer & van der<br />

Straaten 2002). However, abandonment of arable land had also earlier<br />

been practised for various reasons.<br />

Altoge<strong>the</strong>r 110 abandoned arable fields were recorded <strong>in</strong> <strong>the</strong> mid-<br />

1970s, cover<strong>in</strong>g 0.7% of <strong>the</strong> karst area (Osbornová et al. 1990). This<br />

case study focused only on those with spontaneous succession.<br />

Abiotic conditions<br />

It is a relatively warm and dry region, with mild w<strong>in</strong>ters; a mean<br />

annual temperature of 8–9 °C and a mean annual precipitation of<br />

530 mm. Limestone is <strong>the</strong> bedrock <strong>in</strong> most of <strong>the</strong> area.<br />

Objectives<br />

The follow<strong>in</strong>g ma<strong>in</strong> questions were asked:<br />

— Do target stages, identified as shrubby grassland (SG) and sem<strong>in</strong>atural<br />

deciduous woodland (W), develop and, if so, which species<br />

are <strong>in</strong>volved?<br />

— Are <strong>the</strong> target stages predictable?<br />

— What is <strong>the</strong> <strong>in</strong>fluence of <strong>the</strong> surround<strong>in</strong>g vegetation on <strong>the</strong> target<br />

species composition of <strong>the</strong> old fields?<br />

Data collection<br />

1975 Klaudisová (1976) sampled 58 of 110 old fields <strong>in</strong> <strong>the</strong><br />

area.<br />

2008–2009 A total of 28 of <strong>the</strong>m were re-sampled (Jírová et al.<br />

2011).<br />

2009–2011 Complete lists of vascular plant species were<br />

recorded for 46 fields and <strong>the</strong>ir surround<strong>in</strong>gs up to<br />

100 m from <strong>the</strong>ir marg<strong>in</strong>.<br />

Results<br />

<br />

The spontaneous succession <strong>in</strong> old fields proceeded towards target<br />

stages, ei<strong>the</strong>r deciduous woodland or shrubby grassland (Fig. 2).<br />

Their establishment can be tentatively predicted by soil pH and early<br />

occurrence of grassland species. Moreover, shrubby grasslands develop<br />

on <strong>the</strong> shallower soils.<br />

<br />

In total, 589 vascular plant species were recorded <strong>in</strong> <strong>the</strong> studied<br />

old fields and <strong>the</strong>ir surround<strong>in</strong>gs, 154 of which were classified as target<br />

species (belong<strong>in</strong>g to <strong>the</strong> Querco-Fagetea, Festuco-Brometea and<br />

Fig. 1. <br />

138 Landscapes


O<strong>the</strong>r lessons learned and future prospects<br />

Spontaneous succession can be considered a suitable <strong>restoration</strong><br />

measure <strong>in</strong> old fields. Shrubby grassland and deciduous woodland as<br />

target vegetation have developed <strong>in</strong> this case without any <strong>in</strong>tervention.<br />

However, <strong>in</strong> some cases of shrubby grassland a reduction of<br />

woody species is desirable to support and ma<strong>in</strong>ta<strong>in</strong> rare heliophilous<br />

species. Shrubby grassland, resembl<strong>in</strong>g natural steppe-like communities<br />

typical of <strong>the</strong> region, is valuable from <strong>the</strong> <strong>restoration</strong> po<strong>in</strong>t of view.<br />

Landowners can save money by replac<strong>in</strong>g expensive reclamation by<br />

spontaneous succession at suitable sites.<br />

Fig. 2. <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Trifolio-Geranietea classes <strong>in</strong> <strong>the</strong> European classification system), <strong>the</strong><br />

rema<strong>in</strong>der be<strong>in</strong>g ei<strong>the</strong>r weeds, common and widespread species or<br />

species typical of mesic grasslands. Forty-four target species were not<br />

recorded <strong>in</strong> <strong>the</strong> fi elds, but most of <strong>the</strong>m, except for 13 species, occurred<br />

<strong>in</strong> <strong>the</strong> surround<strong>in</strong>g area once or twice. Target and native species<br />

were generally successful <strong>in</strong> <strong>the</strong> late successional stages. This result<br />

is important from <strong>the</strong> viewpo<strong>in</strong>t of nature conservation. The four<br />

most successful establish<strong>in</strong>g taxa were Aster amellus, Crataegus sp.,<br />

