Skip to main content
Log in

Preliminary investigation of an uncertainty budget for uranium isotope ratio analysis using a liquid sampling—atmospheric pressure glow discharge—orbitrap mass spectrometer system

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source has proven to be an effective analysis tool for making uranium isotope ratio measurements when coupled to high-resolution mass spectrometers, such as the Orbitrap. While previous studies have shown the capabilities of the LS-APGD for isotope ratio determination, a systematic evaluation of the measurement uncertainty of the technique has not been conducted. To this end, the International Standards Organizations (ISO) guidelines to the expression of uncertainty in measurement (GUM analysis) have been applied to generate an uncertainty budget. Presented here, a preliminary assessment derived from the GUM analysis was performed. The uncertainty in the instrument blank determination has been identified as a primary factor contributing to measurement uncertainty for the LS-APGD-Orbitrap method. These findings for the specific test case of uranium isotopic analysis will be invaluable in applications across the breadth of isotope ratio mass spectrometry performed on this unique instrumental platform.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boulyga S, Konegger-Kappel S, Richter S, Sangely L (2015) Mass spectrometric analysis for nuclear safeguards. J Anal At Spectrom 30:1469–1489

    Article  CAS  Google Scholar 

  2. Eppich GR, Mácsik Z, Katona R, Konegger-Kappel S, Stadelmann G, Köpf A, Varga B, Boulyga S (2019) Plutonium assay and isotopic composition measurements in nuclear safeguards samples by inductively coupled plasma mass spectrometry. J Anal At Spectrom 34:1154–1165. https://doi.org/10.1039/C9JA00047J

    Article  CAS  Google Scholar 

  3. Zendel M, Donohue DL, Kuhn E, Deron S, Bíró T (2011) Nuclear safeguards verification measurement techniques. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F (eds) Handbook of nuclear chemistry. Springer, Boston, pp 2893–3015. https://doi.org/10.1007/978-1-4419-0720-2_63

    Chapter  Google Scholar 

  4. Mayer K, Wallenius M, Ray I (2005) Nuclear forensics—a methodology providing clues on the origin of illicitly trafficked nuclear materials. Analyst 130:433–441. https://doi.org/10.1039/B412922A

    Article  CAS  PubMed  Google Scholar 

  5. Kristo MJ, Tumey SJ (2013) The state of nuclear forensics. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 294:656–661. https://doi.org/10.1016/j.nimb.2012.07.047

    Article  CAS  Google Scholar 

  6. Briyatmoko B (2017) Identification of High Confidence Nuclear Forensics Signatures for Mining, Milling and Conversion Processes

  7. Richter S, Kühn H, Aregbe Y, Hedberg M, Horta-Domenech J, Mayer K, Zuleger E, Bürger S, Boulyga S, Köpf A, Poths J, Mathew K (2011) Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry. J Anal At Spectrom 26:550–564. https://doi.org/10.1039/C0JA00173B

    Article  CAS  Google Scholar 

  8. Aggarwal SK (2016) Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology—a review. Anal Methods 8:942–957. https://doi.org/10.1039/C5AY02816G

    Article  Google Scholar 

  9. Martelat B, Isnard H, Vio L, Dupuis E, Cornet T, Nonell A, Chartier F (2018) Precise U and Pu isotope ratio measurements in nuclear samples by hyphenating capillary electrophoresis and MC-ICPMS. Anal Chem 90:8622–8628. https://doi.org/10.1021/acs.analchem.8b01884

    Article  CAS  PubMed  Google Scholar 

  10. Yang L (2009) Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review. Mass Spectrom Rev 28:990–1011. https://doi.org/10.1002/mas.20251

    Article  CAS  PubMed  Google Scholar 

  11. Zhao K, Peńkin M, Norman C, Balsley SD, Mayer K, Peerani P, Pietri C, Tapodi S, Tsutaki Y, Boella M, Renha G, Kuhn E (2010) International Target Values 2010 for measurement uncertainties in safeguarding nuclear materials

  12. Metzger SC, Manard BT, Bostick DA, Ticknor BW, Rogers KT, McBay EH, Glasgow DC, Zirakparvar NA, Hexel CR (2021) An approach to separating Pu, U, and Ti from high-purity graphite for isotopic analysis by MC-ICP-MS. J Anal At Spectrom 36:1150–1158. https://doi.org/10.1039/D1JA00079A

    Article  CAS  Google Scholar 

  13. Marcus RK, Davis WC (2001) An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid Media. Anal Chem 73:2903–2910. https://doi.org/10.1021/ac010158h

    Article  CAS  PubMed  Google Scholar 

  14. Marcus RK, Manard BT, Quarles CD (2017) Liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasmas for diverse spectrochemical analysis applications. J Anal At Spectrom 32:704–716. https://doi.org/10.1039/C7JA00008A

