Skip to main content
Log in

Initiation of a Volume Glow Discharge of Atmospheric Pressure in a Cylindrical Tube Using a Low-Current Surface Discharge in Argon

  • GENERAL EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An independent volumetric glow discharge was experimentally obtained at atmospheric pressure in an argon atmosphere. A volumetric glow discharge is realized in an electrode system consisting of a thin metal wire and a metal grid with a dielectric barrier and is ignited using an auxiliary discharge, a low-current surface discharge initiated at the end of a glass tube along the dielectric surface between the pointed cathode and a cylindrical metal anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Roth, J.R., Rahel, J., Dai, X., and Sherman, D.M., J. Phys. D: Appl. Phys., 2005, vol. 38, p. 555. https://doi.org/10.1088/0022-3727/38/4/007

    Article  ADS  Google Scholar 

  2. Temmerman, E., Akishev, Yu., Trushkin, N., Leys, Ch., and Verschuren, J., J. Phys. D: Appl. Phys., 2005, vol. 38, no. 4, p. 505. https://doi.org/10.1088/0022-3727/38/4/001

    Article  ADS  Google Scholar 

  3. Becker, K.H., Non-Equilibrium Air Plasmas at Atmospheric Pressure, Series in Plasma Physics, London: IOP Publ., 2005.

    Google Scholar 

  4. Dudek, D., Bibinov, N., Engemann, J., and Awakowicz, P., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 7367. https://doi.org/10.1088/0022-3727/40/23/017

    Article  ADS  Google Scholar 

  5. Iza, F., Kim, G.J., Lee, S.M., Lee, J.K., Walsh, J.L., Zhang, Y.T., and Kong, M.G., Plasma Processes Polym., 2008, vol. 5, no. 4, p. 322. https://doi.org/10.1002/ppap.200700162

    Article  Google Scholar 

  6. Tynan, J., Law, V.J., Ward, P., Hynes, A.M., Cullen, J., Byrne, G., Daniels, S., and Dowling, D.P., Plasma Sources Sci. Technol., 2010, vol. 19, p. 015015. https://doi.org/10.1088/0963-0252/19/1/015015

    Article  ADS  Google Scholar 

  7. Locke, B.R. and Shih, K.-Y., Plasma Sources Sci. Technol., 2011, vol. 20, p. 034006. https://doi.org/10.1088/0963-0252/20/3/034006

    Article  ADS  Google Scholar 

  8. Becker, K., Kersten, H., Hopwood, J., and Lopez, J.L., Eur. Phys. J. D, 2010, vol. 60, p. 437. https://doi.org/10.1140/epjd/e2010-00231-4

    Article  ADS  Google Scholar 

  9. Arkhipenko, V.I., Callegari, T., Safronau, Y.A., and Simonchik, L., IEEE Trans. Plasma Sci., 2009, vol. 37, p. 1297. https://doi.org/10.1109/TPS.2009.2020905

    Article  ADS  Google Scholar 

  10. Arkhipenko, V.I., Kirillov, A.A., Safronau, Y.A., and Simonchik, L., Eur. Phys. J. D, 2010, vol. 60, p. 455. https://doi.org/10.1140/epjd/e2010-00266-5

    Article  ADS  Google Scholar 

  11. Kunhardt, E.E., IEEE Trans. Plasma Sci., 2000, vol. 28, p. 189. https://doi.org/10.1109/27.842901

    Article  ADS  Google Scholar 

  12. Korolev, Yu.D., Russ. J. Gen. Chem., 2015, vol. 85, p. 1311. https://doi.org/10.1134/S1070363215050473

    Article  Google Scholar 

  13. Akishev, Yu.S., Deryugin, A.A., Elkin, N.N., Kochetov, I.V., and Trushkin, N.I., Plasma Phys. Rep., 1994, vol. 20, p. 437.

    ADS  Google Scholar 

  14. Akishev, Yu.S., Deryugin, A.A., and Kochetov, I.V., Fiz. Plazmy (Moscow), 1994, vol. 20, no. 6, p. 585.

    Google Scholar 

  15. Semenov, A.P., Baldanov, B.B., and Ranzhurov, Ts.V., Instrum. Exp. Tech., 2020, vol. 63, no. 2, p. 284. https://doi.org/10.1134/S0020441220020050

    Article  Google Scholar 

  16. Fridman, A., Plasma Physics and Engineering, New York: Taylor, 2004.

    Book  Google Scholar 

Download references

Funding

The work was supported by the state task of the Ministry of Science and Higher Education of the Russian Federation (scientific topic 0270-2021-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Baldanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldanov, B.B. Initiation of a Volume Glow Discharge of Atmospheric Pressure in a Cylindrical Tube Using a Low-Current Surface Discharge in Argon. Instrum Exp Tech 66, 945–947 (2023). https://doi.org/10.1134/S0020441223060088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441223060088

Navigation