Rosa can<strong>in</strong>a agg. and Cornus sangu<strong>in</strong>ea. Some rare species spontaneously<br />

arrived at <strong>the</strong> restored sites, e.g. Orchis purpurea, Lithospermum<br />

purpurocaeruleum, Gentianopsis ciliata, and An<strong>the</strong>ricum ramosum.<br />

Acknowledgements<br />

The study was supported by <strong>the</strong> follow<strong>in</strong>g grants: MSM<br />

6007665801, AVOZ 60050516, P505/11/0256, GAJU 138/2010/P, and<br />

SGA2008/015.<br />

References<br />

Brouwer F. & van der Straaten J. (eds) (2002): Nature and agriculture<br />

<strong>in</strong> <strong>the</strong> European Union: New perspectives on policies that shape<br />

<strong>the</strong> European countryside. – Edward Elgar, Cheltenham, UK.<br />

Jírová A., Klaudisová A. & Prach K. (2012): Spontaneous <strong>restoration</strong><br />

of target vegetation <strong>in</strong> old fields <strong>in</strong> a central European landscape:<br />

a repeated analysis after three decades. – Applied Vegetation Science<br />

15: 245–252.<br />

Klaudisová A. (1976): Fytocenologicko-pedologická studie opuštěných<br />

polí Českého krasu (Phytosociological and pedological<br />

study of abandoned fields <strong>in</strong> <strong>the</strong> Bohemian Karst). – Ms.; Master<br />

<strong>the</strong>sis, Charles University, Prague.<br />

Osbornová J.M., Kovářová J., Lepš J. & Prach K. (eds) (1990): Succession<br />

<strong>in</strong> abandoned fields: studies <strong>in</strong> Central Bohemia, <strong>Czech</strong>oslovakia.<br />

– Kluwer, Dordrecht.<br />

Fig. 3. <br />

Landscapes 139


Conclusions<br />

This publication reflects <strong>the</strong> state-of-<strong>the</strong> art of <strong>restoration</strong> ecology and practical ecological <strong>restoration</strong> <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, although only<br />

selected examples are presented. Many valuable <strong>restoration</strong> projects have been conducted or are <strong>in</strong> progress, however more needs to be done. We<br />

believe that our country will comply with <strong>the</strong> Strategic Plan of <strong>the</strong> Convention on Biological Diversity for <strong>the</strong> post-2010 period, which recommends<br />

<strong>restoration</strong> of at least 15 per cent of degraded ecosystems by 2020.<br />

We can draw especially <strong>the</strong> follow<strong>in</strong>g conclusions:<br />

1. Our landscape is traditionally based on a diverse f<strong>in</strong>e-scale mosaic of natural, semi-natural and anthropogenic habitats, which should be<br />

respected by <strong>restoration</strong> projects. Sometimes even less traditional measures, such as prescribed fire, topsoil scrap<strong>in</strong>g, off-road activities, etc.,<br />

can be <strong>in</strong>tegrated <strong>in</strong>to <strong>restoration</strong> projects to diversify <strong>the</strong>ir output. Heterogenous <strong>restoration</strong> <strong>in</strong> space and time seems to be most desirable.<br />

Uniform, large-scale projects, such as many of those under <strong>the</strong> present Agri-environmental schemes, can be detrimental to many biota if<br />

not appropriately modified.<br />

2. Restoration projects should not target just one group of organisms or one ecosystem service. If <strong>the</strong> various <strong>in</strong>terests cannot be balanced,<br />

mosaic management can be an appropriate solution.<br />

3. Collaboration across scientific discipl<strong>in</strong>es and between practical <strong>restoration</strong>ists, decision-makers and <strong>the</strong> public must be improved. Even<br />

dur<strong>in</strong>g <strong>the</strong> preparation of this publication we came across some very narrow views of <strong>the</strong> problem of habitat <strong>restoration</strong> and biodiversity<br />

conservation, which we hope this publication will help to overcome.<br />

4. Natural processes, usually manifested <strong>in</strong> spontaneous succession, are often effective and cheap tools of <strong>restoration</strong>. Frequently, habitats valuable<br />

from <strong>the</strong> nature conservation po<strong>in</strong>t of view are formed. Succession often needs arrest<strong>in</strong>g or even revers<strong>in</strong>g, because early successional<br />

stages may be more appreciated for <strong>the</strong>ir biodiversity. This could be easily f<strong>in</strong>anced by a fragment of <strong>the</strong> huge amount of money <strong>in</strong>vested<br />