    Article  CAS  Google Scholar 

  15. Zhang LX, Marcus RK (2016) Mass spectra of diverse organic species utilizing the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source. J Anal At Spectrom 31:145–151. https://doi.org/10.1039/C5JA00376H

    Article  Google Scholar 

  16. Williams TJ, Marcus RK (2020) Coupling the liquid sampling—atmospheric pressure glow discharge, a combined atomic and molecular (CAM) ionization source, to a reduced-format mass spectrometer for the analysis of diverse species. J Anal At Spectrom 35:1910–1921. https://doi.org/10.1039/D0JA00094A

    Article  CAS  Google Scholar 

  17. Hoegg ED, Williams TJ, Bills JR, Marcus RK, Koppenaal DW (2020) A multi-electrode glow discharge ionization source for atomic and molecular mass spectrometry. J Anal At Spectrom 35:1969–1978. https://doi.org/10.1039/D0JA00142B

    Article  CAS  Google Scholar 

  18. Williams TJ, Bills JR, Marcus RK (2020) Mass spectrometric characteristics and preliminary figures of merit for polyaromatic hydrocarbons via the liquid sampling-atmospheric pressure glow discharge microplasma. J Anal At Spectrom 35:2475–2478. https://doi.org/10.1039/D0JA00373E

    Article  CAS  Google Scholar 

  19. Hoegg ED, Godin S, Szpunar J, Lobinski R, Koppenaal DW, Marcus RK (2019) Ultra-high resolution elemental/isotopic mass spectrometry (m/Δm > 1,000,000): coupling of the liquid sampling-atmospheric pressure glow discharge with an orbitrap mass spectrometer for applications in biological chemistry and environmental analysis. J Am Soc Mass Spectrom 30:1163–1168. https://doi.org/10.1007/s13361-019-02183-w

    Article  CAS  PubMed  Google Scholar 

  20. Kenneth Marcus R, Hoegg ED, Hall KA, Williams TJ, Koppenaal DW (2023) Combined atomic and molecular (CAM) ionization with the liquid sampling-atmospheric pressure glow discharge microplasma. Mass Spectrom Rev. https://doi.org/10.1002/mas.21720

    Article  PubMed  Google Scholar 

  21. Paing HW, Bryant TJ, Quarles CD, Marcus RK (2020) Coupling of laser ablation and the liquid sampling-atmospheric pressure glow discharge plasma for simultaneous, comprehensive mapping: elemental, molecular, and spatial analysis. Anal Chem 92:12622–12629. https://doi.org/10.1021/acs.analchem.0c02677

    Article  CAS  PubMed  Google Scholar 

  22. Bills JR, Nagornov KO, Kozhinov AN, Williams TJ, Tsybin YO, Marcus RK (2021) Improved uranium isotope ratio analysis in liquid sampling-atmospheric pressure glow discharge/orbitrap FTMS coupling through the use of an external data acquisition system. J Am Soc Mass Spectrom 32:1224–1236. https://doi.org/10.1021/jasms.1c00051

    Article  CAS  PubMed  Google Scholar 

  23. Hoegg ED, Manard BT, Wylie EM, Mathew KJ, Ottenfeld CF, Marcus RK (2019) Initial benchmarking of the liquid sampling-atmospheric pressure glow discharge-orbitrap system against traditional atomic mass spectrometry techniques for nuclear applications. J Am Soc Mass Spectrom 30:278–288. https://doi.org/10.1007/s13361-018-2071-2

    Article  CAS  PubMed  Google Scholar 

  24. Hoegg ED, Marcus RK, Hager GJ, Hart GL, Koppenaal DW (2018) Concomitant ion effects on isotope ratio measurements with liquid sampling—atmospheric pressure glow discharge ion source Orbitrap mass spectrometry. J Anal At Spectrom 33:251–259. https://doi.org/10.1039/C7JA00308K

    Article  CAS  Google Scholar 

  25. Paing HW, Manard BT, Ticknor BW, Bills JR, Hall KA, Bostick DA, Cable-Dunlap P, Marcus RK (2020) Rapid determination of uranium isotopic abundance from cotton swipes: direct extraction via a planar surface reader and coupling to a microplasma ionization source. Anal Chem 92:8591–8598. https://doi.org/10.1021/acs.analchem.0c01606

    Article  CAS  PubMed  Google Scholar 

  26. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and IML (2008) Evaluation of measurement data—Guide to the expression of uncertainty in measurement

  27. ISO (2009) Uncertainty of measurement–Part 1: introduction to the expression of uncertainty in measurement

  28. Kessel W (2002) Measurement uncertainty according to ISO/BIPM-GUM. Thermochim Acta 382:1–16. https://doi.org/10.1016/S0040-6031(01)00729-8

    Article  CAS  Google Scholar 

  29. Bürger S, Essex RM, Mathew KJ, Richter S, Thomas RB (2010) Implementation of Guide to the expression of Uncertainty in Measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology. Int J Mass Spectrom 294:65–76. https://doi.org/10.1016/j.ijms.2010.05.003