<strong>in</strong>to often useless technical reclamation.<br />

5. We have ra<strong>the</strong>r good scientific and practical knowledge of how to restore various disturbed habitats preferably <strong>in</strong> near-natural ways. However,<br />

<strong>the</strong>re are still many obstacles to apply<strong>in</strong>g this knowledge <strong>in</strong> practice, often due to low <strong>in</strong>terest by target companies, officials, decisionmakers,<br />

and sometimes due to <strong>in</strong>convenient legislation.<br />

We thank Jonathan Mitchley for language improvement, Karel Fajmon for valuable comments, and Dagmar Uhýrková for technical assistance<br />

with some of <strong>the</strong> figures. David Jongepier is acknowledged for <strong>the</strong> graphic design of <strong>the</strong> entire publication. Valuable comments particularly<br />

by our reviewers Ladislav Miko and Tomáš Kučera are very much appreciated.<br />

The editors<br />

141


List of authors<br />

Bastl Marek<br />

Bělohoubek Jiří<br />

Boček Stanislav<br />

University of South Bohemia, Faculty of Science, Department of Botany, Branišovská<br />

31, CZ - 370 05 České Budějovice<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Labské pískovce PLA Authority<br />

and Ústí nad Labem Regional Office, Bělehradská 17, CZ - 400 01 Ústí nad Labem<br />

Mendel University Brno, Department of Forest Botany, Dendrology and Geobiocoenology,<br />

Zemědělská 1, CZ - 613 00 Brno<br />

marek.bastl@bf.jcu.cz<br />

jiri.belohoubek@nature.cz<br />

bocek@mendelu.cz<br />

Brabec Jiří Cheb Museum, nám. Krále Jiřího z Poděbrad 493/4, CZ - 350 11 Cheb jbrabcak@seznam.cz<br />

Bufková Ivana Šumava NP and PLA Authority, Sušická 399, CZ - 341 92 Kašperské Hory ivana.bufkova@npsumava.cz<br />

Čašek Jaromír 3E - projektování ekologických staveb s.r.o., Pražská 455, CZ - 393 01 Pelhřimov j.casek@3eprojektovani.cz<br />

Čiháková Kateř<strong>in</strong>a Charles University Prague, Faculty of Science, Department of Botany, Benátská 2,<br />

CZ - 128 01 Praha 2<br />

kater<strong>in</strong>acihakova@seznam.cz<br />

Čížek Lukáš Biology Centre, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Institute of Entomology, lukas.cizek@gmail.com<br />

Branišovská 31, CZ - 370 05 České Budějovice; University of South Bohemia, Faculty<br />

of Science, Department of Zoology, Branišovská 31, CZ - 370 05 České Budějovice<br />

Dlouhá Veronika Charles University Prague, Faculty of Science, Department of Botany, Benátská 2, veronika.dlouha@natur.cuni.cz<br />

CZ - 128 01 Praha 2<br />

Donocik Roman Českomoravský cement, a.s., nástupnická společnost, Mokrá 359, CZ - 664 09 roman.donocik@cmcem.cz<br />

Mokrá-Horákov<br />

Dvořák Petr University of South Bohemia, Faculty of Fisheries and Protection of Waters, South dvorakp@frov.jcu.cz<br />

Bohemian Research Centre of Aquaculture, Husova tř. 458/102, CZ - 370 05 České<br />

Budějovice<br />

Edwards Magda Global Change Research Centre, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Na edwards.m@czechglobe.cz<br />

Sádkách 7, CZ - 370 05 České Budějovice<br />

Frouz Jan<br />

Charles University Prague, Faculty of Science, Institute for Environmental Studies, frouz@natur.cuni.cz<br />

Benátská 2, CZ - 128 01 Praha 2<br />

Gaisler Jan<br />

Crop Research Institute, Department of Plant Ecology and Weed Science, Rolnická gaisler@fzp.czu.cz<br />

85/6, CZ - 460 01 Liberec; <strong>Czech</strong> University of Life Sciences Prague, Faculty of Environmental<br />

Sciences, Kamýcká 129, CZ - 165 21 Praha 6<br />

Hanousek Mart<strong>in</strong> Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Orlické hory PLA Authority mart<strong>in</strong>.hanousek@nature.cz<br />

and Hradec Králové Regional Office, Pražská 155, CZ - 500 04 Hradec Králové<br />

Harčarik Josef Krkonoše NP Authority, Dobrovského 3, CZ - 543 01 Vrchlabí jharcarik@krnap.cz<br />