    Article  CAS  Google Scholar 

  30. Håkansson A (2019) An investigation of uncertainties in determining convective heat transfer during immersion frying using the general uncertainty management framework. J Food Eng 263:424–436. https://doi.org/10.1016/j.jfoodeng.2019.07.024

    Article  Google Scholar 

  31. Delvallée A, Feltin N, Ducourtieux S, Trabelsi M, Hochepied J (2015) Toward an uncertainty budget for measuring nanoparticles by AFM. Metrologia 53:41

    Article  Google Scholar 

  32. Fletcher ND, Manard BT, Bostick DA, Bostick WD, Metzger SC, Ticknor BW, Rogers KT, Hexel CR (2021) Determination of phosphorus and sulfur in uranium ore concentrates by triple quadrupole inductively coupled plasma mass spectrometry. Talanta 221:121573. https://doi.org/10.1016/j.talanta.2020.121573

    Article  CAS  PubMed  Google Scholar 

  33. Rogers KT, Giaquinto J, Essex RM, Metzger SC, Ticknor BW, Hexel CR (2018) Trace impurity analysis in uranium oxide via hybrid quantification techniques—gravimetric standard addition and isotope dilution mass spectrometry. J Radioanal Nucl Chem 318:685–694. https://doi.org/10.1007/s10967-018-6106-8

    Article  CAS  Google Scholar 

  34. Bradley VC, Manard BT, Roach BD, Metzger SC, Rogers KT, Ticknor BW, Wysor SK, Brockman JD, Hexel CR (2020) Rare earth element determination in uranium ore concentrates using online and offline chromatography coupled to ICP-MS. Minerals. https://doi.org/10.3390/min10010055

    Article  Google Scholar 

  35. Metzger SC, Ticknor BW, Rogers KT, Bostick DA, McBay EH, Hexel CR (2018) Automated separation of uranium and plutonium from environmental swipe samples for multiple collector inductively coupled plasma mass spectrometry. Anal Chem 90:9441–9448. https://doi.org/10.1021/acs.analchem.8b02095

    Article  CAS  PubMed  Google Scholar 

  36. Williams TJ, Hoegg ED, Bills JR, Marcus RK (2021) Roles of collisional dissociation modalities on spectral composition and isotope ratio measurement performance of the liquid sampling—atmospheric pressure glow discharge/orbitrap mass spectrometer coupling. Int J Mass Spectrom 464:116572. https://doi.org/10.1016/j.ijms.2021.116572

    Article  CAS  Google Scholar 

  37. Tsybin YO, Nagornov KO, Kozhinov AN (2019) Advanced fundamentals in Fourier transform mass spectrometry. In: Kanawati B, Schmitt-Kopplin P (eds) Fundamentals and applications of Fourier transform mass spectrometry. Elsevier, Amsterdam, pp 113–132. https://doi.org/10.1016/B978-0-12-814013-0.00005-3

    Chapter  Google Scholar 

  38. Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J Anal At Spectrom 13:1001–1008. https://doi.org/10.1039/A801965G

    Article  CAS  Google Scholar 

  39. Yang L, Sturgeon RE (2003) Comparison of mass bias correction models for the examination of isotopic composition of mercury using sector field ICP-MS. J Anal At Spectrom 18:1452–1457. https://doi.org/10.1039/B307973B

    Article  CAS  Google Scholar 

  40. Mathew KJ, O’Connor G, Hasozbek A, Kraiem M (2013) Total evaporation method for uranium isotope-amount ratio measurements. J Anal At Spectrom 28:866–876. https://doi.org/10.1039/C2JA30321C

    Article  CAS  Google Scholar 

  41. Goodwin JV, Manard BT, Ticknor BW, Cable-Dunlap P, Marcus RK (2022) Improved uranium isotopic ratio determinations for the liquid sampling-atmospheric pressure glow discharge orbitrap mass spectrometer by use of moving average processing. J Anal At Spectrom 37:814–822. https://doi.org/10.1039/D1JA00374G

    Article  CAS  Google Scholar 

  42. Miller J, Miller JC (2018) Statistics and chemometrics for analytical chemistry. Pearson Education, London

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy’s National Nuclear Security Administration under contract DE-AC05-000R22725 with UT-Battelle, LLC. Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy under contract DE-AC-05-000R22725. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian W. Ticknor.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 536 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodwin, J.V., Manard, B.T., Ticknor, B.W. et al. Preliminary investigation of an uncertainty budget for uranium isotope ratio analysis using a liquid sampling—atmospheric pressure glow discharge—orbitrap mass spectrometer system. J Radioanal Nucl Chem 332, 2875–2886 (2023). https://doi.org/10.1007/s10967-023-08901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08901-9

Keywords

Navigation