Hartvich Petr University of South Bohemia, Faculty of Fisheries and Protection of Waters, South hartvich@frov.jcu.cz<br />

Bohemian Research Centre of Aquaculture, Husova tř. 458/102, CZ - 370 05 České<br />

Budějovice<br />

Hejcman Michal Crop Research Institute, Department of Plant Ecology and Weed Science, Rolnická hejcman@fzp.czu.cz<br />

85/6, CZ - 460 01 Liberec; <strong>Czech</strong> University of Life Sciences Prague, Faculty of Environmental<br />

Sciences, Kamýcká 129, CZ - 165 21 Praha 6<br />

Heřman Petr Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Český kras PLA Authority, petr.herman@nature.cz<br />

Karlštejn 85, CZ - 267 18 Karlštejn<br />

Horn Petr<br />

University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, petr.horn@seznam.cz<br />

Branišovská 31, CZ - 370 05 České Budějovice<br />

Jírová Alena University of South Bohemia, Faculty of Science, Department of Botany, Branišovská cralenka@yahoo.co.uk<br />

31, CZ - 370 05 České Budějovice; Institute of Botany, Academy of Sciences of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>, Dukelská 135, CZ - 379 82 Třeboň<br />

Jiskra Petr<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Slavkovský les PLA Authority petr.jiskra@nature.cz<br />

and Karlovy Vary Regional Office, Drahomíř<strong>in</strong>o nábřeží 197/16, CZ - 360 09 Karlovy<br />

Vary<br />

Jongepierová Ivana Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Bílé Karpaty PLA Authority ivana.jongepierova@nature.cz<br />

and Zlín Regional Office, Nádražní 318, CZ - 763 26 Luhačovice; <strong>Czech</strong> Union for<br />

Nature Conservation, Local Chapter Bílé Karpaty, Bartolomějské nám. 47, CZ - 698<br />

01 Veselí nad Moravou<br />

Just Tomáš<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Headquarters Praha and Střední<br />

Čechy Regional Office, U Šalamounky 41/769, CZ - 158 00 Praha 5<br />

tomas.just@nature.cz<br />

142


Klaudys Mart<strong>in</strong><br />

Konvička Mart<strong>in</strong><br />

<strong>Czech</strong> Union for Nature Conservation, Local Chapter Vlašim, Pláteníkova 264, CZ<br />

- 258 01 Vlašim<br />

Biology Centre of <strong>the</strong> Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Institute of Entomology,<br />

Branišovská 31, CZ - 370 05 České Budějovice; University of South Bohemia,<br />

Faculty of Science, Department of Zoology, Branišovská 31, CZ - 370 05 České<br />

Budějovice<br />

mart<strong>in</strong>.klaudys@csop.cz<br />

konva333@gmail.com<br />

Kopečková Michala Ametyst Civil Association, Koterovská 2127/84, CZ - 326 00 Plzeň misa.kopeckova@gmail.com<br />

Kovář Pavel Charles University Prague, Faculty of Science, Department of Botany, Benátská 2,<br />

CZ - 128 01 Praha 2<br />

Král Kamil<br />

Kříž Karel<br />

Silva Tarouca Research Institute for Landscape and Ornamental Garden<strong>in</strong>g, Department<br />

of Forest Ecology, Lidická 25/27, CZ - 602 00 Brno<br />

<strong>Czech</strong> Union for Nature Conservation, Local Chapter Vlašim, Pláteníkova 264, CZ<br />

- 258 01 Vlašim<br />

Ludvíková Vendula Crop Research Institute, Department of Plant Ecology and Weed Science, Rolnická<br />

85/6, CZ - 460 01 Liberec; <strong>Czech</strong> University of Life Sciences Prague, Faculty of Environmental<br />

Sciences, Kamýcká 129, CZ - 165 21 Praha 6<br />

Malenovský Igor Moravian Museum, Department of Entomology, Hviezdoslavova 29a, CZ - 627 00<br />

Brno<br />

Marhoul Pavel Daphne CZ – Institute of Applied Ecology, Emy Dest<strong>in</strong>ové 395, CZ - 370 05 České<br />

Budějovice<br />

Mayerová Hana Charles University Prague, Faculty of Science, Department of Botany, Benátská 2,<br />

CZ - 128 01 Praha 2<br />

Mudrák Ondřej Institute of Botany, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Section of Plant<br />

Ecology, Dukelská 135, CZ - 379 82 Třeboň<br />

Münzbergová<br />

Zuzana<br />

Pavlů Lenka<br />

Pavlů Vilém<br />

Pelc František<br />

Pešout Pavel<br />

Pithart David<br />

Charles University Prague, Faculty of Science, Department of Botany, Benátská 2,<br />

CZ - 128 01 Praha 2; Institute of Botany, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>,<br />

Zámek 1, CZ - 252 43 Průhonice<br />

Crop Research Institute, Department of Plant Ecology and Weed Science, Rolnická<br />

85/6, CZ - 460 01 Liberec; <strong>Czech</strong> University of Life Sciences Prague, Faculty of Environmental<br />

Sciences, Kamýcká 129, CZ - 165 21 Praha 6<br />

Crop Research Institute, Department of Plant Ecology and Weed Science, Rolnická<br />

85/6, CZ - 460 01 Liberec; <strong>Czech</strong> University of Life Sciences Prague, Faculty of Environmental<br />

Sciences, Kamýcká 129, CZ - 165 21 Praha 6<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Kaplanova 1, CZ - 148 00 Praha<br />

11<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Nature and Landscape Protection<br />

Section, Kaplanova 1, CZ - 148 00 Praha 11; <strong>Czech</strong> Union for Nature Conservation,<br />

Local Chapter Vlašim, Pláteníkova 264, CZ - 258 01 Vlašim<br />

Daphne CZ – Institute of Applied Ecology, Emy Dest<strong>in</strong>ové 395, CZ - 370 05 České<br />

Budějovice<br />

pavel.kovar@natur.cuni.cz<br />

kamil.kral@vukoz.cz<br />

karel.kriz@csop.cz<br />

ludvikovavendula@fzp.czu.cz<br />

imalenovsky@mzm.cz<br />

pavel.marhoul@daphne.cz<br />

mayerova.ha@volny.cz<br />

ondrej.mudrak@centrum.cz<br />

zuzmun@natur.cuni.cz<br />

pavlul@fzp.czu.cz<br />

pavluv@fzp.czu.cz<br />

frantisek.pelc@nature.cz<br />

pavel.pesout@nature.cz<br />

david.pithart@daphne.cz<br />

Ponikelský Jaroslav Podyjí NP Authority, Na Vyhlídce 5, CZ - 669 02 Znojmo ponikelsky@nppodyji.cz<br />

Prach Karel<br />

University of South Bohemia, Faculty of Science, Department of Botany, Na Zlaté prach@prf.jcu.cz<br />

stoce 1, CZ - 370 05 České Budějovice; Institute of Botany, Academy of Sciences of<br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Dukelská 135, CZ - 379 82 Třeboň<br />

Rauch Ota Institute of Botany, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Zámek 1, CZ - 252 rauch@butbn.cas.cz<br />

43 Průhonice<br />

Rous Jiří Terén Design, s.r.o., Dr. Vrbenského 2874/1, CZ - 415 01 Teplice jiri.rous@pireo.cz<br />

Rous Vít Grania s.r.o., nám. 14. října 1307/2, CZ - 150 00 Praha 5 rous.vitek@seznam.cz<br />

Řehounek Jiří Calla – Association for Environmental Protection, Fráni Šrámka 35, CZ - 370 01 rehounekj@seznam.cz<br />

České Budějovice<br />

Řehounková Klára University of South Bohemia, Faculty of Science, Department of Botany, Branišovská ms_cora@hotmail.com<br />

31, CZ - 370 05 České Budějovice; Institute of Botany, Academy of Sciences of <strong>the</strong><br />

<strong>Czech</strong> <strong>Republic</strong>, Dukelská 135, CZ - 379 82 Třeboň<br />

Salašová Alena Mendel University Brno, Faculty of Horticulture, Department of Landscape Plann<strong>in</strong>g,<br />

alena.salasova@mendelu.cz<br />

Valtická 337, CZ - 691 44 Lednice<br />

Stíbal František Šumava NP and PLA Authority, Sušická 399, CZ - 341 92 Kašperské Hory frantisek.stibal@npsumava.cz<br />

Šlechtová Anna Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Species Protection Office, Kaplanova<br />

1, CZ - 148 00 Praha 11<br />

anna.slechtova@nature.cz<br />

143


Šrůtek Miroslav<br />

Tichý Lubomír<br />

Tichý Tomáš<br />

Trochta Jan<br />

Tropek Robert<br />

Vrška Tomáš<br />

Zámečník Jaroslav<br />

Zimmermann Kamil<br />

University of South Bohemia, Faculty of Science, Department of Botany, Na Zlaté<br />

stoce 1, CZ - 370 05 České Budějovice; Institute of Botany, Academy of Sciences of<br />

<strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Department of Geobotany, Zámek 1, CZ - 252 43 Průhonice<br />

Masaryk University Brno, Faculty of Science, Department of Botany and Zoology,<br />

Kotlářská 2, CZ - 611 37 Brno<br />

Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Český kras PLA Authority,<br />

Karlštejn 85, CZ - 267 18 Karlštejn<br />

Silva Tarouca Research Institute for Landscape and Ornamental Garden<strong>in</strong>g, Department<br />

of Forest Ecology, Lidická 25/27, CZ - 602 00 Brno<br />

University of South Bohemia, Faculty of Science, Department of Zoology, Branišovská<br />

31, CZ - 370 05 České Budějovice; Biology Centre, Academy of Sciences of <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>, Institute of Entomology, Branišovská 31, CZ - 370 05 České Budějovice<br />

Silva Tarouca Research Institute for Landscape and Ornamental Garden<strong>in</strong>g, Department<br />

of Forest Ecology, Lidická 25/27, CZ - 602 00 Brno; Mendel University Brno,<br />

Faculty of Forestry and Wood Technology, Department of Silviculture, Zemědělská<br />

3, CZ - 613 00 Brno<br />

Museum of Eastern Bohemia Hradec Králové, Elišč<strong>in</strong>o nábřeží 465, CZ - 500 01 Hradec<br />

Králové; Hutur Civil Association, J. Purkyně 1616, CZ - 500 02 Hradec Králové<br />

Biology Centre, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Institute of Entomology,<br />

Branišovská 31, CZ - 370 05 České Budějovice<br />

miroslav@srutek.cz<br />

tichy@sci.muni.cz<br />

tomas.tichy@nature.cz<br />

jan.trochta@vukoz.cz<br />

robert.tropek@prf.jcu.cz<br />

tomas.vrska@vukoz.cz<br />

j.zamecnik@muzeumhk.cz<br />

cimm<strong>in</strong>@gmail.com<br />

144


Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

The Nature Conservation Agency of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (NCACR)<br />

is a state <strong>in</strong>stitution prepar<strong>in</strong>g and perform<strong>in</strong>g nature and landscape<br />

management <strong>in</strong> <strong>the</strong> country.<br />

NCACR manages all significant protected areas <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong><br />

except for National Parks. It ma<strong>in</strong>ta<strong>in</strong>s <strong>the</strong>se areas, for which it<br />

also provides civil service adm<strong>in</strong>istration and prepares management<br />

plans. Protected areas under <strong>the</strong> auspices of NCACR, mak<strong>in</strong>g up approx.<br />

15% of <strong>the</strong> area of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, <strong>in</strong>clude:<br />

— 24 Protected Landscape Areas<br />

— 213 National Nature Reserves and Monuments<br />

— 537 Nature Reserves and Monuments<br />

NCACR monitors <strong>the</strong> state of <strong>Czech</strong> biodiversity by:<br />

— manag<strong>in</strong>g <strong>the</strong> Nature Conservation F<strong>in</strong>ds Database conta<strong>in</strong><strong>in</strong>g 9<br />

million data<br />

— support<strong>in</strong>g decision-mak<strong>in</strong>g by public adm<strong>in</strong>istration <strong>in</strong>stitutions<br />

— prepares documents for <strong>the</strong> Natura 2000 network and recommended<br />

pr<strong>in</strong>ciples for <strong>the</strong> management of 41 Important Bird Areas<br />

and 1087 Sites of Community Importance<br />

— delimit<strong>in</strong>g and manag<strong>in</strong>g <strong>the</strong> National System of <strong>Ecological</strong> Stability<br />

of <strong>the</strong> Landscape<br />

— represent<strong>in</strong>g <strong>the</strong> state <strong>in</strong> nature conservation matters at <strong>the</strong> European<br />

Commission<br />

NCACR prepares and realises action plans for endangered species.<br />

NCACR supports, from various fi nancial sources, landscape<br />

measures such as:<br />

— tree plant<strong>in</strong>g, anti-erosion measures<br />

— stream and wetland <strong>restoration</strong><br />

— management of valuable habitats<br />

— improvement of species composition and spatial arrangement of<br />

forests<br />

NCACR <strong>in</strong>forms <strong>the</strong> public about <strong>the</strong> beauty of <strong>Czech</strong> nature by<br />

means of:<br />

— 91 nature trails <strong>in</strong> a range of protected areas<br />

— <strong>the</strong> 'House of Nature' programme aimed at build<strong>in</strong>g visitor centres<br />

— <strong>the</strong> impacted Příroda journal, <strong>the</strong> Ochrana přírody magaz<strong>in</strong>e, and<br />

o<strong>the</strong>r publications.<br />

More at www.nature.cz<br />

Address: Kaplanova 1931/1, Praha 11, Chodov, <strong>Czech</strong> <strong>Republic</strong><br />

145


Society for <strong>Ecological</strong> Restoration (SER)<br />

The 8 th European Conference on <strong>Ecological</strong> Restoration is a regular, biennial event of <strong>the</strong> Society<br />

for <strong>Ecological</strong> Restoration, European branch. The Society was established <strong>in</strong> 1987 <strong>in</strong> <strong>the</strong> USA<br />

and has gradually grown <strong>in</strong>to a worldwide network. Nowadays, it has about 2,500 members from<br />

40 countries. The members <strong>in</strong>clude scientists, practitioners, volunteers, decision-makers and even<br />

some politicians. S<strong>in</strong>ce 1993, <strong>the</strong> Society has published Restoration Ecology as <strong>the</strong> ma<strong>in</strong> journal<br />

<strong>in</strong> <strong>the</strong> fi eld. Besides, <strong>the</strong> Society issues a practically oriented journal under <strong>the</strong> name <strong>Ecological</strong><br />

Restoration and <strong>the</strong> electronic weekly bullet<strong>in</strong> RESTORE. The European branch of <strong>the</strong> Society was<br />

officially established <strong>in</strong> 2001, but <strong>the</strong> European conferences have been organised s<strong>in</strong>ce 1996. All relevant<br />

<strong>in</strong>formation, <strong>in</strong>clud<strong>in</strong>g that about membership, can be found at www.ser.org. For more about<br />

<strong>the</strong> European branch, simply add /europe.<br />

Work<strong>in</strong>g Group for Restoration Ecology, České Budějovice, <strong>Czech</strong> <strong>Republic</strong><br />

The Work<strong>in</strong>g Group for Restoration Ecology is a part of <strong>the</strong> Department of Botany, Faculty of Science, University of South Bohemia, České<br />

Budějovice (Budweis). This <strong>in</strong>formal group <strong>in</strong>cludes, under <strong>the</strong> leadership of Prof. Karel Prach, not only botanists but also specialists from o<strong>the</strong>r<br />

fields and departments of <strong>the</strong> faculty, as well as several <strong>in</strong>stitutes of <strong>the</strong> Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. The members are especially<br />

<strong>in</strong>terested <strong>in</strong> us<strong>in</strong>g ecological succession <strong>in</strong> <strong>the</strong> <strong>restoration</strong> of various human-disturbed sites (such as m<strong>in</strong><strong>in</strong>g sites), ecosystems on ex-arable<br />

land, and various neglected and wrongly managed grasslands, as well as <strong>the</strong> <strong>restoration</strong> of natural species composition and function<strong>in</strong>g of<br />

degraded forests, especially plantations. Results are published <strong>in</strong> top ecological journals as well as popular publications. Emphasis is placed on<br />

spread<strong>in</strong>g <strong>the</strong> ideas of <strong>restoration</strong> ecology to <strong>the</strong> public.<br />

The work<strong>in</strong>g group is <strong>the</strong> ma<strong>in</strong> organiser of <strong>the</strong> 8 th European Conference on <strong>Ecological</strong> Restoration, 2012. For details about <strong>the</strong> group, see<br />

http://botanika.prf.jcu.cz/<strong>restoration</strong>.<br />

146


Brief reviews<br />

“<br />

A useful publication <strong>in</strong> <strong>the</strong> field of modern nature conservation, demonstrat<strong>in</strong>g experience and results, but also problems,<br />

ga<strong>in</strong>ed <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> <strong>in</strong> practical applications of <strong>restoration</strong> ecology. A wide range of case studies <strong>in</strong> different types of ecosystem<br />

is documented, <strong>in</strong>clud<strong>in</strong>g conditions for <strong>the</strong> use of particular approaches, f<strong>in</strong>ancial demands, and <strong>the</strong> degree of public support<br />

for <strong>the</strong> illustrated projects. Even though <strong>restoration</strong> ecology is a relatively recent ecological discipl<strong>in</strong>e, <strong>the</strong> publication clearly shows<br />

it is quite a respectable tradition <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Individual case studies <strong>in</strong>dicate that under certa<strong>in</strong> conditions a restored<br />

ecosystem can be left or led to natural processes, preserv<strong>in</strong>g desirable dynamics and without risk of degradation, while <strong>in</strong> o<strong>the</strong>r cases<br />

systematic, suitably applied management is needed, dependent on <strong>the</strong> availability of <strong>the</strong> necessary human and f<strong>in</strong>ancial resources.<br />

All <strong>the</strong> presented knowledge, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> documented problems and identified future challenges, is of great value for practical<br />

conservation of nature, <strong>in</strong>dividual natural phenomena or <strong>the</strong> landscape as a whole. At <strong>the</strong> same time, it also meets <strong>the</strong> <strong>Czech</strong><br />

<strong>Republic</strong>’s <strong>in</strong>ternational commitments, for example <strong>the</strong> implementation of <strong>the</strong> European Natura 2000 network, <strong>the</strong> requirements of<br />

<strong>the</strong> European nature conservation directives, and <strong>the</strong> commitment to restore 15% of degraded ecosystems <strong>in</strong> this country by 2020.<br />

Conciseness, a clear and simple structure and photographs and diagrams document<strong>in</strong>g <strong>the</strong> case studies are <strong>the</strong> great advantages<br />

of this publication. It also provides contacts to <strong>the</strong> authors, who may on demand pass on fur<strong>the</strong>r detailed knowledge to whoever<br />

<strong>in</strong>terested.<br />

Ladislav Miko<br />

“<br />

This collection of papers is above all a synoptic summary of a whole range of nature conservation activities started <strong>in</strong> <strong>the</strong> past,<br />

which now provide us with essential <strong>in</strong>formation on <strong>the</strong> management of species, habitats and large areas. It deals systematically<br />

with <strong>the</strong> issue of so-called conservation and <strong>restoration</strong> management, both at <strong>the</strong> ecosystem level and on a spatial scale, and documents<br />

various activities, from forest conversion through traditional grassland management to wetland <strong>restoration</strong> and rehabilitation<br />

of natural streams.<br />

Considerable attention is paid to areas disturbed by dra<strong>in</strong><strong>in</strong>g (peat bogs) and m<strong>in</strong><strong>in</strong>g, <strong>in</strong>to <strong>the</strong> disputable reclamation of which<br />

still huge sums of money are <strong>in</strong>vested. However, <strong>the</strong> presented studies demonstrate that nature at <strong>the</strong>se sites (sand pits, quarries,<br />

spoil heaps, tail<strong>in</strong>gs) can also be restored by spontaneous succession.<br />

The chapter on abandoned military areas presents <strong>the</strong> pr<strong>in</strong>ciples of susta<strong>in</strong>able management of <strong>the</strong>se areas. This happens at a<br />

time when <strong>the</strong> military is plann<strong>in</strong>g massive withdrawal from <strong>the</strong>se areas and it is high time to know how to manage <strong>the</strong>se areas and<br />

ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> very specific biota which have been created here dur<strong>in</strong>g decades of military activity. The communities here are <strong>in</strong>itial<br />

successional stages and <strong>the</strong>ir conservation requires so-called disturbance management.<br />

The f<strong>in</strong>al chapter summarises <strong>the</strong> issue of landscape <strong>restoration</strong>.<br />

The editors have managed to unify <strong>the</strong> various contributions <strong>in</strong> a way which enables comparison of <strong>the</strong> data, <strong>in</strong>clud<strong>in</strong>g f<strong>in</strong>ancial<br />

support. This provides extremely valuable <strong>in</strong>formation, complement<strong>in</strong>g our ideas about <strong>the</strong> “price of nature”. Also worth mention<strong>in</strong>g<br />

are <strong>the</strong> chronological tables of <strong>restoration</strong> measures, show<strong>in</strong>g that <strong>the</strong> ecological <strong>restoration</strong> of habitats and ecosystem functions<br />

is a long-term affair and well exceeds <strong>the</strong> time length of relevant subsidy programmes.<br />

This publication will undoubtedly become a popular handbook on ecological <strong>restoration</strong>, not only <strong>in</strong> common conservation<br />

practice, but also among students a pedagogues.<br />

Tomáš Kučera<br />

147

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!